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SUMMARY

To define the multi-cellular epigenomic and transcriptional landscape of cardiac cellular development, we
generated single-cell chromatin accessibility maps of human fetal heart tissues.We identified eight major dif-
ferentiation trajectories involving primary cardiac cell types, each associated with dynamic transcription fac-
tor (TF) activity signatures. We contrasted regulatory landscapes of iPSC-derived cardiac cell types and their
in vivo counterparts, which enabled optimization of in vitro differentiation of epicardial cells. Further, we in-
terpreted sequence based deep learning models of cell-type-resolved chromatin accessibility profiles to
decipher underlying TF motif lexicons. De novomutations predicted to affect chromatin accessibility in arte-
rial endothelium were enriched in congenital heart disease (CHD) cases vs. controls. In vitro studies in iPSCs
validated the functional impact of identified variation on the predicted developmental cell types. This work
thus defines the cell-type-resolved cis-regulatory sequence determinants of heart development and iden-
tifies disruption of cell type-specific regulatory elements in CHD.

INTRODUCTION

Organogenesis of the heart begins from twodistinct mesodermal

cellular progenitors that originate from the primary heart field

(PHF) and secondary heart field (SHF). These two mesodermal

lineages give rise to three major subtypes of heart cells: myocar-

dial, epicardial, and endocardial cells that later integrate with

cells from the neural crest to form a functional human heart.1,2,3

Prior studies that have profiled the single-cell transcriptome of

the developing human heart have greatly enhanced our under-

standing of cell types and genes important for cardiogenesis.4,5,6

However, a comprehensive resource of cell-type-resolved cis

and trans regulators of gene expression programs across differ-

entiation trajectories in human cardiac development is lacking.

Congenital heart disease (CHD) is the most common form

of developmental birth defect, affecting 1% of live childbirths

every year.7 Approximately one-third of children with CHD

have a linked genetic etiology accounting for the disorder. Only
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8% of such cases are attributed to mutations in protein-coding

gene regions,8,9,10,11 suggesting that other causes, including

disruption of gene regulation, substantially contribute to the eti-

ology of CHD. The gaps in our understanding of transcriptional

regulation of cardiogenesis and its dysregulation by non-coding

CHD mutations raise several unresolved questions: (1) What are

the dynamic cis-regulatory elements (cREs) and target genes

that define cell types and cell state transitions in cardiogenesis?

(2) What is the combinatorial lexicon of transcription factor (TF)

motifs encoded in these dynamic cREs? (3) Are de novo non-

coding CHD mutations enriched in cRE landscapes of specific

fetal heart cell types? (4) What are the TF binding sites, cREs,

and target genes impacted by putative causal non-coding

CHD mutations? (5) Which in vitro differentiated cellular model

systems demonstrably reproduce the chromatin landscape of

the in vivo developing human heart, thereby enabling functional

validation of the regulatory impact of mutations?

To address these questions, we derived a joint atlas of inte-

grated single-cell data by generating and combining single-cell

assay of transposase accessible chromatin sequencing (scA-

TAC-seq) experiments. These studies profiled the chromatin

landscape of three primary human fetal heart samples spanning

post-conception weeks (PCW) 6, 8, and 19 and deconvolved 20

distinct cell types spanning three progenitor lineages and neural

crest cells. We trained convolutional neural networks (CNN) that

predict cell-type-resolved chromatin accessibility profiles from

DNA sequence to decipher the dynamic motif lexicon of combi-

natorial TF binding at all cREs in each cell context.12,13 We used

the optimal transport algorithm to identify 8 major differentiation

trajectories, defining the continuous progression of TF activities

that promote the formation of primary cell types of the heart.14

Using this atlas of cell states representing in vivo cardiac devel-

opment, we compared accessible chromatin landscapes of

common in vitro cellular model systems comprising major car-

diac cell types derived from iPSCs. Based on insights from the

comparison of in vitro and in vivo epicardial cells, we optimized

the differentiation protocol for iPSC-derived epicardial cells

which produced in vitro differentiated epicardial cells with sub-

stantially greater epigenomic similarity to in vivo counterparts.

Finally, we used our deep learning models to prioritize, non-cod-

ing mutations in CHD trios from the Pediatric Cardiac Genomics

Consortium (PCGC)15 based on their predicted impact on

cell-type-specific chromatin accessibility of putative cREs via

disruption of TF binding sites.We usedCRISPR-based enhancer

knockout experiments with in vitro differentiated endothelial cells

to validate the regulatory impact of a putative cell-type-specific

enhancer predicted to harbor a deleterious CHD mutation

altering expression of JARID2, an important CHD gene.

Together, these datasets and predictive models define the cis-

and trans-regulatory landscape of the developing human heart

across mid-gestation developmental trajectories, elucidate the

fidelity of diverse iPSC-to-lineage in vitro differentiations, and

provide a deep learning framework capable of specifically nomi-

nating non-coding de novo mutations in candidate cREs pre-

dicted to disrupt TF binding, chromatin state in CHD.

RESULTS

Integrating single-cell ATAC and RNA sequencing data
into a unified cell-type-resolved regulatory atlas of the
developing human heart
To capture chromatin dynamics in different cell populations

throughout fetal heart development, we used the Chromium

10X platform to generate scATAC-seq data16 from three primary

human fetal heart samples at 6-, 8-, and 19-weeks post-concep-

tion (PCW) (Figure 1A). We obtained 30,426 high quality scATAC-

seq cell barcodes post filtering and quality control (Figure S1,

Table S1, STAR Methods). We applied iterative latent semantic

indexing (LSI) on accessible chromatin regions to map the cells

from all three time points into a multidimensional principal

component (PC) space17,18,19 and used the Leiden clustering al-

gorithm to discover and optimize clusters of cells that potentially

correspond to distinct cell types20 (Figures 1B, 1C, and S1,

Table S1, STAR Methods). We deciphered each cluster’s likely

cell type identity based on chromatin-derived gene accessibility

scores (GA-scores) of reference marker genes known to exhibit

cell-type-specific gene expression and identified 215,163 puta-

tive cREs as scATAC-seq peak regions over all cell types

(Figures 1D, 1E, and S1, Table S1, STAR Methods).17

To understand the correspondence between the chromatin

andgene expression landscapes of these cell types,we analyzed

previously published scRNA-seq data from developmental time

Figure 1. A single-cell epigenomic atlas of the developing human heart

(A) Schematic of gestational sample time (post-conception week, PCW) and genome-wide profiling methods represented in this study.

(B) UniformManifold Approximation and Projection (UMAP) of cells based on accessible chromatin regions (scATAC-seq). Cells are colored according to sample

gestational time.

(C) UMAP of cells based on accessible chromatin regions (scATAC-seq). Cells are colored according to cell types identified.

(D) Single-cell gene accessibility scores (based on scATAC-seq) of TNNT2, PECAM1, MYH11, and DCN.

(E) Heatmap of Z scores of log2(scATAC-seq read counts) in 215,163 cis-regulatory elements (cREs) across scATAC-seq cell type clusters derived from (B).

Representative genes with cluster-specific differential gene accessibility scores are shown to the right. Gene ontology enrichments indicate the statistically

significant (adjusted p value < 0.005, Gprofiler Fisher exact test) cellular processes for genes with differential gene accessibility scores associated with the

clusters of cell-type-specific cREs.

(F) UMAPs of scRNA-seq and scATAC-seq cells colored by cluster assignment in their respective data modality, and UMAP of scATAC-seq cells highlighted by

complementary scRNA-seq clusters.

(G) Single-cell gene expression (scRNA-seq) of TNNT2, PECAM1, MYH11, and DCN.

(H) Genome tracks of cell-type-resolved aggregate scATAC-seq data around the TNNT2, MYL2, TCF21, DCN/LUM, and PECAM1 gene loci (left to right). The

scale of the tracks (from left to right) range from 0–0.28, 0–0.31, 0–0.18, 0–0.14, and 0–0.2, respectively, in units of fold-enrichment relative to the total number of

reads in TSSs per 10K. Highlights indicate the relevant cell-type-specific putative enhancers in each gene locus.

See also Figures S1 and S2.
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points that closely match those sampled in our scATAC-seq

atlas4,5,6,21 (Figures 1F and S2, Table S1). Cells from our anno-

tated scATAC-seq atlas were then matched with their nearest

neighbor cells in the scRNA-seq atlas using canonical correlation

analysis (CCA)22, and we observed highly concordant imputed

gene expression ofmarker genes (Figures 1F, 1G, S2D, andS2E).

Next, we used our integrated atlas to examine the relationship

between the expression of well-known lineage-specific marker

genes and the chromatin dynamics of their putative cREs. For

example, TNNT2, a well-known cardiomyocyte marker, exhibited

the strongest accessibility at its promoter and putative distal en-

hancers, specifically in the three cardiomyocyte clusters (Fig-

ure 1H). The patterns of accessibility matched the specificity

and relative levels of expression of TNNT2 in the same clusters

(Figure S2C). In contrast, MYL2, a specific marker of vCMs, ex-

hibited similar distal chromatin accessibility in the three myocar-

dial lineage clusters, while the promoter was not accessible, and

the gene was not expressed, in aCMs (Figures 1H and S2C), indi-

cating that accessibility of these distal elements may not be suffi-

cient to drive its expression. In the epicardial cell lineage, we

observed increasing chromatin accessibility around the DCN

marker gene through the cardiac fibroblast cell lineage specifica-

tion (Figure 1H) concordant with its gene expression dynamics

(Figure 1G). We observed analogous dynamics for PECAM1 and

TCF21 in the endocardial and epicardial lineages, respectively.

