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Mammalian cells have two copies of every autosomal gene that are typi-
cally turned on or off together in the same nucleus. The mechanisms by 
which cells break this symmetry in some cases and express a gene from 
only one of the two alleles of the diploid genome are not yet fully under-
stood. Classic monoallelic genes include X-chromosome-linked genes, 
olfactory receptor genes and developmentally imprinted genes1. There 
are no changes in DNA content between the two alleles in these classes 
of genes, and thus they are differentially regulated at the epigenetic level. 
This regulation involves noncoding RNAs, DNA methylation, histone 
modifications and heterochromatin formation2–4. Recently, a new class 
of random monoallelically expressed (RME) genes has been identified. 
These genes are expressed from one allele or the other in a clone-specific 
manner that is independent of parent of origin and underlying DNA 
sequence5–9. In neural progenitor cells (NPCs), many RME genes are 
candidate genes for neurodegenerative disorders, and clonal heteroge-
neity in their expression may contribute to variable disease severity and 
age of onset8,10. Allele choice in RME genes is stable in culture, but little 
is known about how it is established and epigenetically remembered4. 
There is some evidence that a subset of RME genes are asynchronously 
replicated and differentially methylated on the two alleles5,11. The epi-
genetic mechanism by which the cell can break symmetry randomly 
in development and express one gene monoallelically among a sea of 
biallelically expressed genes is of great interest12,13.

We used ATAC–seq to define the DNA sequences related to 
monoallelic epigenetic memory, a method for profiling DNA acces-
sibility with a small number of cells on a rapid timescale14. ATAC–seq 
can be used to comprehensively identify active regulatory elements,  

transcription factor binding sites and nucleosome position across the 
genome. However, standard ATAC–seq and other genomic analyses 
mask the effects of heterozygous mutations and regulatory changes. 
To interrogate the effects of an acquired mutation or genotype on 
regulatory changes in the clinic, it is important to be able to resolve 
individual haplotypes in accessibility data. Here we describe the opti-
mization of allele-specific ATAC–seq. We used a tractable mouse 
hybrid system in which millions of fully phased SNPs can be inter-
rogated in ATAC–seq reads15. Using this method, we identified the 
landscape of monoallelically accessible regulatory elements in embry-
onic stem cells (ESCs) and NPCs. We identified a new class of RAMA 
elements and characterized their distinctive genomic distribution, 
capacity for epigenetic memory and developmental ontogeny.

RESULTS
Optimization of allele-specific ATAC–seq
To identify allele-specific regulatory elements in the mouse genome, 
we performed ATAC–seq in highly polymorphic F1 hybrid mouse 
ESCs and ESC-derived clonal NPCs (Fig. 1a). An NPC clone was 
derived from a single colony, which was picked under a microscope.  
These cell lines, derived from a 129S1 (here referred to as 129) × 
Castaneous (Cast) cross, contain ~23 million SNPs (1 SNP for 
every ~110 bp)5. This SNP density is approximately tenfold the 
SNP density in human cells and thus provides high resolution to 
interrogate allelic chromatin regulation. We performed ATAC–seq 
in male and female ESCs (two lines) and NPCs (16 clones) and 
developed an allele-specific ATAC–seq analysis pipeline. For each 
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clone, we sequenced two replicates to an average of 50 million 
usable reads and then merged them after verifying their repro-
ducibility (Supplementary Fig. 1a and Supplementary Table 1).  
We mapped sequencing reads to a ‘SNP-masked’ genome index in 
which we replaced each SNP site with ‘N’ to eliminate reference bias. 
We then assigned each ‘N’-overlapping read (~55% of total reads) to 
its genome of origin on the basis of SNP identity (Fig. 1a). To confirm 
that our mapping strategy was highly accurate, we simulated reads 
from the 129 and Cast alleles and found that only 0.05% of reads 
mapped to the wrong allele16. Furthermore, for all monoallelic sites 
identified in NPCs, there was no allelic bias in ESCs, indicating that 
our allelic assignment was specific to this cell type and not a system-
atic bias in allelic analysis.

Identifying monoallelic regulatory elements
To identify regulatory elements that are differentially regulated on the 
two alleles, we developed a method for assigning allelic ATAC–seq  
peaks. First, we called high-confidence ATAC–seq peaks using  
combined reads from all NPC samples with MACS2 (ref. 17). We 
then counted the number of reads from the 129 and Cast alleles  
in each ATAC–seq peak and calculated a score of allelic bias, the  
d score (Fig. 1a)7. 

d score 129 reads/total allele-informative reads 0.5= −

The d score has a range of −0.5 to +0.5: +0.5 means all the reads are 
from the 129 allele and −0.5 means all the reads are from the Cast 
allele; 0 means the reads are equally distributed between the 129 and 
Cast alleles. In addition to the d score, we computed a P value for the 
d score using a permutation-based method to evaluate the signifi-
cance of the deviation from biallelic accessibility (Online Methods 
and Supplementary Fig. 1b).

To determine the d-score cutoff to consider a peak monoallelic, we 
used the X chromosome in female differentiated and undifferentiated 
cells. In female ESCs, both X chromosomes are active and the d score 
for most peaks should be ~0. In an NPC clone in which the 129 X 
chromosome has been inactivated and the majority of genes should 
be monoallelically expressed, we found that the d score for most  
X-chromosome peaks was <−0.3 (Fig. 1b,c). Therefore, we used  
this d score as the threshold for assigning monoallelic and biallelic 
peaks on the autosomes (Fig. 1d). 

− < < =0 3 0 3. .d biallelic peak

− ≤ ≤ − =0 5 0 3. .d Cast-specific peak  

0.3 0.5 129-specific peak≤ ≤ =d  

We considered peaks with ≥10 allele-informative reads to be assign-
able with high confidence. The number of ATAC–seq peaks that 
could be assigned allelically increased with sequencing depth and 
plateaued at ~90% of total peaks (Supplementary Fig. 1c–e). To 
remove potential false positives, we further filtered out all sites of 
somatic DNA copy number variants (CNVs) by assessing chromo-
somal blocks of ATAC–seq signal variation for all cell lines studied 
(Online Methods).