Deciphering cell-type-resolved cis-regulatory sequence
lexicons with deep learning models of base-resolution
chromatin accessibility profiles
Todecipher thecis-regulatorysequence lexiconofTFbindingsites

in accessible cREs in each cell type, we trained BPNet convolu-

tional neural networks to learnamapping from1kbDNAsequence

windows around scATAC-seq peaks and background regions to

the corresponding base-resolution, pseudobulk chromatin acces-

sibilityprofiles12,13 (Figure2A).Weobtainedhigh, stableSpearman

correlation between total observed and predicted Tn5 insertion

coverageaswell ashighconcordancebetweenobservedandpre-

dicted profile shapes at base-resolution in held-out test chromo-

somes over 5-folds of a chromosome hold-out cross-validation

scheme in all cell types (Figure 2B, Table S2).13

Next, we interrogated each cell-type-specific BPNet model

with the DeepLIFT algorithm to derive the quantitative contribu-

tion of every base-pair in each accessible cRE sequence to its

predicted accessibility.23,24 DeepLIFT scores from the eCM

BPNet model highlighted short, contiguous stretches of bases

with high contribution scores, reminiscent of TF binding motifs,

in the accessible promoter of TNNT2, a gene critical for sarco-

mere contractile function of the heart25 (Figure 2C). Hence, to

annotate predictive, active motif instances in all accessible

cREs of each cell type, we scanned their sequences for matches

to a non-redundant compendium of known TF sequencemotifs26

and restricting to matched instances with high DeepLIFT contri-

bution scores or motif mutagenesis scores derived from each

cell-type-specific BPNet model. Although the sequence of a

cRE is the same in all cell types, its DeepLIFT contribution score

profile can vary across cell types, reflecting cell-type-specific

prediction ofmotif activity byBPNetmodels of different cell types.

For example, the TNNT2 promoter is highly and equally acces-

sible in all 3 types of cardiomyocytes and drives expression of

TNNT2 in all 3 cell types (Figure 2C). However, the DeepLIFT pro-

files derived from the eCM, aCM and vCM models for the same

promoter sequence highlight distinct combinations of active TF

motif instances predicted to regulate accessibility in the three

cell types (Figures 2C and 2D). A TEAD1 motif is predicted to

regulate promoter accessibility in all three cell types. A nearby

MEF2C motif is predicted to be uniquely active in aCM and

vCM, while another upstream MEF2C motif active in eCM is pre-

dicted to be part of a GATA-MEF composite motif that is specif-

ically active in aCM and vCM. A GATAmotif, further upstream, is

predicted to be active specifically in aCM and vCM. An SRFmotif

Figure 2. Cell-type-resolved predictive transcription factor motif syntax derived from deep learning models of base-resolution scATAC-seq

profiles

(A) Schematic of the convolutional neural network (BPNet) trained to simultaneously predict base-resolution probability distribution of reads and total read counts

of cell-type-resolved pseudobulk scATAC-seq profiles over each 1-kb accessible peak region from 2-kb underlying DNA sequences.

(B) Performance evaluation of BPNet cluster-specific models, computed as the Spearman correlation between observed and predicted total counts (higher is

better) across all peaks in each cluster (top) and mean Jenson-Shannon distance (lower is better) between the base-resolution observed and predicted profiles

across all peaks in each cluster (bottom). Results are reported on test sets from a 5-fold cross-validation setup.

(C) Top shows the genome tracks of aggregate pseudobulk scATAC-seq around the TNNT2 locus for each of the cell type clusters. The scale ranges from 0–0.34

in units of fold-enrichment relative to the total number of reads in TSSs per 10K. Bottom zooms into an accessible peak around the TNNT2 transcription start site

and shows the observed base-resolution scATAC-seq read count profiles from the early (eCM), atrial (aCM), and ventricular cardiomyocytes (vCM) clusters, the

predicted profiles from the BPNet models of each of the three cell types, and the corresponding DeepLIFT contribution score profiles (height of each base in the

sequence is proportional to its contribution score).

(D) Per-base DeepLIFT contribution scores of TEAD1,MEF2C, SRF, andGATA4motif locations in the TNNT2 promoter from eCM, aCM, and vCM (rows from top

to bottom). Leftmost column shows the distribution of scRNA-seq expression (in units of log2[transcripts per 10K]) of TNNT2 across cells from each of the three

clusters.

(E–G) Pairwise motif co-occurrence counts for TEAD1, MEF2C, SRF, and GATA4 motifs based on predicted active motifs across all accessible cREs in eCM,

aCM, and vCM, respectively.

(H) Comparison of statistical significance of overlap enrichment (�log10 p value, Wilcoxon rank-sum test) of BPNet model-derived predictive motif instances (y

axis) vs. position weight matrix (PWM) based motif instances (x axis) in vCM accessible peaks regions. Predictive motif instances show higher significance of

enrichments.

(I) Differential enrichments of BPNET model derived predictive motif instances of transcription factors (rows) in accessible peaks of different cell types (columns).

(J) (left column) scRNA-seq gene expression (in units of log2[transcripts per 10K]) and (right column) scATAC-seq based ChromVAR motif deviation scores (in

units of Z scores) for NKX2-5, TBX5, TCF21, SRF, SOX17, and MEOX1 shown in the scATAC-seq UMAP representations of all cells.

See also Figure S3.
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is predicted to be active only in vCM. The higher density of pre-

dicted active motifs in the TNNT2 promoter in aCM and vCM

compared to eCM is concordant with the higher expression of

TNNT2 in the former two cell types (Figure 2D). This combinato-

rial, cell-type-specific motif syntax of these 4 TF at the TNNT2

promoter is consistent with the genome-wide co-occurrence sta-

tistics of their activemotifs across all cREs in eCM, aCMand vCM

(Figures 2E, 2F, and 2G, Table S2).

We also found that most TFs that are expected to be active

in vCMs, including those belonging to the MEF2 family and NFI

family, showed significantly stronger enrichment (Benjamini-

Hochberg (BH) adjusted hypergeometric test p value < 1e-500

for MEF2 and < 1e-150 for NFI) of active motif instances relative

to PWM motif instances in differential, cell-type-specific vCM

peaks (Figure 2H). Next, we estimated the enrichment of active

motif instancesof TFs in accessible cREsof eachcell type to iden-

tify the TF regulators of cell-type-resolved chromatin accessibility

landscapes (Figures 2I and S3A). The cell type specificity of glob-

ally predictive TFs identified by the BPNet models was further

corroborated by high concordance (Table S2) between TF activity

scores (chromVAR27) and the expression of the TFs in the scRNA-

seq data across developmental timepoints (Figure 2J). Our

analyses thus provide a comprehensive resource of cell-type-

resolved TF lexicons and annotations of predictive TF sequence

motifs in cRE landscapes of human fetal heart development.

Inferring dynamic regulatory control across major
cellular differentiation trajectories in human
cardiogenesis
Next, we sought to identify major developmental trajectories

involving cell state transitions across fetal heart development

based on single-cell chromatin dynamics. We used the optimal

transport algorithm,14 previously developed to derive trajec-

tories from scRNA-seq data, to identify the most parsimonious

transitions in global chromatin accessibility between cells from

PCW6 to PCW19 of fetal heart development (Figures 3A, 3B,

3C, S3B, S3C, and S3D, Table S3, STAR Methods). Overall,

we characterized 8 dominant trajectories for all the major cell

types at PCW19 (Figures 3B, 3C, and S4). We then characterized

genome-wide and locus-specific regulatory dynamics associ-

ated with cell state transitions across these trajectories. Below,

we present representative case studies contrasting regulation

of the development trajectories leading to SMC cell fate.

The SMC trajectory begins with the OFT cells at PCW6 that

transition through an intermediate preSMC population in

PCW8 to the SMCs at PCW1928 (Figure 3D). A continuous

cascade of dynamically accessible cREs defines cell state tran-

sitions across the trajectory (Figure 3E). These dynamic cREs

are proximal to genes enriched for temporally relevant vascular

developmental processes including cell migration, angiogen-

esis, and muscle contraction at early, intermediate, and late

time points, respectively (Figure 3E). Expression dynamics of

several key lineage specifying TFs including HAND2, SNAI2,

KLF6, and MEF2C were strongly correlated with their chro-

matin-based motif activity (chromVAR deviation scores) across

this trajectory (Figure 3F). Tracking the chromatin accessibility

and gene expression of PDGFRB, one of the primary marker

genes for the SMC population, we observed that initially, the

promoter of PDGFRB accounts for the majority of accessibility

at this locus while gene expression is low (Figure 3G).29,30

The increase in expression of PDGFRB at later time points is

associated with increased accessibility of putative intronic

Figure 3. Identifying developmental trajectories in human fetal heart development

(A) Schematic of the optimal transport method used to determine trajectories of cell state transitions using scATAC-seq gene scores of all the cell types identified

in Figure 1C.

(B) Cell state transition table of cell lineages identified in the major trajectories obtained through optimal transport. Rows correspond to the parent cell types and

columns correspond to the derivative cell types. The heatmap is colored by the fraction of parent cells identified to be ancestors of the derivative cells. (Scale for

transition table.: 0.01 to 0.30).

(C) UMAP of scATAC-seq cells highlighting the dominant trajectories identified using optimal transport. The cell types correspond to those in Figure 1C.

(D) UMAPs of scATAC-seq cells in the smooth muscle cell (SMC) trajectory colored by the gestational sample time.

(E) Heatmap of scATAC-seq signal (Z score of log2[reads per 10K]) of variable peaks identified in the SMC pseudotime trajectory. The gene ontology enrichments

are calculated using the variable gene scores in the trajectory.

(F) Heatmaps showing Z score of ChromVAR motif deviation scores (left) and gene expression log2(transcripts per 10K), also applicable for all gene expression

values plotted in this figure) (right) of TFs with correlated variable activity in cells identified to be in the SMC trajectory, as ordered by pseudotime.

(G) Gene expression, promoter chromatin accessibility log2(reads per 10K) +/� 1,000 bp TSS and chromatin-derived gene accessibility score (log2[reads per

10K), applicable for all gene activity values in this figure) dynamics of the PDGFRB gene across pseudotime.