Three classes of monoallelic elements
In each NPC clone, we identified between 2,800 and 4,500 monoal-
lelic sites of DNA accessibility, comprising ~5% of all ATAC–seq 
peaks (Fig. 1e and Supplementary Fig. 1f). We classified all  

monoallelically accessible elements (1,964 elements) into 129-specific  
(702 elements), Cast-specific (633 elements) and RAMA elements  
(629 elements) (Fig. 2a–c). We defined RAMA elements as those that 
were monoallelic in at least two clones with at least one being 129 
monoallelic and one being Cast monoallelic (Fig. 2a,d). We show 
one example in which the promoter of the RME gene Zfp114 had 
a RAMA pattern, with monoallelic accessibility in four NPC clones 
and biallelic accessibility in the remaining 12 (Fig. 2d). The sex of 
the clone did not affect allelic choice at RAMA elements (Fig. 2d). 
129-specific and Cast-specific elements, arising owing to parent- or 
genotype-specific regulation, were monoallelic from the same allele 
in at least 50% of clones and biallelic in the other clones (Fig. 2b,c 
and Supplementary Fig. 2a,b). We filtered out known imprinted 
genes, as imprinting is eroded in ESC culture and thus is not faith-
fully maintained in our ESC-derived NPCs18,19. Overall, our results 
indicated pervasive monoallelic DNA accessibility occurring in three 
distinctive patterns.

RAMA elements are enriched at promoters
We compared the three classes of monoallelic elements, using tran-
scription start site (TSS) annotation and ChIP–seq data from NPCs 
to determine the genomic location and features of our identified 
monoallelic regulatory elements. Although 129- or Cast-specific ele-
ments were significantly enriched at distal elements (>2 kb from a TSS;  
P < 1 × 10−9 for each), RAMA elements were significantly enriched 
at promoters (<2 kb from a TSS; P = 1.1 × 10−10; Fig. 2e and 
Supplementary Fig. 2c). ChromHMM analysis confirmed that 
RAMA elements had the highest proportion of promoters, marked 
by trimethylation of histone H3 at lysine 4 (H3K4me3) and RNA 
polymerase II (Pol II) occupancy. In contrast, 129- and Cast-specific 
accessible elements had enhancers as the largest constituent class and 
were depleted of promoters (Fig. 2f and Supplementary Fig. 2d,e). 
Thus, genetic bias in DNA accessibility tended to occur at enhancers, 
whereas RAMA tended to occur at promoters. We found no significant 
enrichment for specific transcription factor binding sites at RAMA 
elements, indicating that there was no single transcription factor or 
family of transcription factors regulating these elements as a class.

The promoter bias of RAMA elements suggested that they might  
be tightly linked to monoallelic transcription. In contrast, the 
enhancer bias in genotype-specific monoallelic elements reflected the  
looser conservation of genomic sequence at distal elements and the  
use of distinct enhancers in evolutionarily divergent strains. 
Furthermore, this strain specificity of enhancers was reflected  
in the fact that 129-specific elements were more enriched for  
all states, including enhancers, as a result of its similarity to the  
reference strain in which most ChIP–seq experiments have been  
performed (Fig. 2f).

RAMA element choice is stable across cell generations and 
bookmarked in mitosis
We focused on RAMA elements because they are a new class of  
regulatory DNA. Clonal monoallelic gene expression can arise as a result 
of stable silencing of one allele or transient monoallelic states coordi-
nated within a clonal population4. To test whether RAMA elements are 
epigenetically stable over time, we performed ATAC–seq at five and 
ten additional passages after the first ATAC–seq experiment (Fig. 3a).  
We found that RAMA elements, 129-specific and Cast-specific  
elements maintained the same allelic bias across all passages (R = 0.95  
and 0.92 for promoters and distal elements, respectively; Fig. 3b,c 
and Supplementary Fig. 3a–f). This is consistent with stability 
over multiple passages of a limited number of RME genes based on  
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Figure 1 Allele-specific ATAC–seq used to discover monoallelically accessible regulatory elements across the genome in mouse cells. (a) Experimental 
and analytic scheme. Cast and 129 mice were crossed, and F1 hybrid ESCs were isolated. ESCs were differentiated into NPCs and subcloned. ATAC–seq 
was performed on clonal cell lines. Sequencing reads were assigned to the 129 and Cast genomes. The d score of allelic imbalance was calculated for 
each ATAC–seq peak using SNP-informative reads. (b) Two examples of allele-specific ATAC–seq tracks on the X chromosome including the Ddx26b 
locus, which was silenced in differentiated cells, and the Mecp2 locus, which escaped silencing. Xa, active X chromosome; Xi, inactive X chromosome.  
(c) Distribution of d scores for ATAC–seq peaks at the promoters of silenced and escaped genes on the X chromosome as well as for all genes. The red 
dashed line corresponds to the cutoff of d score = −0.3 used to distinguish escaped from silenced elements. (d) Volcano plot showing d score versus 
–log10 (FDR) for all peaks in NPC clone XX1 across the genome. Background colors indicate how peaks are assigned on the basis of d score and FDR.  
(e) Percentage of total autosomal ATAC–seq peaks that are monoallelic in ESCs and NPCs derived from females and males. Error bars show s.d. across 
the number of clones indicated.

allele-specific RT–PCR analysis in ref. 5. We compared the slight 
changes in ATAC–seq d score at some monoallelic elements with the 
variability in d score owing to technical variation across three rep-
licates of one clone at the same passage. The changes in d scores for 
RAMA elements across passages were very small and on the same 
scale as technical variation between replicates at the same passage 
(Supplementary Fig. 3d,e).

The mechanism by which monoallelic DNA accessibility can be 
transmitted through the cell cycle is of great interest. Most transcrip-
tion factors are believed to dissociate from chromatin during mitosis, 
although some are believed to ‘bookmark’ DNA to preserve binding 
sites and facilitate reactivation of gene expression after cytokine-
sis20. Hi-C studies have shown that hierarchical chromatin structure 
is erased during the cell cycle, although some specific accessibility 
patterns seem to be maintained21,22. We asked whether monoallelic 
DNA accessibility is bookmarked through mitosis. We isolated mitotic 
NPCs and performed ATAC–seq. DAPI and phosphorylation of his-
tone H3 at Ser10 (H3S10ph) staining showed that 94% of cells were 
arrested in prometaphase (Fig. 3d). We found that, in mitosis, there 
were fewer ATAC–seq peaks overall, and many peaks were reduced but 
not entirely lost (Supplementary Fig. 3g). Promoter-proximal peaks 
were more highly preserved during mitosis than distal regulatory  

elements, supporting a model in which active genes are accessible 
through the cell cycle but lose contacts with other distal elements 
(Fig. 3f)21,22. We found that RAMA elements retained allele-specific 
accessibility during mitosis, and the d score at RAMA elements in 
the asynchronous cell population was highly correlated with d scores 
from mitotic NPCs (R = 0.75; Fig. 3e,f and Supplementary Fig. 3g). 
In Figure 3g, we show a locus in which the DNA accessibility of distal 
regulatory elements was not preserved during mitosis, whereas acces-
sibility at promoters was maintained as well as the RAMA element 
choice. Thus, RAMA elements were stable and faithfully bookmarked 
throughout the cell cycle, as evidenced by differential mitotic acces-
sibility on the two alleles.

RME genes have randomly monoallelic promoters but not enhancers
RME genes had been identified by RNA–seq in seven NPC clones5 
for which we have ATAC–seq data5. We asked whether RME genes 
in these clones have nearby RAMA elements reflecting their tran-
scriptional state and marking allele-specific regulatory elements that 
may control RME. For this analysis, we considered only RME genes 
for which the promoter is accessible and contains informative SNPs 
(149 genes) and RAMA elements (87 elements) for which the adjacent 
transcript is expressed and contains informative SNPs.
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Forty-eight of 149 RME genes had RAMA elements at their pro-
moters, corresponding to 48 of the 87 RAMA promoters (Fig. 4a). 
The overall correlation of d score for expression and d score for acces-
sibility was 0.88 across all RME genes in all clones (Fig. 4b,c). Some 
RME genes, such as Fam111a, had accessibility d scores that were 
very highly correlated with expression d score, whereas others, such 
as Fgd3 and Hpse, did not (Fig. 4d). RT–PCR and Sanger sequencing 
in independently derived NPC lines for which RNA–seq data were 
not available confirmed this strong promoter RAMA–RME correla-
tion at the RME genes Pde7b and Bag3 (Fig. 4e and Supplementary 
Fig. 4c). RME genes that did not have RAMA promoters tended to 
be weakly expressed, and RAMA elements that did not have adjacent 
RME genes tended to have low ATAC–seq peak enrichment scores 
(Supplementary Fig. 4a,b). In addition, there were 16 RAMA ele-
ments that were not adjacent to RME genes called by Gendrel et al. but 
that had been called as RME genes in another study of RME in NPCs7. 
Collectively, these results indicate that in many cases the promoter 
of an RME gene is only accessible to transcriptional machinery on 
the expressed allele, resulting in stable expression of only this allele. 
In other, more rare, cases such as the Hpse locus, an RME gene may 
have a biallelically accessible promoter, but other epigenetic or post-
transcriptional regulation is in place to maintain RME (Fig. 4d).

Of the 39 promoter RAMA elements that were not located at 
described RME genes, some were located at the promoters of genes 
with multiple isoforms that are difficult to distinguish by RNA–seq. 
An example of this is the protocadherin-α cluster in which there 
are 12 alternative exons with highly repetitive sequences. In a given 

clone, one or more isoforms is expressed on each allele independently. 
The promoters of the chosen alleles form contacts with a constitutive  
enhancer ~200 kb downstream of the locus that is biallelically acces-
sible23,24. Allele-specific combinatorial isoform choice is difficult  
to distinguish by RNA–seq but was identified by allele-specific 
ATAC–seq (Fig. 4f).

We next asked whether RME genes have distal RAMA elements 
nearby that might act as monoallelic enhancer switches. We were 
surprised to find that there was no correlation between RME gene 
d score and the d score of the non-promoter ATAC–seq peaks 
between 2 kb and 10 kb upstream or downstream (R = 0.11; Fig. 4g  
and Supplementary Fig. 4f). A well-studied enhancer–promoter 
pair is the Arc gene and its enhancer located 7 kb upstream, which 
loops over to contact the promoter in a neuronal-activity-depend-
ent manner25. Although Arc is RME and its promoter is RAMA, the 
upstream enhancer was biallelic in all clones (Supplementary Fig. 4j). 
All of this evidence suggests a model in which the enhancer landscape 
near many RME genes is permissive for expression of both alleles but 
monoallelic accessibility of the promoter may serve as the gatekeeper 
for monoallelic gene expression.

Conversely, we tested whether the distal RAMA elements (>2 kb 
from a TSS) that we identified by ATAC–seq might regulate previously 
identified RME genes or new monoallelic transcripts. Using Hi-C data 
from these same cells16, we found that distal RAMA elements were 
not located in the same topologically associating domains (TADs) 
as RME genes more than expected by chance (Fig. 4j). We found 
that the d score at promoter-distal RAMA elements and the d score 
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for expression at the nearest gene was not well correlated (R = 0.18).  
There were only a few sites for which the distal RAMA element might 
contribute to allelic bias in transcription at the nearest gene (Fig. 4h,i  
and Supplementary Fig. 4d,e,g,h). These distal RAMA elements 

may mark the promoters of currently unannotated transcripts or 
non-polyadenylated transcripts (Supplementary Fig. 4d,e). For the 
noncoding RNA AK016658, we confirmed that the allelic expression 
matched promoter ATAC–seq status (Fig. 4e).
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RAMA elements are developmentally programmed but 
premarked in embryonic stem cells
To investigate whether RAMA elements are prepatterned during 
development or arise de novo during neural differentiation, we per-
formed ATAC–seq in ESCs that we used to generate the clonal NPCs. 
We found that the number of monoallelic ATAC–seq peaks in ESCs 
was one-fourth the number in NPCs (Fig. 1e and Supplementary 
Fig. 1f). The majority of RAMA elements in NPCs were accessible 
in ESCs (86%) (Fig. 5a), but only 2–4% were monoallelic in ESCs  
(as compared with 21% monoallelic in each NPC clone), indicating 
that their monoallelic accessibility is NPC specific (Fig. 5b).