(H) Genome tracks of aggregate scATAC-seq data around thePDGFRB locus inOFT, preSMC, and SMC clusters. cRE1, cRE2, and cRE3 are three representative

cREs with dynamic motif activity further explored in (I) and (J). The ATAC signal range is 0–0.64 in units of fold-enrichment relative to the total number of reads in

TSSs per 10K.

(I) Per-base contribution scores of motifs of HAND2, KLF6, and MEF2C in the 3 highlighted cREs in (H). Rows (top to bottom) are per-base contribution scores

computed using BPNet models of OFT, preSMC, and SMC, respectively. The columns (left to right) are the highlighted cREs from (H) that are active in OFT,

preSMC, and SMC, respectively.

(J) Distribution of scRNA-seq gene expression of HAND2, KLF6, and MEF2C TFs (columns) across cells from OFT, preSMC, and SMC clusters (rows).

(K) UMAPs of scATAC-seq cells in the venous endothelial cell (vEC) trajectory colored by the gestational sample time.

(L) Heatmap of Z scores of variable peaks identified in the vEC pseudotime trajectory, similar to (E).

(M) Heatmaps showing Z score motif activity (left) and expression (right) of TFs in the vEC trajectory, similar to (F).

(N) Gene expression, promoter chromatin accessibility and chromatin-derived gene accessibility score dynamics of the APLNR gene across pseudotime.

(O) Genome tracks of aggregate scATAC-seq data around the APLNR locus in Endo1, Cap and vEC clusters. cRE1, cRE2, and cRE3 similar to (H).

(P) Per-base contribution scores of motifs of GATA3, SOX17, and SP1 in the 3 highlighted cREs in (O), similar to (I).

(Q) Distribution of scRNA-seq gene expression of GATA3, SOX17, and SP1 TFs (columns) across cells from Endo1, Cap, and vEC clusters (rows).

See also Figures S3 and S4.
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enhancers. We then used predictive motif instances derived

from cell-type-specific BPNet models to associate inferred TF

binding dynamics at specific cREs in the PDGFRB locus

with TF expression changes across the three timepoints

(Figures 3H and 3I).

BPNet models of OFT cells at the PCW6 time point revealed a

predictive HAND2 binding motif (Figure 3I) in a downstream pu-

tative enhancer (cRE1 in Figure 3H) that is highly accessible at

this early time point. The predicted TF motif dynamics of

HAND2 at this enhancer was correlated with the expression dy-

namics of HAND2, which also peaks in PCW6 and decreases

thereafter (Figure 3J). Another cRE (cRE2 in Figure 3H) proximal

to the promoter of PDGFRB, which showed the highest accessi-

bility in preSMC at the intermediate PCW8 time point, was

predicted to be regulated by KLF6 whose motif showed high

contribution scores specifically in the preSMC model (Figure 3I)

and whose expression also peaked in preSMCs (Figure 3J). A

distal cRE upstream of PDGFRB (cRE3 in Figure 3H) with highest

accessibility in SMC in PCW19 was predicted to be regulated by

MEF2C whose motif was specifically predictive in SMC BPNet

model (Figure 3I) and whose expression peaked in SMC

(Figure 3J). We observed similar dynamics for the vEC and other

differentiation trajectories as well (Figures 3K–3Q and S4). Our

analysis framework thus provides a lens into the dynamic cis-

regulatory code of developmental cellular trajectories in human

cardiogenesis at basepair resolution.

A systematic comparison of regulatory landscapes of
in vitro differentiated cardiac cell types and their in vivo

counterparts in human fetal heart development
Several human induced pluripotent stem cell (iPSC) based

in vitro cellular models have been developed, including cardio-

myocyte (i-CM), endothelial (i-EC), epicardial (i-EPC), cardiac

fibroblast (i-CF), and smooth muscle (i-SMC) cells.31,32,33,34

Our comprehensive, integrated single-cell atlas of in vivo car-

diac cell types from developing fetal hearts provides an oppor-

tunity to investigate the authenticity of these in vitro cellular

models.

To address this question, we generated iPSC-derived i-CM,

i-EC, i-EPC, i-CF, and i-SMC cells through directed differentia-

tion employing established protocols31,32,33,34 (Figure 4A). We

generated scATAC-seq data from all these in vitro differentiated

iPSC lines at multiple time points using the Chromium (10X Ge-

nomics) platform (Figures S5A and 4B, Table S4). Integration

and clustering of cells from these scATAC-seq datasets broadly

identified nine different cell types, including day 0 iPSC, day 2

mesodermal cells (i-Mes), day 5 i-CP, day 15 i-pCM, and day

30 i-CM, i-EPC, i-SMC, i-CF, and i-EC. Once again, the scA-

TAC-seq derived GA-scores of marker genes were found to be

highly specific for the relevant cell types, confirming our cell

type annotations35–37 (Figures 4C and S5B, Table S4).

To evaluate the similarity between chromatin landscapes of

the in vitro differentiated cell types and their in vivo counterparts,

we first used the LSI method to project in vitro differentiated cells

onto the scATAC-seq LSI subspace of all cells from the fetal

heart samples38 (Figure 4D). Majority of Day-15 i-pCMs pro-

jected into the PCW6 in vivo myocardium-derived eCMs. At

day-30, i-CMs projected primarily into the PCW8 in vivo vCMs

and in vivo eCMs, while i-ECs projected across the in vivo

Endo1, Endo2 and the PCW8 Cap cells. In contrast, in vitro

epicardium-derived cells, including i-EPC, i-SMC, and i-CF,

were distributed across epicardial cell types of the fetal heart

without a strong correspondence to their specific in vivo counter-

parts (EPC, SMC, and CF). The day-5 in vitro i-CP cells were

found to consist of five subclusters that projected across all

three distinct lineages of the fetal heart, the myocardium, epicar-

dium, and endocardium, supporting the likely origin of all major

differentiated in vivo cardiac cell types from a precursor state

similar to i-CPs (Figure 4D).

Looking at the differential accessible sites between the in vitro

cells and their nearest neighbors, we observed that i-pCMs,

i-CMs, and i-ECs had the least number of differential peaks rela-

tive to their matched in vivo cell types (Figure 5A). Consistent

with the co-projection analysis, comparison of matched in vitro

epicardial cell types (i-EPC, i-SMC, and i-CF) and their in vivo

counterparts revealed more differential peaks relative to corre-

sponding comparisons of cardiomyocytes and endothelial cells.

We next identified TF motifs enriched in the differentially acces-

sible scATAC-seq peaks. AP-1 (JUN-FOS, JDP2) motifs were

strongly enriched in peaks upregulated in most in vitro cell types,

except cardiomyocytes (Figure 5B). In contrast, downregulated

peaks in in vitro cell types were most enriched for SP, KLF,

and WT1 motifs (Figure 5C). Differentially upregulated peaks in

i-pCMs and i-CMs were enriched for motifs of classical cardiac

TFs including MEF2 and NKX, consistent with their role in cardi-

omyocyte differentiation.39 Motifs of FOX and CEBP TF families,

which are involved in epithelial-to-mesenchymal transition

(EMT), were enriched in peaks upregulated in in vitro epicar-

dium-derived cell types compared to their post-EMT in vivo

counterparts,40,41,42,43 suggesting that the in vitro epicardial

cells may not represent a terminally differentiated state.

Based on these observations, we sought to modulate the EMT

pathways active in the iPSC-derived epicardial cells, to improve

the development of epicardial-derived cellular lineages. We

generated a new differentiation protocol for iPSC-derived

epicardial cell lineages to inhibit the EMT activity and promote

more faithful recapitulation of in vivo differentiation processes.

Primarily, this was accomplished by developing a new chemi-

cally defined medium that removed the unnecessary compo-

nents in the commercial medium that might be responsible for

the EMT signal (STAR Methods). We observed robust immuno-

fluorescence-based staining for the WT1 marker gene for the

new i-EPC cells, confirming the cellular phenotype of these cells

and validating our new medium (Figure 5D). We profiled single-

cell chromatin accessibility of the new i-EPCs using the 10X

Chromium platform. The new i-EPC cells projected more specif-

ically into the in vivo epicardial cells of the fetal atlas compared to

the original i-EPC cells (Figures 5E and 5F). The in vivo EPCs

constituted 45% of the nearest in vivo cell neighbors of the

new i-EPCs compared to only 13% for the original i-EPCs (Fig-

ure 5G). Spurious differentially accessible peaks upregulated in

the new i-EPCs relative to the in vivo EPCs were 35% lower

than those between the original i-EPCs and in vivo EPCs (Figure

5H). Downregulated differential peaks also showed a 45%

reduction (Figure 5I). These observations suggest that the new

differentiation protocol produced i-EPCs whose chromatin
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Figure 4. Characterization of in vitro iPSC-derived cardiac cell types

(A) Schematic for derivation of human iPS cells, followed by their differentiation to major cardiac cell types and genome-wide scATAC-seq profiling.

(B) scATAC-seq UMAP of all in vitro iPSC-derived cells colored according to cell types identified during differentiation (iPSC, induced pluripotent stem cells;

iPSC-Mes, partially differentiated mesoderm-like cells; i-Mes, cardiac mesoderm cells; i-CP, cardiac progenitors; i-Mes-CP, partially differentiated cardiac

progenitor-like cells; i-Mes-like, partially differentiated mesoderm-like cells; i-MyoF-like, Myofibroblast-like cells; i-pCM, Day 15 iPSC-derived primitive car-

diomyocytes; i-CM, Day 30 iPSC-derived mature cardiomyocytes; i-EC, iPSC-derived endothelial cells; i-EPC, iPSC-derived epicardial cells; i-SMC, iPSC-

derived smooth muscle cell; and i-CF, iPSC-derived cardiac fibroblast cells).

(C) Gene accessibility scores of marker genes NANOG, MESP1, ISL1, MYL2, MYL7, PECAM1, WT1, MYH11, and LUM projected on the scATAC-seq fetal

heart UMAP.

(D) Projection of cells from scATAC-seq experiments profiling in vitro iPSC-derived cardiac cell types into the scATAC-seq fetal heart UMAP. Central panel in the

3x3 grid shows the scATAC-seq UMAP of all in vitro cardiac cell types. The other panels in the grid are projections of the i-CF (row 1, col 1), i-SMC (row 2, col 1),

i-EPC (row 3, col 1), i-EC (row 3, col 2), i-CM (row 3, col 3), and i-pCM (row 2, col 3) cells into the scATAC-seq fetal heart UMAP. Panel in row 1, col 2 shows an

scATAC-seq UMAP of 5 subclusters of cells from in vitro cardiac progenitors (i-CP1, i-CP2, i-CP3, i-CP4, and i-CP5), which are projected into the scATAC-seq

fetal heart UMAP (row 1, col 3).

See also Figure S5.
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landscapes are substantially more similar to those of in vivo

epicardial cells in the fetal heart than those derived from the orig-

inal protocol.

Prioritizing putative causal non-coding de novo

mutations, TFs, target genes, and cell types in
congenital heart diseases
Next, we investigated the utility of our regulatory atlas to deci-

pher single nucleotide, de novo, non-coding mutations in

congenital heart disease (CHD) patients. We compiled a set of

54,126 de novo, non-coding mutations from 763 CHD patients

from the Pediatric Cardiac Genomics Consortium15 (PCGC)

(Table S5) and a control set of 110,055 de novo, non-coding mu-

tations from healthy controls from the Simons Simplex Collection

(n = 1,902 trios) (Table S5). We tested the accessible cRE land-

scapes of each of the in vivo fetal heart cell types for the enrich-

ment of case versus control mutations. Surprisingly, all cell types

lacked enrichment (Figure S6A), suggesting that overlapping

mutations with cell-type-resolved cREs is insufficient to prioritize

potentially causal CHD mutations.

We next used the corresponding cell-type-specific BPNet

models to estimate mutation impact scores of candidate case

and control point mutations in accessible cREs as the log2
fold-change in the cumulative predicted scATAC-seq profile

probabilities for both alleles over a 100 bp window centered at

each mutation (Figure 6A). We observed striking variation of
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Figure 5. Characterization of in vitro iPSC-derived cardiac cell types

(A) Comparison of number of significantly (log2 fold-change > 1, FDR < 0.05 using two-sided t test) upregulated (in blue) and downregulated (in gray) scATAC-seq

peaks in in vitro cardiac cell types relative to nearest in vivo fetal heart cell types. An analogous differential comparison between in vivo ventricular cardiomyocytes

from fetal heart and in vivo glutamatergic neurons from fetal brain is shown as a reference (rightmost bar).

(B and C) Statistical significance (�log10[adjusted p value], BH-adjusted hypergeometric test) of overlap enrichment of TF motifs in upregulated (B) and

downregulated (C) scATAC-seq peaks in in vitro cardiac types relative to nearest in vivo fetal heart cell types from (A).

(D) Immunofluorescence staining of WT1 in iPSC-derived epicardial cells (i-EPC) from the new epicardial differentiation protocol.

(E and F) Projection of i-EPC cells from scATAC-seq experiments profiling in vitro iPSC-derived cardiac cell types onto the scATAC-seq fetal heart UMAP. i-EPC

cells from old differentiation protocol (E) and i-EPC cells from the new differentiation protocol (F).

(G) Comparison of cell type annotations of nearest neighbor in vivo cells to the old and new i-EPC differentiated cells.

(H and I) Comparison of the number of upregulated differential enhancers (H) and down regulated differential enhancers (I) in old and new i-EPC cells compared to

the nearest neighbor in vivo cells. Reduction of differential enhancer number is consistent with greater fidelity of representation of epigenetic state, for in vitro

versus in vivo cells. Decreased differential enhancer number suggests more faithful recapitulation of in vivo cellular phenotype.

See also Figure S5.
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Figure 6. Prioritizing non-coding CHD mutations using deep learning models of scATAC-seq profiles from fetal heart cell types

(A) Schematic of mutation prioritization pipeline that uses cell-type-specific BPNet models to predict scATAC-seq profiles of CHD mutation analysis.

(B) Enrichment (log2[OR], Fisher Exact Test) of prioritized mutations from each cell-type-specific BPNet model in CHD cases vs. controls plotted on the scATAC-

seq UMAP of all fetal heart cells.

(legend continued on next page)
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the enrichment of mutations with high predictedmutation impact

scores (>95th percentile of the distribution of cell-type-specific

impact scores for CHD mutations in peaks) in cases versus con-

trols across cell types (Figure 6B, STAR Methods). Mutations

prioritized in several cell types showed weak to moderate

enrichments, including NC (OR = 1.016), lEC (OR = 1.033),

EPC (OR = 1.042), Endo1/2 (OR = 1.106), vEC (OR = 1.092),

vCM (OR = 1.119), Cap (OR = 1.205), OFT (OR = 1.22), and

preSMC (OR = 1.307) (Figure 6B, Table S5). The strongest

enrichment (Cases n = 47; Control n = 56; OR = 1.707; p value =

0.008, Fisher Exact test) was obtained for mutations prioritized in

arterial endothelial cells (aECs) (Figures 6B and 6C, Table S5),

which is consistent with the contribution of the endothelial

cellular lineage to multiple cardiac structures. These patterns

of cell-type-specific enrichment were robust to different mea-

sures of mutation impact scores and thresholds for defining

high-impact mutations (Figures S6B–S6H).

In contrast, mutation impact scores derived from BPNet

models trained on pseudobulk scATAC-seq profiles agglomer-

ated over all fetal heart cell types (OR = 1.01) and HeartENN15

trained on a large compendium of bulk chromatin data, did not

enrich for CHD mutations, indicating that cell type specificity of

mutation impact scores is critical for prioritizing de novoCHDmu-

tations (Figures 6C and S6I). We further examined whether high-

impact mutations prioritized by BPNet in aECs occurred near

genes previously associated with CHD based on genetic studies

in human cohorts ormousemodels obtained fromRichter, et al.15

(744 total CHD-associated genes). We observed a 3-fold enrich-

ment (p value = 0.0486, Fisher Exact test) of predicted high-

impact aEC mutations proximal to previously implicated CHD

genes in cases (n = 7) compared to controls (n = 4) (Figure 6D).

Next, we performed deeper investigations of the causal chain

of TF binding sites, cREs and target genes potentially affected by

a subset of high-impact CHD mutations prioritized in aECs that

are in close proximity (<200 bp) to summits of high coverage

aEC scATAC-seq peaks (Table S5). We used the active motif an-

notations derived from the cell-type specific BPNet models and

the corresponding allele-specific base-resolution contribution

scores of cRE sequences harboring these mutations to infer

potentially disrupted TF binding sites (Figures 6E, 6F, and 6G).

A prioritized G-to-A de novo mutation was predicted to ablate

an ELK/ETV TF motif in a cRE that is exclusively accessible in

endothelial cells (aEC, Cap, vEC and lEC) and �25 kb upstream

of a folate hydrolase gene FOLH1. FOLH1 is expressed in endo-

thelial cells (Figure S6J) and has been associated with loss of

normal structural endothelial cell integrity44,45 (Figure 6E).

Another G-to-A mutation was predicted to disrupt an ELK/ETV

TF motif in an endothelial cRE in the intron of the PIP5K1C

gene, an important developmental TF strongly expressed in

endothelial cells (Figure S6K) and implicated in cardinal vein

and right ventricular development and CHD15,44,46 (Figure 6F).

Interestingly, several other prioritized mutations were also pre-

dicted to disrupt ELK/ETV binding sites in accessible aEC

cREs proximal to the MGAT1, TIMP3, TBX3, and NEK3 genes

(Table S5), all of which have been previously associated with

CHD or cardiovascular defects in human genetic studies or

mouse models.15,44,47,48,49,50 We also found a G-to-C mutation

in an accessible cRE distal to the JARID2 gene predicted to

disrupt a SOX TF motif in aEC and Cap cells (Figure 6G).

JARID2 is an important endothelial TF (Figure S6L) during early

heart development, and coding mutations in JARID2 have

been implicated in CHD by previous studies, especially for tetral-

ogy of Fallot.51,52,53,54

We used CRISPR/Cas9 to delete 352 bp around the JARID2

mutation in iPSCs, selected single clones with biallelic deletions

of the targeted locus, differentiated these clones into endothelial

cells andmeasured expression of JARID2 (Figures 7A and S6M).

We observed a significant decrease (1.3-fold, p value <0.001,

two-sided t test) of JARID2 expression (Figure 7B) in edited

iPSC-derived ECs compared to isogenic controls, thereby veri-

fying transcriptional regulation of JARID2 by this cRE in the

nominated cell type. To further characterize the phenotypic

impact of knocking out of this JARID2 cRE, we compared

wild-type (Figure 7C) and JARID2 cRE KO (Figure 7D) iPSC-

derived endothelial cells (i-ECs) for their ability to undergo angio-

genesis (tube formation) in an in vitro assay. We observed a sig-

nificant depletion of tubes in the cRE KO cells compared to the

wild-type isogenic cells (Figure 7E). We also assayed the allelic

impact of the prioritized G-to-C point mutation on transcriptional

activity in a luciferase reporter plasmid in i-ECs by cloning the

mutated and wild-type 500-bp sequence of the JARID2 cRE

and measuring their luciferase signal. We observed a significant

(1.3-fold, p value <0.0004, two-sided t test) decrease in the

mutant transcriptional reporter activity compared to the isogenic

control promoter, further confirming transcriptional disruption by

the point mutation (Figure 7F). In principle, the impact of such

non-coding mutations on the expression of critical transcription

factors could cause significant downstream cascades of tran-

scriptional dysregulation that in turn affect cellular phenotypes

leading to CHD. Our analysis framework thus provides a prom-

ising avenue to prioritize putative causal, de novo non-coding

CHDmutations, their putative target TF binding sites, and genes

(C) Enrichment of mutations in CHD cases vs. controls prioritized using different methods. Mutations prioritized by BPNet models trained on arterial endothelial

(aEC) scATAC-seq profiles are enriched in cases vs. controls (OR = 1.707, p value = 0.008, Fisher exact test).