We asked whether NPC RAMA elements are marked to become 
RAMA in the earlier ESC state by histone modifications. We found 
that 47% of promoter-proximal NPC RAMA elements were marked  
by both active and repressive histone modifications (H3K4me3 or 

monomethylation of histone H3 at lysine 4 (H3K4me1) plus trimeth-
ylation of histone H3 at lysine 27 (H3K27me3) or lysine 9 (H3K9me3)) 
and DNA-binding factors (Pol II Ser2 phosphorylation plus Suz12 or 
Ring1b) in ESCs, more often than non-RAMA accessible elements  
(Fig. 5c,d and Supplementary Fig. 5a–h)26 RAMA elements at 
promoters of genes whose expression increased from the ESC to 
NPC state were the most highly co-marked with active and repres-
sive modifications (Fig. 5d). We confirmed this for some loci using 
ChIP–qPCR for the repressive mark H3K9me3 and the active mark 
H3K4me3 in female ESCs and NPCs derived from the same line. 
ESCs, which have biallelic accessibility at the Cpped1 promoter, were 
marked by both H3K9me3 and H3K4me3 at this locus. H3K4me3 
was retained as ESCs differentiated into NPCs. Notably, H3K9me3 
was lost in NPCs in which the promoter was biallelically accessible, 
whereas H3K9me3 was retained but reduced in other NPCs in which 
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the promoter was monoallelically accessible. Sanger sequencing of 
ChIP DNA showed that both alleles were marked by both H3K4me3 
and H3K9me3 in ESCs, but in NPCs the active and repressed alleles 
were marked only by H3K4me3 or H3K9me3, respectively (Fig. 5e 
and Supplementary Fig. 5i). These results suggest that both alleles 
are poised for activation or repression in the ESC state, and each has 
some probability of being activated or repressed as the cells exit the 
pluripotent state (Fig. 5f). These marks could be present on the same 
nucleosome or could reflect a mixture of nucleosome states in the 
ESC population27,28. This mechanism of shutting down no or one 
allele upon differentiation is similar to X-chromosome inactivation 
but distinct from other monoallelic systems like olfactory receptor 
choice, where it is the low probability of activation that assures only 
a single allele is expressed29.

A subset of RAMA elements are established by  
a non-stochastic mechanism
RAMA and RME may arise owing to stochastic binding of chromatin 
remodelers and trans factors at low-probability sites in the genome or 

alternatively arise from specific biological mechanisms for generating 
diversity such as allelic exclusion or counting4,11. These mechanisms 
exist in other monoallelic gene expression programs and include pre-
marking of alleles by histone modifications or asynchronous replica-
tion, or feedback that ensures only a single allele is activated30–33.

To address whether the RAMA/RME pattern, where one or two 
alleles can be expressed at each element, is stochastically established, 
we explored whether the two alleles are independently regulated. In 
the case that the alleles are independently opened or closed, the dis-
tribution of inaccessible, monoallelically accessible and biallelically 
accessible elements across clones would follow a binomial distribu-
tion based on the probability of activation (Pact = number of active 
alleles in 16 clones/number of alleles present) (Fig. 6a,b). In the case 
that the distribution is not approximately binomial, there could be a 
specific counting mechanism or selection mechanism in place after 
establishment.

To test whether RAMA elements become accessible independently 
on each allele, we tested whether the number of biallelically closed 
(0), monoallelically open (1) and biallelically open (2) alleles follows 
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the binomial distribution. We calculated the expected number of 
0, 1 and 2 states from Pact and then used the observed distribution  
to calculate a P value for the deviation from the expected (Fig. 6a–e 
and Supplementary Fig. 6b). We focused on elements for which  
0.3 < Pact < 0.7 because we were sufficiently powered in this range  
(n = 16 clones) and because these elements are particularly interesting 
owing to their high probability of being monoallelically accessible 
(Fig. 6d and Supplementary Fig. 6a). First, we found that individual 
sites had very distinct distributions of 0, 1 and 2 accessible alleles. 
We found that 16 individual RAMA elements had distributions that 
rejected the binomial distribution with P < 0.1 (13 with P value < 0.05).  
Because we had low power at individual loci, we used the distri-
bution of P values across RAMA elements to estimate that around 
29% deviated from the binomial distribution, indicating that there 
may be a non-stochastic mechanism underlying the establishment 
of their RAMA pattern or selection of clones thereafter (Fig. 6f)34.  
We show three RAMA elements as examples: the Dbx2 promoter 
whose distribution did not differ from the binomial, the Pde7b pro-
moter, which had more monoallelic clones than expected, and the 
Slc27a6 promoter, which had a ‘non-zero’ pattern (Fig. 6g–i and 
Supplementary Fig. 6c–e). Our analysis suggests that the major-
ity of RAMA elements are consistent with a stochastic, independ-
ent allelic choice, whereas the minority have feedback or selection 
mechanisms in place. Furthermore, the distinct distribution at  
each RAMA site indicated that these loci are not regulated by a com-
mon mechanism.

DISCUSSION
Here we developed allele-specific ATAC–seq to relate DNA sequence 
variation and element accessibility. Our allele-specific ATAC–seq 
analysis framework can be easily adapted to other animal models 
and to patient genomes in the context of human disease. The latter 
has many clinical applications, as the regulome is highly dynamic 
and the effects of environmental triggers and medical treatments 
on heterozygous variants can be monitored on a clinically relevant 
time scale.

We applied allelic ATAC–seq to a highly polymorphic mouse hybrid 
F1 system, in which we identified over 1,800 monoallelic DNA regula-
tory elements across autosomes that showed as much allelic bias as 
genes subject to X-chromosome inactivation. Genetically determined 
monoallelically accessible elements tended to occur at enhancers, 
whereas RAMA elements—capable of monoallelic accessibility on 
either allele—tended to be located at promoters. These results high-
light a new important functional distinction between enhancers and 
promoters and raise the possibility that epigenetic changes resulting 
in RME tend to be associated with the immediate environment of 
a gene’s promoter rather than its long-range regulatory landscape, 
at least once the changes have been established. Further, we found 
that the memory of allelic choice at RAMA elements was transmitted 
through cell generations and through the cell cycle when chromatin 
was highly compacted.

The mechanisms of establishment and function of RME are 
largely a black box. We found that RME genes in NPCs tended to 
have monoallelic promoter elements that may drive their monoallelic 
expression. To our surprise, nearby distal enhancer elements tended 
to be biallelic, indicating that they are permissive and not restrictive 
for monoallelic gene expression. It is intriguing that this is reminis-
cent of genes that escape silencing on the inactive X chromosome, the 
promoters of which are the only accessible elements within a sea of 
heterochromatin, indicating that the promoter region alone may be 
sufficient for gene control in these contexts16. This highly local unit 

of gene regulation at RME genes is interesting, as it may allow for 
allelic heterogeneity in expression of specific genes without dictating  
allelic states of nearby essential genes. This suggests a model in which 
transcription factors can bind to nearby enhancer elements but  
that they only have a functional relationship on the allele where the 
promoter is accessible, leading to productive transcription. This  
gatekeeper model indicates that the promoter itself is the locus control 
element in the context of RME.

The ontogeny of random monoallelic gene expression is of  
great interest, as it lends clues to the establishment and function of 
variegated gene expression programs. The developmental specificity 
of RAMA for NPCs is especially interesting for brain development 
because heterogeneity in gene expression may yield unique combina-
tions of proteins in neurons to create great diversity. RME genes are 
also enriched for gene sets associated with Alzheimer’s disease and 
schizophrenia10, further motivating their understanding. The biallelic 
accessibility of RAMA elements in ESCs suggests that it is stochastic 
silencing and closing of chromatin (as opposed to activation) during 
differentiation that leads to monoallelic expression. This is reminis-
cent of X-chromosome inactivation where one of two X chromosomes 
is silenced, but is the exact opposite of other forms of monoallelic 
expression such as olfactory receptor choice29. Furthermore, the 
observation that these accessible promoter regions were marked both 
by repressive and active marks in the ESC state suggests that each 
allele may be poised and easily tipped toward activation or repres-
sion upon receiving differentiation signals, thus leading to a RAMA 
pattern. The diploid cell has evolved to have two copies of every gene, 
buffering it against deleterious single-hit mutations. The discovery of 
RAMA elements, which defy this safeguard system, likely has some 
advantage at the organ level and sets the stage for further study. In 
the future, single-cell methods that combine DNA accessibility and 
RNA measurements may greatly increase throughput and shed light 
on these fascinating mechanisms.

URLs. Allele-specific ATAC–seq analysis code, https://github.com/
jinxu9/AlleleSpecificATACseq; RefSeq genes, http://hgdownload.soe.
ucsc.edu/goldenPath/mm9/database/refGene.txt.gz; imprinted genes, 
http://www.mousebook.org/imprinting-gene-list and http://geneim-
print.com/site/genes-by-species.Mus+musculus; ChromHMM results, 
https://github.com/jinxu9/mESC_histone_chromHMM, https://
github.com/jinxu9/mESC_TF_chromHMM and https://github.com/
jinxu9/mNPC_epi_anno; Picard, https://github.com/broadinstitute/
picard; MACS2, https://github.com/taoliu/MACS; EpiStemNet data, 
http://epistemnet.bioinfo.cnio.es/download/bam_files.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Sequencing data are available on the Gene 
Expression Omnibus (GSE84646).

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Cell culture.  Mouse ESCs were cultured in serum (Fisher Scientific, 
SH30071.03) and medium containing LIF (Millipore, ESG1107) on 0.2% 
gelatin-coated plates. NPCs were cultured in N2B27 medium (DMEM/F12 
(Invitrogen, 11320-033), Neurobasal (Gibco, 21103-049), NDiff Neuro-2  
Medium Supplement (Millipore, SCM012), B27 Supplement (Gibco, 17504-044))  
supplemented with EGF and FGF (10 ng/ml, each) (315-09 and 100-18B, 
Peprotech). Cells were passaged every other day with Accutase (SCR005, 
Millipore) and seeded on 0.2% gelatin-coated plates. NPC differentiation 
from ESCs was performed as previously described35. Briefly, ESCs were plated  
on gelatin-coated plates in N2B27 medium for 7 d. On day 7, cells were dis-
sociated with Accutase and cultured in suspension in N2B27 medium with 
FGF and EGF (10 ng/ml, each). On day 10, embryoid bodies were plated  
onto 0.2% gelatin-coated plates and allowed to grow for three passages before 
single cells were subcloned. For passage analysis, NPC clones XX2, XX4 and 
XY14 were grown for an additional five and ten passages after the initial 
ATAC–seq experiment.

ATAC–seq. ATAC–seq library preparation was performed exactly as 
described14. Briefly, ESCs and NPCs were dissociated using Accutase (SCR005, 
Millipore). 50,000 cells per replicate (two replicates per clone) were incubated 
with 0.1% NP-40 to isolate nuclei. Nuclei were then transposed for 30 min at 
37 °C with adaptor-loaded Nextera Tn5 (Illumina, Fc-121-1030). Transposed 
fragments were directly PCR amplified and sequenced on an Illumina NextSeq 
500 or HiSeq 4000 to generate 2× 75-bp paired-end reads.

ATAC–seq library quality control. Libraries were sequenced to an average 
depth of 42 million reads. The sequencing depth for each library and each 
clone is listed in Supplementary Table 1. The raw reads were first trimmed 
using cutadapt (version 1.6) (ref. 36) to remove adaptor sequence at the 3′ end. 
The trimmed reads were aligned to a modified reference genome (mm9) using 
Bowtie2 (v2.2.3) (ref. 37) using the ‘--very-sensitive’ parameter. Paired-end 
reads that aligned to the genome with mapping quality ≥10 were kept as usable 
reads (reads aligned to the mitochondrial genome were removed). PCR dupli-
cates were removed using Picard (see URLs). Reproducibility between technical  
duplicates was estimated, and these agreed well (data not shown). Unique 
usable reads from technical duplicates and different batches of ATAC–seq 
were merged together for each clone. The fragment length distribution and 
TSS enrichment score for each clone is listed in Supplementary Table 2. The 
TSS enrichment score was defined as the ratio of the summit in a 4-kb win-
dow around the TSSs of all RefSeq genes from the UCSC Genome Browser to  
the background. Empirically, a TSS enrichment score >6 was required for  
a successful ATAC–seq library. All libraries passed that criterion.