(D) Enrichment ofmutations prioritized by aECBPNetmodel in cases vs. controls (gray bar) compared to enrichment ofmutations prioritized by aECBPNetmodel

proximal to CHD associated genes (blue bar) in cases vs. controls. (***p value = 0.008, Fisher Exact test, *p value = 0.0486, Fisher Exact test)

(E–G) Case studies of three prioritized de novo CHD mutations in endothelial cREs in the (E) FOLH1, (F) PIP5K1C, and (G) JARID2 gene loci, respectively. Top-

most panel shows contribution scores derived from cell-type-specific BPNet models (aEC for (E and F) and Cap for (G)) of each nucleotide in a 100 bp sequence

window containing each allele of the mutation. The changes in contribution scores highlight disruption of active TF motifs (ELK/ETV motifs for (E and F) and SOX

motif for (G)). The panel below shows corresponding predicted base-resolution scATAC-seq count profiles in a 1 kb window containing reference (blue) and

alternate (red) allele of the mutation (the red tracks for the alternate alleles are inverted along the x axis). These tracks highlight local disruption of predicted

scATAC-seq profiles by the mutations. The last panel shows observed cell-type resolved pseudobulk scATAC-seq coverage profiles for all cell types at each

locus. Scale of tracks is 2.0–6.0 (FOLH1), 2.0–20 (PIP5K1C), and 2.0–10.0 (JARID2) in units of Tn5 insertion counts observed in each cell type.

See also Figure S6.
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as well as the relevant cell types within the developmental

window.

DISCUSSION

In this study, we present a resource elucidating regulatory dy-

namics of human cardiogenesis at single-cell resolution. By

generating scATAC-seq experiments in fetal hearts at early

and mid-gestational developmental timepoints, we reveal the

coordinated landscapes of dynamic cREs and genes that define

major cell types, lineages, and differentiation trajectories in the

developing human heart. By training and interpreting deep

learning models, we were able to decipher the cell-type-specific

sequence syntax of active TF binding sites. By coupling these
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Figure 7. Functional validation of the prioritized mutation in JARID2 cRE

(A) Schematic of in vitro differentiation of iPSCs to EC lineage, and comparison of JARID2 expression in iPSC-derived ECwith and without CRISPR-Cas9 deletion

of cRE containing prioritized CHD mutation shown in Figure 6G.

(B) CRISPR-Cas9 deletion of cRE containing the prioritized CHDmutation from Figure 6G shows significant decrease (**p < 0.001, two-sided t test) in expression

of JARID2 gene expression in knockout vs. wild-type iPSC-derived ECs.

(C) Tube formation assay of wild-type EC.

(D) Tube formation assay of JARID2 enhancer knockout cells. KO EC have severe depletion of tubes in the angiogenesis assay, as assessed by quantification of

number of tubes, nodes, and meshes.

(E) (left to right). Comparison of number of tubes, nodes, and meshes of tube formation betweenWT-EC (gray) and enhancer knockout (red) (***p value = 0.0004,

two sided t test, ****p value < 0.0001, two sided t test).

(F) Luciferase reporter activity of wild type andmutant variants for JARID2 cRE (G-to-C) mutation in iPSC derived endothelial cells. Themutant construct shows a

significant decrease (p value < 0.0004, two-sided t test) in luciferase activity of the construct with the prioritized mutation vs. wild-type sequence in iPSC-derived

ECs. Data are shown as mean +/- SEM for all error bars in this figure.

See also Figure S6.
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dynamic TF motif activity maps with TF expression across the

cell types, we defined putative trans-factors that bind to TF mo-

tifs encoded in specific cREs and orchestrate dynamic gene reg-

ulatory programs that define differentiation trajectories of the

major cardiac cell types.

We identify several previously characterized TFs in mice that

are important for cell fate determination of the terminally differen-

tiated cell types. For example, we identified SOX17 to be a TF

with predicted dynamic binding in the late capillary (Figure S4K)

and mid venous (Figure 3M) differentiation trajectory in open

chromatin peaks near APLNR (Figure 3P). Consistent with these

findings, Sox17 knockout in mice have been shown to retard the

differentiation of endocardial cells due to the downregulation of

the NOTCH signaling pathway and promote defective heart

development.55 We also nominate putative regulatory TFs. For

example, we observe SOX18 expression and chromatin activity

in the mid to late temporal regulation of arterial endothelial cells.

This activity pattern is consistent with other data implicating this

factor, along with SOX17, in regulating vascular endothelium

development in mouse retina56 (Figure S4N) and controlling the

expression ofMEOX257 andCLDN5—downstreammaster regu-

lators of arterial development58 (Figure S4K). We also identify

other TFs that exhibit strong chromatin activity changes along

developmental lineage trajectories (Figures 3F, 3M, and S4),

implicating these factors as potentially important for lineage

specification.

We observed that the EMT program drives substantial differ-

ences in vitro compared to in vivo epicardial-derived lineages.

Based on this observation, we successfully optimized the differ-

entiation protocol for iPSC-derived epicardial cells to diminish

EMT, which resulted in in vitro differentiated epicardial cells

with substantially greater epigenomic similarity to their in vivo

counterparts. This case study serves as proof of principle that

single cell molecular ‘‘benchmarking’’ against in vivo derived

data can serve as a useful computational tool for optimizing

in vitro differentiation protocols.

Finally, by using the deep learning models, we predict the

impact of de novo non-coding mutations on cell-type-specific

chromatin accessibility profiles and infer the active TF binding

sites disrupted by high impact mutations. We also identify

ranking of cell types whose cREs are enriched for prioritized

CHD mutations. Our CRISPR/Cas9 luciferase and angiogenesis

experiments in iECs showed the impact of ablating an endothe-

lial lineage-specific enhancer harboring a predicted high impact

de novo CHD mutation related to JARID2, a key CHD gene.

These data provide evidence that prioritized cREmutations likely

impact enhancers with critical developmental functions that are

relevant for CHD. Importantly, we show that overlapping muta-

tions with cell-type-resolved cRE maps of fetal heart cell types

is not sufficient to enrich CHD mutations over controls unless

augmented by mutation impact scores from our cell-type-spe-

cific deep learning models, highlighting the utility of the single

cell atlas and basepair neural network models.

Limitations of the study
While most developmental trajectories exhibited no substantial

‘‘gaps’’ in cell density, obtaining samples both earlier and later

in development might allow us to more fully populate the ex-

tremes of these trajectories, extending our understanding of

these developmental paradigms. Second, our analysis of regula-

tory landscapes has largely focused on activators, and not on re-

pressors that are more challenging to nominate using correla-

tion-based analysis. Third, we restrict our prioritization of

de novoCHDmutations to those that fall in the immediate vicinity

of observed scATAC-seq peaks in our fetal heart atlas and are

likely to disrupt and decrease accessibility. While this strategy

reduces the likelihood of false positives, it does bias our prioriti-

zation against mutations that might result in gain of accessibility.

The reduced sensitivity of peak identification from scATAC-seq

profiles in some rare cell types (e.g., neural crest cells) with

sparse coverage may also result in a greater false negative

rate and reduced enrichments for these cell types. Our study

is restricted to point mutations and our chromatin-centric

approach cannot predict functional impact of non-coding

mutations via other key regulatory mechanisms (e.g., splicing,

structural variants). The modest number of CHD cases that are

confidently explained by our prioritization framework may be

due to some of these limitations. Finally, while we have directly

validated the impact of one candidate enhancer harboring a spe-

cific de novo CHD mutation toward expression of its predicted

target gene and on downstream angiogenesis-related pheno-

types, more extensive computational and experimental valida-

tion of the gene expression and phenotypic impact of prioritized

mutations would further dissect the validation rate of the model.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD144 (VE-Cadherin) MicroBeads MiltenyiBiotec 130-097-857

Anti-WT1 Abcam ab89901/RRID:AB_2043201

Anti-ZO1 Thermo Fisher Scientific 33-9100/RRID:AB_2533147

Bacterial and virus strains

Escherichia coli DH5a competent cells Zymo Research T3007

Biological samples

Human fetal heart samples Stanford University N/A

Chemicals, peptides, and recombinant proteins

Essential 8 Medium Gibco A1517001

RPMI 1640 Medium Gibco 11875093

RPMI 1640 Medium, minus glucose Gibco 11879020

DMEM, high glucose Gibco 11965118

HBSS, calcium, magnesium, no phenol red Gibco 14025092

TrypLE Select Enzyme (10X) Gibco A1217703

KnockOut Serum Replacement Gibco 10828028

Advanced DMEM/F-12 Gibco 12634028

Ham’s F-12 Nutrient Mix Gibco 11765-054

IMDM Gibco 12440-053

Opti-MEM I Reduced Serum Media Gibco 11058021

DPBS without calcium and magnesium Gibco 14190250

Chemically defined lipid concentrate Gibco 11905-031

Glutamax Gibco 35050-061

UltraPure 0.5M EDTA, pH 8.0 Invitrogen 15575-020

Retinoic acid Sigma-Aldrich R2625

L-Ascorbic acid 2-phosphate

sesquimagnesium salt hydrate

MilliporeSigma A8960

Accutase solution MilliporeSigma A6964

Gelatin solution, Type B Sigma-Aldrich G1393

Liberase TM Sigma-Aldrich 5401127001

DNase I Worthington LK003172

Matrigel Basement Membrane Matrix Corning 354234

Y-27632 2HCl (ROCK Inhibitor) Selleck Chemicals S1049

CHIR-99021 (CT99021) HCl 5mg Selleck Chemicals S2924

IWR-1 Selleck Chemicals S7086

C59 Selleck Chemicals S7037

LY294002 Selleck Chemicals S1105

SB431542 Selleck Chemicals S1067

B-27 Supplement, minus insulin Thermo Fisher Scientific A1895601

B-27 Supplement, serum free Thermo Fisher Scientific 17504044

Recombinant Human FGF-2 PeproTech 100-18B

Human BMP4 PeproTech 120-05ET

Recombinant Human VEGF R&D Systems 293-VE-010/CF
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