Open/active chromatin region identification in NPCs. Unique usable  
reads from all NPC clones were further pooled together for global peak 
calling. Open chromatin regions (peak regions) were called using MACS2  
(ref. 17), with the following parameters ‘-q 0.001 -n NPC_all_nomodel_shift50 
--nomodel --shift -50 --extsize 100 --keep-dup all’. Peaks with an enrichment 
score less than 5 or within the mm9 blacklist region were filtered out. A total 
of 78,922 peak regions were identified in NPCs and used for the following 
allelic analysis.

Allele-specific alignment. SNP sites between 129S1/SvImJ (129) and Cast/
EiJ (Cast) strains were collected from the dbSNP (v132) database. To make 
an unbiased mapping reference for the 129 and Cast alleles, SNP sites that 
were shared by 129 and Cast, but different from the reference genome, were 
replaced by the common 129/Cast SNP. SNP sites that differed in 129 and Cast 
were replaced by ‘N’ in the reference genome, and the position and genotype 
were recorded separately. This modified genome was used as the reference  
for Bowtie2. After alignment, all reads that mapped to an ‘N’ position were 
separated into 129- and Cast-specific reads according to their genotype. Reads 
containing non-concordant SNPs were rare and were discarded. 36–49% of 
usable reads in each clone contained a SNP and were considered allelically 
informative (Supplementary Table 3). The overall alignment and allele-specific 
alignment files were further converted into bigWigs using BEDtools38, which 
were normalized and can be visualized in the UCSC Genome Browser.

Evaluation of allelic reproducibility. To evaluate the reproducibility of the 
allelic accessibility measured by ATAC–seq, the correlation coefficients from 
technical replicates, biological replicates (same clone, different passage) and 
different clones were compared. The expectation was that the technical rep-
licates should be highly correlated and should be the highest, comparing to 
the correlation between biological replicates and different clone comparison. 
Three NPC lines (XX2, XX4 and XY14) with biological replicates were used 
to test the reproducibility. Allelic reads were counted for each open chromatin 
peak in NPCs. The Pearson’s correlation coefficient was calculated for each 
comparison. The distribution of R values of chromosome 5 in each group 
is shown in Supplementary Figure 1a. Apparently, the technical replicates 
gave the highest R values globally, which validated the reproducibility of our 
allelic ATAC–seq measurement. After we confirmed the reproducibility, the 
sequences from technical replicates were merged for monoallelic open chro-
matin region identification.

Identification of monoallelic open chromatin regions. To assign monoal-
lelically and biallelically accessible peaks, allelic reads mapping to 129 and 
Cast were counted for each peak in each clone and a d score was calculated as 
a measure of the strength of allelic imbalance7. Peaks with ≥10 allelic reads 
were considered as allelically informative peaks. For a given peak, the d score 
was calculated as the ratio of 129 reads to the total number of reads minus 
1/2. The d score takes a value between –0.5 and 0.5, where negative values 
correspond to a Cast bias and positive values correspond to a 129 bias. A d 
score of 0 reflects equal accessibility on the two alleles. 

d score reads total reads= −129 0 5/ .

To evaluate the statistical significance of any deviation from biallelic acces-
sibility, a P value based on a permutation method was designed and applied 
to each peak as follows 

r = C
C
129 1
total

( )

Zobs
total

total
= −

−( )
C C
C
129 0 5

1
2

. *
* *

( )
r r

We randomly sampled reads from the input file and assigned the sampled 
reads to the maternal or paternal allele on the basis of the binomial distribu-
tion. Znull was calculated in the same way as Zobs but using sampling reads. 
This step was repeated N times 

s si iZ Z i N= ≥ = …( )1 0 1 2, | | ; ; ,if elsenull obs ε  

P N

N
i= ∑1 3

s
( )

where C129 is the number of allelic reads from the 129 allele and Ctotal is the 
total number of allelic reads.

This permutation scheme was followed for each chromosome separately, 
and a Benjamini–Hochberg FDR control method was applied to adjust for 
multiple testing. The permutation scheme is more stringent on the autosomes 
but more sensitive on the X chromosome when compared to the binomial test 
(Supplementary Fig. 1b).

An empirical threshold for monoallelic accessibility was determined by 
using the promoter elements of X-linked genes. We showed previously that 
there is a strong correlation between allelic activation of the promoter on the 
X chromosome with allelic expression16.

The same methods and threshold were applied to the autosomes in each 
clone to identify genome-wide monoallelic accessibility. Briefly, peaks with 
at least ten allelically informative reads, a |d score| ≥0.3 and Padj <0.01 were 
identified as monoallelic peaks.

To investigate the dependence of monoallelic peak identification on 
sequencing depth, the clone with the highest sequencing depth (NPC XY14) 
was used to make a systematic estimation. Usable reads were downsampled 
from 5% to 90%, and monoallelic peaks were counted at each sequencing 
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depth. The results showed that the number of monoallelic peaks was saturated 
at above 40 million usable reads (Supplementary Fig. 1c). Fourteen of 18 lines 
were sequenced to a depth of more than 40 million reads.

Copy number variation detection for NPC clones using ATAC–seq data. To 
avoid calling false positive monoallelic peaks caused by aneuploidy or copy 
number variation, we estimated CNVs from ATAC–seq data. The principle 
is that sequencing from closed chromatin regions (background) should ran-
domly distribute along the whole genome, and increases or decreases in this 
background should reflect CNVs. To call CNVs, we used total usable reads 
from ATAC–seq data in background regions. Peak regions were first called 
using MACS2 with loss criteria for each clone. Reads within the peak regions 
(extended by 500 bp on either side) were excluded. The background reads were 
used to estimate the average coverage of each 100-kb window and were tested 
for statistical derivation from diploidly using FreeC (v7.2) (ref. 39). Because 
we cannot detect copy-neutral aneuploidy in this manner, we used the d score 
to control for this. Specifically, chromosomes 12 and 1q were detected as copy-
neutral aneuploidy regions. CNV regions (losses >100 kb and gains >500 kb) 
and amplified or lost chromosomes were defined on a clone-by-clone basis 
from our analyses. For a subset of clones, whole-genome sequencing data 
were used to tune CNV calling parameters (data not shown). The number of 
autosomal monoallelic peaks identified for each clone following CNV removal 
is listed in Supplementary Table 4.

Classification of monoallelically accessible elements. Allelic information for 
peak regions in all NPC clones was merged as a matrix. Peaks in CNV regions 
were excluded on a clone-by-clone basis. Additionally, peaks located within 
2 kb of known imprinted loci were filtered out using the list of imprinted 
genes from the combination of MouseBook and Geneimprint. After filtering 
CNVs and imprinted loci, peaks with at least ten allelically informative clones 
were further classified into RAMA, 129-specific monoallelically accessible 
(129 MA) and Cast-specific monoallelically accessible (Cast MA) elements 
(Supplementary Tables 5–7). Randomly monoallelically accessible elements 
were those for which at least one clone was 129 monoallelically accessible 
and at least one clone was Cast monoallelically accessible. The 129- and Cast-
specific elements were those in which more than 50% of clones were monoal-
lelically accessible from the same allele and zero clones were monoallelically 
accessible from the other allele.

Estimation of mappability for strain-specific monoallelically accessible  
elements. 100 million 75-bp paired-end reads were simulated from the  
129 and Cast genomes, respectively. The simulated reads were merged as the 
silicon sequencing from F1 mice and were subsequently mapped and counted 
using our allelic ATAC–seq pipeline. According to the simulation results, only 
two of the 129-specific elements showed allelic bias and were removed in the 
further analysis.

Annotation of accessible elements in NPCs. ChIP–seq data for histone 
modifications and transcription factors in mouse NPCs were collected from 
previously published data. The full list of marker and accession numbers is 
provided in Supplementary Table 8. Briefly, the raw data were downloaded 
from the Sequence Read Archive (SRA) database and then converted into fastq 
files. The fastq files were mapped to the mouse genome (mm9) using Bowtie2 
(v2.2.3) with default parameters. Duplicates were removed using SAMtools 
(version: 0.1.19) (ref. 40) and then converted into the bed format required by 
chromHMM (version 1.10) (ref. 41). Parameters for chromHMM were opti-
mized with 500-bp bin size and 16 states. The classification and state features 
are shown in Supplementary Figure 2e.

To test and compare the enrichment of a specific set of peaks, a control 
set was randomly simulated using the distribution of the enrichment scores 
from the tested set of peaks. The same number of peaks was simulated for the 
control set. The enrichment test was done by Fisher’s exact test (two-tailed). 
The results from chromHMM can be accessed on GitHub (see URLs).

Comparison across passages. Allelic reads for random monoallelic elements 
identified in all clones were counted in three clones (NPC XX2, NPC XX4 
and NPC XY14) that had ATAC–seq data from passages PX + 0, PX + 5 and 

PX + 10 (where PX is the passage of the original ATAC–seq experiment). 
Informative monoallelic elements (|d score| ≥ 0.3 and allelic reads ≥ 10) were 
compared across different passages. Correlation coefficient was calculated by 
adding the three clones by Pearson’s correlation. To evaluate the consistency 
of monoallelic assignment across passages, the same analyses were performed 
for a set of three technical replicates. The maximum difference in d score 
among passages was compared to the maximum difference in d score among 
technical triplicates.

Correlation with RNA–seq data.  Expression data including RPKM and allelic 
ratios from RNA–seq data were downloaded from a previous study5. The allelic 
ratio from RNA–seq data was converted into a d score, as described previously. 
ATAC–seq data including peak intensity and d score were extracted from the 
seven NPC clones for which RNA–seq data were available. ATAC–seq peaks, 
located within 2 kb around the TSS of a specific gene, were assigned as a pro-
moter–transcript pair. Only promoter–transcript pairs with allelic expression 
ratios as well as allelically informative peaks were kept to estimate the propor-
tion of RAMA–RME pairs. The promoter–transcript pairs were classified into 
three classes on the basis of whether they were called or not called as randomly 
monoallelic with the applied threshold. Correlation coefficient was calculated for 
all pairs across seven clones. Correlation between distal regulatory elements and 
transcripts was compared in two ways: (i) regulatory elements located 2−10 kb  
from the TSS of an RME gene were selected and tested and (ii) the nearest  
gene for a distal RAMA element were selected and tested. All the correlation 
coefficients were calculated by Pearson’s correlation using R (v3.2.2).

Colocalization within topologically associating domains.  TADs called from 
Hi-C data in NPCs were used to test the colocalization of RMEs and distal 
RAMA elements16. TADs containing distal RAMA elements were extracted, 
and the proportion of these TADs that contained RME genes was then  
calculated. The same analysis was performed for randomly selected controls 
for enrichment comparison.

Quantifying the number of active alleles.  It is easy to distinguish monoalleli-
cally (1) and biallelically (2) accessible elements using the d score and P value.  
However, it is difficult to distinguish 0 from 2 active alleles because  
the d score is always around 0 for both cases. To resolve this problem, we esti-
mated the baseline background signal for each element on the silenced allele 
of a monoallelic clone. We used this background read count to define a lack  
of accessibility.

Then, using normalized allelic counts from both alleles and TSS enrichment 
score we separated elements into those having 0, 1 and 2 accessible alleles on 
the basis of the following rules: (i) if the element has been called as a monoal-
lelic peak (using the d-score method), count as 1 active allele, (ii) if neither of 
the two alleles is higher than the baseline, count as 0 active alleles, (iii) when 
both alleles are higher than the baseline and if |d score| < 0.3, count as 2 active 
alleles, and (iv) else, if |d score| ≥ 0.3, count as 1 active allele. Pact was estimated 
as the number of active alleles deviated by the total number of alleles.