EGM-2 Endothelial Cell Growth Medium-2 Bullet Kit Lonza CC-3162

FGM-2 Fibroblast Growth Medium-2 Bullet Kit Lonza CC-3132

TRIzol Reagent Thermo Fisher Scientific 15596026

MACS BSA Stock Solution Miltenyi Biotec 130-091-376

Digitonin Thermo Fisher Scientific BN2006

Tris-HCl Invitrogen 15568025

NaCl Invitrogen AM9759G

MgCl2 Invitrogen AM9530G

Tween 20 Sigma-Aldrich 11332465001

NP40 Sigma-Aldrich 11332473001

Activin A PeproTech 120-14E

PrimeSTAR GXL DNA Polymerase Takara R050B

Lipofectamine� Stem Transfection Thermo Fisher Scientific STEM00001

Polyvinyl alcohol MilliporeSigma P8136

Transferrin MilliporeSigma T8158

Monothioglycerol MilliporeSigma M6145

Dimethyl sulfoxide MilliporeSigma D2650

SpCas9 2NLS Nuclease Synthego N/A

Gelatin solution Sigma-Aldrich G1393

Critical commercial assays

Chromium Next GEM Single Cell ATAC Reagent Kits v1.1 10X Genomics 1000175

CytoTuneTM-iPS 2.0 Sendai Reprogramming Kit Thermo Fisher Scientific A16517

Direct-zol RNA Micro-Prep Zymo Research R2053

iQ SYBR Green Supermix Bio-Rad 1708882

iScript cDNA Synthesis Kit Bio-Rad 170-8891

Dual-Glo� Luciferase Assay System Promega E2920

Deposited data

Data files for scATAC-seq NCBI GEO GEO: GSE181346

Experimental models: Cell lines

Human iPSC SCVI Biobank SCVI274

Oligonucleotides

Human ACTB Primers IDT Hs.PT.39a.22214847

Human JARID2 Primers IDT Hs.PT.58.20087641

Recombinant DNA

pGL3-Promoter Promega E1761

pGL3-Control Promega E1741

pRL-CMV Promega E2261

Software and algorithms

ImageJ NIH https://imagej-nih-gov.stanford.idm.

oclc.org/ij/

Genome assembly https://www.ncbi.nlm.nih.gov/grc/

human

hg38/GRCh38

Cell Ranger 10x Genomics CellRanger v3.1.0

Cell Ranger-ATAC 10x Genomics Cell Ranger-ATAC v1.2.0

Seurat https://satijalab.org/seurat/ Seurat v.3.1.4

MACS2 Zhang et al., 2008 MACS2 v2.1.1

ChromVAR Schep et al., 2017 ChromVAR v.1.6
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Thomas

Quertermous (tomq1@stanford.edu).

Materials availability
This study did not generate unique reagents.

Data and code availability
d Aligned fragment files from single-cell chromatin assays are deposited in the Gene Expression Omnibus database with the

Super-Series reference number GSE181346. The cell by gene accessibility scores matrices, along with cluster 50 insertion
bigWig tracks for the human heart samples are deposited to UCSC cell browser portal under reference url https://

cardiogenesis-atac.cells.ucsc.edu to enable visualization of cell markers and genes. Reanalyzed scRNA Seurat objects are

deposited to https://doi.org/10.5281/zenodo.7063223. The trained BPNet model weights are deposited to https://doi.org/

10.5281/zenodo.6789181. Interactive HiGlass browser sessions with cell-type resolved tracks for measured base-resolution

scATAC-seq coverage profiles and predicted base-resolution scATAC-seq coverage profiles from BPNet models as well as

model-derived nucleotide-resolution contribution scores in peak regions could be found at: https://resgen.io/kundaje-lab/

sundaram-2022/views/cardiogenesis.

d Code used for single cell analysis, training BPNet models and results for all figures can be found at: https://github.com/

kundajelab/Cardiogenesis_Repo.

d Any additional information required to reanalyze the data and the raw data reported in this paper is available from the lead con-

tact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient recruitment
Human subjects were enrolled in the study with informed consent approved by the Stanford Institutional ReviewBoard and StemCell

Research Oversight Committee. Human fetal heart tissues (day-42, day-56, and day-133 post-conception) were obtained from de-

identified aborted fetuses in collaboration with the Stanford Family Planning Research Team, Department of Obstetrics and Gyne-

cology, Division of Family Planning Services and Research, Stanford University School of Medicine. Human iPSCs were obtained

from the Stanford CVI iPSC Biobank.

METHOD DETAILS

Experimental methods
Generation and culture of human induced pluripotent stem cells

Peripheral blood mononuclear cells (PBMCs) were reprogrammed to iPSCs using the CytoTune-iPS 2.0 Sendai Reprogramming Kit

(Thermo Fisher Scientific) according to the manufacturer’s instructions with modifications as previously described.59 Stem cell-like

colonies were manually picked about two weeks post-transduction and expanded in E8 stem cell media (Life Technologies). All

iPSCs used for the subsequent studies were within passages 22 to 30. The genome integrity was assessed by a single nucleotide

polymorphism-based karyotyping assay (Illumina, HumanOmniExpress-24 v1.1). The iPSCsweremaintained in a defined E8medium

(Life Technologies) on cell culture plates coated with ESC-qualified Matrigel (BD Biosciences) in a hypoxic environment (8% O2, 5%

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GraphPad Prism GraphPad Software Inc https://www.graphpad.com/scientific-

software/prism/

ArchR https://www.archrproject.com/ ArchR v0.9.4

KerasAC (BPNet code

framework for ATAC-seq profiles)

https://zenodo.org/record/

4248179#.Y1CRjHbMJmN

KerasAC v.2.5.1.

DeepLIFT https://github.com/kundajelab/

deeplift

DeepLIFT v0.6.13.0-alpha

Code repository for all analyses https://github.com/kundajelab/

Cardiogenesis_Repo

https://github.com/kundajelab/

Cardiogenesis_Repo
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CO2) at 37
�C. For routine passaging, iPSCs were dissociated with Gentle Cell Dissociation Reagent (StemCell Technologies) and

cultured on with E8 medium supplemented with 5 mM Y-27632 (SelleckChem). The iPSCs were tested to be mycoplasma negative

using the Mycoalert Mycoplasma testing kits (LT07-318, Lonza).

Cardiomyocyte differentiation

Cardiomyocytes were differentiated using a monolayer method as previously described.59 The iPSCs were seeded in 6-wells at a

density of 1.2 3 105 cells per well and grown for four days prior to differentiation. Differentiation was initiated by replacing the E8

media with RPMI supplemented with B27 without insulin (A1895601, Life Technologies) and 6 mM CHIR-99021 (CT99021, Selleck-

chem). Two days later the media was replaced with RPMI supplemented with B27 without insulin. Cultures were then treated with

3 mM IWR-1 (I0161, Sigma) in RPMI supplemented with B27 without insulin for two days. The cultures were then maintained in

RPMI with B27 with insulin (17504-044, Life Technologies) and glucose starved for three days (using RPMI minus glucose). After

glucose starvation, iPSC-CMs were maintained in RPMI with B27. Cells were collected at specific time points during differentiation,

day 0 (iPSC), day 2 (i-Mes), day 5 (i-CP), day 15 (i-pCM), and day 30 (i-CM), The cells from three independent differentiation batches

for each time point were collected and pooled for scATAC analysis.

Endothelial cell differentiation

The iPSCs were cultured as described above until reaching 80% confluence. Themediumwas switched to RPMI-B27 without insulin

(Life Technologies) with 6 mMCHIR99021 for 2 days and then changed to 2 mMCHIR99021 for another 2 days. During differentiation,

from days 4–12, themediumwas changed to EGM2 (Lonza) supplemented with vascular endothelial growth factor (VEGF) (50 ng/mL)

(PeproTech), bone morphogenetic protein 4 (BMP4) (20 ng/mL), and fibroblast growth factor 2 (FGF2) (20 ng/mL) (PeproTech). On

day 12, cells were dissociated using TrypLE for 5 min and sorted using CD144-conjugated magnetic microbeads (Miltenyi Biotec)

according to the manufacturer’s instructions. CD144-positive cells were seeded on 0.2% gelatin-coated plates and maintained in

EGM2medium supplemented with 10 mM transforming growth factor b (TGFb) inhibitor (SB431542). (Selleckchem). After passage 2,

iPSC-ECs were cultured in EGM2. The iPSC-ECs were analyzed at passage 3 post differentiation.

Epicardial cell differentiation (old protocol)
EPCs were differentiated using a method as previously described 60. The iPSCs were seeded in 6-wells at a density of 1.23 105 cells

per well and grown for four days prior to differentiation. Differentiation was initiated by replacing the E8 media with RPMI supple-

mented with B27 without insulin (A1895601, Life Technologies) and 6 mM CHIR-99021 (CT99021, Selleckchem). Two days later

the media was replaced with RPMI supplemented with B27 without insulin. Cultures were then treated with 5 mM IWR-1 (I0161,

Sigma) in RPMI supplemented with B27 without insulin for two days. On day 5, human induced pluripotent stem cell-derived cardiac

progenitor cells (iPSC-CPCs) were re-plated at a density of 20,000 cells/cm2 in advanced DMEM medium (12634028, Gibco, Life

Technologies). On day 5 to day 8, cells were treated with 5 mM of CHIR99021 and 2 mM of retinoic acid (R2625, Sigma-Aldrich)

for 3 days, and recovered in advanced DMEM for 4 days.

Epicardial cell differentiation (new protocol)

The iPSC-derived epicardial cells were differentiated in a chemically definedmedium (CDM), which is composed of 50% IMDM, 50%

Ham’s F-12 Nutrient Mix, 1% chemically defined lipid concentrate, 2 mMGlutamax, 1 mg/mL PVA, 15 mg/mL transferrin, and 450 mM

monothioglycerol. When iPSCs reached�80%confluency they were dissociatedwith 1mL of Accutase (Sigma) and re-plated a den-

sity of 1.5 x104 cells/cm2 in 6-well plates and cultured in iPS-Brewmedium (Miltenyi Biotech) supplemented with 10 mMY27632. The

next day (day 1), each well was washed with D-PBS, and epicardial cells differentiation was initiated by adding the mid-primitive

streak induction medium (consisting of 10 ng/mL Activin A, 6 mM CHIR99021, 50 ng/mL BMP4, 20 ng/mL FGF2, and 2 mM

LY294002 in CDM). On day 2, each well was refreshed with the lateral plate mesoderm induction medium (consisting of 1 mM

A83-01, 30 ng/mL BMP4, and 1 mM C59 in CDM). On days 3-4, each well was refreshed with the splanchnic mesoderm induction

medium (consisting of 1 mM A83-01, 30 ng/mL BMP4, 1 mM C59, 20 ng/mL FGF2, and 2 mM retinoic acid in CDM). On days 5-8,

the media was refreshed with the septum transversum induction medium (consisting of 2 mM retinoic acid and 40 ng/mL BMP4 in

CDM). On day 9, cells were dissociated using Accutase and sparsely seeded (104 cells/cm2) on gelatin-coated 6-well plates in

the proepicardium induction medium (consisting of 100 mg/mL ascorbic acid, 2 mM of retinoic acid, and 0.7 mg/mL insulin in CDM)

for 2 days without medium change. Starting at day 11, each well was refreshed every other day with the epicardial cell induction/

maintenance medium (consisting of 100 mg/mL ascorbic acid, 10 mM SB431542, and 0.7 mg/mL insulin in CDM). The iPSC-derived

epicardial cells can preserve their cell type-specific markers (e.g., TBX18,WT1, and TCF21) for at least 18 passages in the epicardial

cell induction/maintenance medium.

Cardiac fibroblast differentiation
To generate cardiac-specific fibroblasts, iPSC-derived epicardial cells were dissociated with Accutase and plated at a density of 104

cells/cm2 in 6-well plates and cultured in fibroblast growthmedium (Lonza) supplementedwith 20 ng/mL FGF2 and 10 mMSB431542.

The medium was refreshed every other day for 6 days. When the fibroblasts reached �90% confluency, they were dissociated and

split at a 1:3 ratio in fibroblast growth medium supplemented with 10 mM SB431542 for long-term maintenance. The differentiated

fibroblasts exhibit a quiescent phenotype with negligible (<5%) a-SMA expression for at least five passages.
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Smooth muscle cell differentiation

To generate cardiac-specific smoothmuscle cells (SMCs), iPSC-derived epicardial cells were dissociatedwith Accutase and seeded

at a density of 33104 cells/cm2 were seeded in the nascent SMC induction medium (consisting of 100 mg/mL ascorbic acid,

0.7 mg/mL insulin, 10 ng/mL Activin A, and 10 ng/mL PDGF-BB in CDM) for 2 days. The medium was refreshed every other day

with Medium 231 supplemented with SMGS (ThermoFisher) for at least 14 days to allow the expression of SMC-specific markers

(e.g., TAGLN, CNN1, SMTNB, and MYH11).

Single-cell ATAC-seq on iPSC-derived cardiac cells and human fetal heart

The iPSC-derived cardiac cells were dissociated using Tryple Express and resuspended in the RPMI medium. The human fetal

hearts were minced and digested using Liberase (Sigma) for 10 min at 37�C, and resuspended in RPMI + B27 medium to stop

the enzymatic reaction. The digested tissue was passed through a 70 mm filter before proceeding to single-nuclei sample

preparation. Cells with viability >90% were washed in ice-cold ATAC-seq resuspension buffer (RSB, 10 mM Tris pH 7.4,

10 mM NaCl, 3 mM MgCl2), spun down, and resuspended in 100 mL ATAC-seq lysis buffer (RSB plus 0.1% NP-40 and

0.1% Tween 20). Lysis was allowed to proceed on ice for 5 min, then 900 mL RSB was added before spinning down again

and resuspending in 50 mL 1X Nuclei Resuspension Buffer (10x Genomics). A sample of the nuclei was stained with Trypan

Blue and inspected to confirm complete lysis. Nuclei were processed using a 10X chromium single-cell ATAC-seq kit (V1

version, 10X Genomics) at the Stanford Functional Genomics Facility (SFGF). All samples were sequenced using the Illumina

HiSeq 4000 (150 bp paired-end).

CRISPR–Cas9-mediated genome editing of iPSCs

The genomic region (300-400bp) corresponding to JARID2 cRE was deleted using CRISPR-Cas9 genome editing. Two guide RNAs

(gRNAs) flanking the cRE upstream of JARID2were designed using a web-based tool (Benchling) and chosen based on a high score

for on-target binding and the lowest off-target score. For cRE deletion, iPSCs (3.5x105) were nucleofected (1200 V, 20 ms, 1 pulse)

with 60 pmol sgRNA (Synthego) and 20 pmol SpCas9 nuclease (Synthego) using the Neon Transfection System (ThermoFisher Sci-

entific) and the 10 mL tip per the manufacturer’s instructions). After electroporation, iPSCs were plated in E8 medium supplemented

with 5 mMY-27632 into a 12-well plate coated withMatrigel. After recovering (3 days post electroporation), the cells were dissociated

with TrypLE Express and were plated in 6-well plates at a density of 2,000 cells per well. About 10 days after transfection, colonies

were picked into 96-well plates and a small proportion of cells from each colony were used for DNA extraction using Quick Extract

solution (Epicenter) and direct PCRwith Prime STARGXLDNAPolymerase (Clontech). PCR ampliconswere sequenced by Sanger to

verify the deletion (Figure S6M).

Tubular network formation assay

Tubular network formation was conducted in a 24-well plate format. Prior to experiments, 24-well plates were pre-chilled in �20�C.
Then plates were coated with 250 mL growth factor-reduced Matrigel (Corning) per well and incubated at 37�C with 5% CO2 for

30 min iPSC-derived ECs at passage 2 were dissociated into single cells using accutase and resuspended in EMG-2 medium con-

taining 5 ng/mL VEGF. A total of 100, 000 cells were seeded in each well and incubated at 37�C with 5% CO2. Bright-field images

were taken 12 h after cell seeding with an inverted phase contrast SONYmicroscope using a 43 objective. Experiments were carried

out in triplicates and repeated twice. Imageswere analyzed using a customized version of the ‘‘Angiogenesis Analyzer’’ developed for

ImageJ .

Luciferase reporter vector construction

The luciferase reporter vectors pGL3-Promoter (E1761) and pGL3-Control (E1741) were purchased from Promega. JARID2 cRE with

500 bp in length harboring reference and variant alleles were synthesized by Twist. The cRE was cloned into the linearized pGL3-

Promoter vector (cut by Xhol). The fusion product (pGL3-cRE) was subsequently transformed into Mix & Go Competent Cells Strain

Zymo 5-a (ZymoResearch, T3007). Cloneswere selected by Ampicillin and plasmidswere prepared using theQIAprep SpinMiniprep

Kit (Qiagen, 27,106).

Transfection and luciferase assays

i-ECs were transfected in a 24-well plate using the Lipofectamine Stem Transfection Reagent (Invitrogen, STEM00001) and

Opti-MEM Reduced Serum medium (Invitrogen, 31,985- 070). On the day of transfection, cell density was 60-80% confluent.

For each well, 500 ng of pGL3-enhancer, pGL3-control, or pGL3-promoter was co-transfected with 10 ng of pRL-CMV (Prom-

ega, E2261) as an internal control for the normalization of luciferase activity. Cells were incubated with DNA-lipid complex

overnight and media was changed for another 2 days. The firefly and renilla luciferase activity were measured respectively

using a Dual-Glo Luciferase Assay System (Promega, E2920). The ratio of firefly versus renilla luminescence was calculated

and normalized to the control sample.

Computational methods
Fetal tissue - scATAC processing

Raw sequencing data were converted to FASTQ format using ‘cellranger-atac mkfastq’ (10x Genomics, v.1.2.0). 150 bp paired-end

(PE) scATAC-seq reads were aligned to the GRCh38 (hg38) reference genome and quantified using ‘cellranger-atac count’ (10x Ge-

nomics, v.1.2.0).
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Fetal tissue - scATAC-seq quality control, dimensionality reduction, filtering and identification of cell types

Mapped Tn5 insertion sites (fragments.tsv files) from cellranger were read into the ArchR (v0.9.4) R package.17 To ensure

that each cell was both adequately sequenced and had a high signal-to-background ratio, we filtered cells with fewer than 1,000

unique fragments and enrichment at TSSs below 6. To calculate TSS enrichment, genome-wide Tn5-corrected insertions were

aggregated ±2,000 bp relative (TSS-strand-corrected) to each unique TSS. This profile was normalized to the mean

accessibility ±1,900–2,000 bp from the TSS, smoothed every 51 bp and the maximum smoothed value was reported as TSS enrich-

ment in R (Figures S1A–S1F). Latent Semantic Indexing (LSI) dimensionality reduction was computed (iterations = 4, variable fea-

tures = 25,000, dim = 30) by appending fragment files from all three timepoints together (Figures S1G and S1H). We did not observe

any significant batch effects after the fourth iteration of iterative LSI. We computed chromatin-derived gene accessibility scores by

aggregating scATAC-seq reads in each cell weighted by distance from each gene within its cis-regulatory domain.17 A preliminary

cell-type annotation was performed using these gene accessibility scores of known cell type markers (Figures 1C, 1D, S1I, and S1J,

Table S1).