To look at the global Pact across all RAMA sites, we filtered out the less confi-
dent peaks. Basically, a linear regression between allelic counts and enrichment 
score was applied for all RAMA sites. If the allelic count was not correlated 
with the enrichment score as expected, it indicated that the allelic reads might 
be located at the boundary of the peak region, instead of in the center. In this 
situation, the number of active alleles will not be accurately estimated. The 
top ~20% of RAMA sites with the highest deviation from the regression were 
removed in the following comparison to the stochastic model.

Stochastic model test.  We tested whether the establishment of RAMA sites 
can be explained by a stochastic model in which the spectrum of active alleles 
in each clone should be the same as the spectrum from a binomial distribution 
with the same probability of activation.

The observed spectrum was calculated by counting the number of active alleles 
in each clone for each peak. Pact was then estimated by dividing the number of 
active alleles by the total number of alleles. Then, the expected spectrum was 
drawn from X~B(n, Pact), where n = 2, X = (0, 1, 2). The observed spectrum was 
compared to the expected spectrum, and the difference was tested using the likeli-
hood-ratio test, which is similar to the χ2 test but allows zero observed values42.
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With the distribution of P values by likelihood-ratio test of RAMA sites 
(those with Pact from 0.3 to 0.7), we estimated the proportion of elements  
that are truly null with the assumption that null P values are uniformly  
distributed34. This is quantified with 

p l
l

l0
1

1
( ) =

> = …{ }
−( )

# ; ,p i m
m

i

where m is the total number of tested elements when setting λ = 0.5.  
Then, π1 = 1 – π0, which gives the proportion of elements that are truly  
alternative features.

Evaluating the accessibility of NPC RAMA elements in ESCs.  To evaluate 
the accessibility of NPC RAMA elements in ESCs, we counted the total number 
of reads within the RAMA regions defined in NPC lines. Then, we normalized 
the number of reads in each region for each line with sequencing depth. The 
minimum enrichment score for peak calling in NPC lines was 5. Therefore, 
if there was more than 20% reads count in ESCs as compared to NPCs, the 
region was defined as an accessible region in ESCs.

Annotation with histone modifications in ESCs and bivalent region identi-
fication.  ChIP–seq data for histone modifications and transcription factors in 
mouse ESCs were collected from a previous collection (EpiStemNet data; see 
URLs)43. The bam files were downloaded and converted into the bed format 
required by chromHMM41. The full list of marks and accession numbers is 
provided in Supplementary Table 9. A Control set was selected as previously 
described and following the same processing as the set of RAMA elements. 
Lineage-specific genes were defined as those with a twofold increase in NPCs 
as compared to ESCs at the expression level. The results from chromHMM 
can be accessed from GitHub. The enrichment of RAMA elements in bivalent 
or repressive regions was tested by Fisher’s exact test (two-tailed), comparing 
to the randomly selected control sets.

ChIP–seq signal for chromatin-modifying enzymes in ESCs at promoter-
proximal NPC RAMA elements open in ESCs was plotted using ngsplot44.

Isolation of mitotic cells for ATAC–seq. NPC clone XX2 was plated at  
low density and treated for 24 h with deoxythymidine (dT; 2 mM). Following 
dT treatment, cells recovered in fresh medium for 3 h and were then treated 
for 6 h with nocodazole (40 µg/ml). Mitotic cells were shaken off the plate 
and collected in the medium. ATAC–seq was performed on 50,000 cells per 
replicate. Mitotic cells were stained with antibody (1:500 dilution) to H3S10ph 
(Cell Signaling, 9706S) and DAPI (Vector Laboratories, H-1200) to verify 
mitotic state.

Chromatin immunoprecipitation.  Cells were fixed in 1% formaldehyde for 
10 min at room temperature, and reactions were subsequently quenched with 
0.125 M glycine. Cells were then snap frozen and stored at −80 °C. Cells were 
then lysed (50 mM HEPES-KOH, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 
0.5% NP-40, 0.25% Triton X-100) for 10 min at 4 °C. Nuclei were lysed (100 mM 
Tris pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA) for 10 min at room 
temperature. Chromatin was resuspended in sonication buffer (10 mM Tris 
pH 8.0, 1 mM EDTA, 0.1% SDS) and sonicated using a Covaris Ultrasonicator 
to an average length of 220 bp. For H3K9me3 ChIP, chromatin from 5 million 
cells was incubated with 5 µg of anti-H3K9me3 antibody (abcam, AB8898) 
overnight at 4 °C. Antibody-bound chromatin was incubated with protein 
G Dynabeads (Invitrogen, 10004D) for 4 h at 4 °C and eluted in Tris buffer 
(10 mM Tris pH 8.0, 10 mM EDTA, 1% SDS). Cross-links were reversed by 
incubation overnight at 65 °C followed by treatment with 0.2 mg/ml proteinase 
K (Life Technologies, AM2548) and 0.2 mg/ml RNase A (Qiagen). DNA was 
purified using Qiagen MinElute columns (Qiagen, 28006).

For Sanger sequencing, SNP-containing regions were amplified using the 
primers listed in Supplementary Table 10, and amplicons were sequenced by 
ElimBio using the forward primer.

qPCR primers used for ChIP are listed in Supplementary Table 10.

RT–PCR and Sanger sequencing. Whole-cell RNA was reverse transcribed 
using SuperScript III (Thermo Fisher, 18080051). cDNA was amplified using the 
primers listed in Supplementary Table 10 and sent for Sanger sequencing.
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Corrigendum: Landscape of monoallelic DNA accessibility in mouse  
embryonic stem cells and neural progenitor cells
Jin Xu, Ava C Carter, Anne-Valerie Gendrel, Mikael Attia, Joshua Loftus, William J Greenleaf, Robert Tibshirani, Edith Heard &  
Howard Y Chang
Nat. Genet.; doi:10.1038/ng.3769; corrected online 13 February 2017

In the version of this article initially published online, there were two errors. In the section “Three classes of monoallelic elements” in the main 
text, “We classified all monoallelically accessible elements (1,966 elements)” should have read “1,964 elements.” In the legend for Figure 5c, the 
number of elements open in ESCs should have been given as 234 instead of 35. The errors have been corrected in the print, PDF and HTML  
versions of this article.
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