We observed two populations of cell types identified to be macrophages and immune cells (Figures S1H and S1I). Even though

these sets of cell types are of interest from a biological standpoint, they do not directly contribute to the cardiogenesis process

and hence were dropped from subsequent analysis. The final UMAP used in all subsequent analyses was generated by repeating

the above mentioned iterative LSI with the same parameters as above after removing barcodes corresponding to the macrophage

and immune cell clusters (Figure 1C). Final cell-type annotations for each cluster were assigned based on gene accessibility scores of

marker genes of known cardiac cell types (Figures 1C, 1D, and S1J, Table S1).

Briefly, we identified cell types of the three major lineages and neural crest. Within the myocardial lineage, we found that TNNT2,

ACTN2, and NKX2-5 had high GA-scores across the early cardiomyocytes (eCM), ventricular cardiomyocytes (vCM), and atrial car-

diomyocyte (aCM) clusters.4–6,21 TTN and HAND1 specifically marked the eCM and vCM cluster while TBX10 and NPPAmarked the

aCM cluster (Figures 1D and S1J).

We observed diverse lineages within the epicardial derived cells. We discovered four cell types at PCW6: cardiac fibroblast pro-

genitors (CFP) with highWT1, TBX18, and TCF21GA-scores, another set of similar cells with both TBX18 and TCF21 signal but lack-

ingWT1 which we called fibroblast-like cells (FB1), and the outflow tract (OFT)-like cells with high PRDM628 and HOXA3 GA-scores

(Figure S1J). We also found an undifferentiated epicardial cell cluster (EPC) with high TBX18 and WT1 GA-scores but lacking

TCF2161,62 (Figure S1J). We found different cardiac fibroblast cell populations (preCF and CF) that have high TCF21 GA-scores

but varying, low to high respectively, DCN and LUM GA-scores.63 Another cluster of fibroblast like cells (FB2) with high CNN1

and COL9A2 GA-scores were also identified. We hypothesize that this cell type, along with FB1, may be related to valvular fibro-

blasts, but further studies are required to establish this potential relationship. Finally, we defined a cluster of pre-smooth muscle cells

(preSMC) with high MYH11, PDGFRB, and TAGLN GA-scores but lacking TCF21 activity,64 a cluster of smooth muscle cells (SMC)

exhibiting stronger GA-scores for MYH11 and PDGFRB with major contributions from PCW19 and minor contributions from PCW8,

and a cluster of pericytes (PC) with high GA-scores of PDGFRB and ABCC9 (Figure S1J).65 We also defined a cluster of neural crest

(NC) cells with high TFAP2A GA-score (Figure S1J).66

The endocardial cell populations exhibited two distinct phenotypes: one with high CDH11 GA-scores (Endo1) and a population

that resembled endocardial-like transitioning cell types (Endo2).67 Arterial endothelial cells (aEC) exhibited high UNC5B and

GJA5 GA-scores. Capillary cells (Cap) were marked by high CA4, APLNR, and CD36 GA-scores (Figure S1J). Venous endothelial

cells (vEC) were marked by high SELE and SELP GA-scores, amongst other markers.68,69 In addition to these major endothelial

cell types, we also found a sub-population of lymphatic endothelial cells (lEC) exhibiting high LYVE GA-score (Figure S1J).70

We also observed chromatin state changes consistent with promoter priming for genes in specific cell types that do not express the

associated gene. For instance, the promoter of the developmental gene TCF21 was accessible in cardiac fibroblast and SMC cell

lineages but the gene was expressed only in cardiac fibroblasts and not in SMC71,72 (Figures 1H and S2C). Interestingly, TCF21

expression is known to be activated in SMC in adults in response to vascular stress,73 promoting cell state changes such as prolif-

eration and migration, consistent with a return to an embryonic-like phenotype for the SMC.72 Thus, accessibility of the TSS at the

TCF21 gene may represent adaptive promoter priming74 that allows the gene to rapidly respond to disease-related stress or cellular

activation.

Fetal tissue - Peak calling in scATAC-seq datasets

Single-cell chromatin accessibility data were used to generate pseudobulk group coverages based on high-resolution cluster

identities of scATAC-seq datasets before peak calling with MACS2 v2.1.1.2016030975 using the addReproduciblePeakSet() in

ArchR.17 A background peak set controlling for total accessibility and GC-content was generated using addBgdPeaks(). Over-

lapping peaks were handled using an iterative removal procedure as previously described in.76 First, the most significant

(MACS2 q-value) extended peak summit is kept and any peak that directly overlaps with that significant peak is removed.

This process reiterates to the next most significant peak until all peaks have either been kept or removed owing to direct overlap

with a more significant peak. The most significant extended peak summits for each cluster were then merged and the previous

iterative removal procedure was used. Lastly, we removed any peaks whose nucleotide content had any ‘N’ nucleotides and any

peaks mapping to chrY.
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Using the previously annotated clusters, we identified 215,163 putative cREs as scATAC-seq peak regions over all cell types and

timepoints (Figure 1E). The clusters were enriched for expected gene ontology (GO) terms associated with cardiac development and

cell-type specific attributes77 (Figure 1E, Table S1).

Fetal tissue - scRNA processing

Raw sequencing data from two previous studies6,21 corresponding to post-conception week (PCW) 6, 8 and 12, were converted to

FASTQ format using the command ‘cellranger mkfastq’ (10x Genomics, v.3.1.0). scRNA-seq reads were aligned to the GRCh38

(hg38) reference transcriptome (Ensembl 93) and quantified using ‘cellranger count’ (10x Genomics, v.3.1.0). The filtered matrices

from cell ranger count were combined with the filtered matrices of other datasets from Asp, et al.5 and Suryawanshi, et al.4 corre-

sponding to PCW6 and 19 to create the scRNA object.

Count data were further processed using the ‘Seurat’ R package (v.3.1.4),78 using GENCODE v.27 for gene identification. We

removed cells with less than 250 expressed genes, cells with less than 300 reads, and cells with more than 40% read count cor-

responding to mitochondrial genes. Genes not contained in the GENCODE annotation were excluded from further analysis. Gene

level read count data was scaled to 10,000 (TP/10k) and log2 transformed. We performed Principal Component Analysis (PCA)

restricting to the 2,000 most variable genes as defined by Seurat. The top 30 principal components (PCs) were used for

downstream clustering. Clusters were identified using Louvain clustering implemented in Seurat’s ‘FindClusters()’ function

(‘resolution = 1’). 2-dimensional representations were generated using uniform manifold approximation and projection (UMAP)

(McInnes et al., 2020) as implemented in Seurat and the ‘uwot’ R packages (v.0.1.8; parameter settings: ‘min.dist = 0.8’, ‘n.neigh-

bors = 50’, ‘cosine’ distance metric). We observed that the clustering was strongly influenced by sample of origin indicating sig-

nificant batch effects (Figure S2A). To correct these batch effects, we used Harmony79 with max_iters = 5 and other parameters

set to their default values. We then reran Louvain clustering with higher resolution on the top 30 components from Harmony and

generated a 2D UMAP for the corrected data with the same functions listed above. Post harmonization, clusters did not appear to

be affected by the sample of origin (Figure S2A). Cell-type annotations for each cluster were assigned by resolving and merging

clusters from higher resolutions based on the expression of known marker genes of cardiac cell types (Figures S2B and S2C,

Table S1).

Fetal tissue - Matching cells from scRNA-seq and scATAC-seq data

Canonical correlation analysis (CCA) as implemented in Seurat78 was used to align and match cells from the scRNA-seq and scA-

TAC-seq experiments. For this purpose, we computed log2-transformed gene accessibility scores as surrogates for gene expression

in the cells profiled by scATAC-seq. As integration features, we used the union of the 2,000 most variable genes in each modality as

input to Seurat’s ‘FindTransferAnchors()’ function with reduction method ‘cca’ and parameter ‘k.anchor = 10’. For each cell profiled

by scRNA-seq, we identified the nearest neighbor cell in scATAC-seq by applying nearest-neighbor search in the joint CCA L2 space.

Nearest neighbors were determined using the ‘FNN’ R package (https://rdrr.io/cran/FNN/) employing the ‘kd_tree’ algorithm with

Euclidean distance. These nearest-neighbor-based cell matches from all gestational time points were concatenated to obtain data-

set-wide cell matches across both modalities (Figures S2D and S2E).

We found high concordance (accuracy = 74.76%) between the cluster assignments for cells from the scATAC-seq and scRNA-seq

data, further supporting our cell type annotations based on chromatin accessibility derived gene accessibility scores (Figure S2E).

Examining a subset of cell-type specific marker genes, we found TNNT2 marking the vCMs, PECAM1 identifying endothelial cells,

CDH11 identifying endocardium, MYH11 identifying SMC, and DCN identifying fibroblasts80,81 (Figures 1D and 1G). We also

observed a strong correlation (Table S1) between gene expression from the scRNA-seq data and the GA-scores from the scA-

TAC-seq data across matched nearest-neighbor cells from the two complementary atlases (Figures 1D and 1G), further supporting

our annotations.

BPNet deep learning models to predict base-resolution, cell-type resolved pseudobulk scATAC-seq profiles from DNA

sequence

BPNet is a sequence-to-profile convolutional neural network that uses one-hot-encoded DNA sequence (A = [1,0,0,0], C = [0,1,0,0],

G = [0,0,1,0], T = [0,0,0,1]) as input to predict single nucleotide-resolution read count profiles from assays of regulatory activity.12,13

The models take in a sequence context of 2,114 bp around the summit of each ATAC-seq peak and predict cluster-specific scATAC-

seq pseudobulk Tn5 insertion counts at each base pair for the central 1,000 bp. The BPNet model also uses an input Tn5 bias track

which is concatenated to the pre-final layer as explained below. Our BPNet model is a higher capacity version of the architecture

introduced in.12 The model architecture consists of 8 dilated residual convolution layers, with 500 filters in each layer. At each layer,

the Keras Cropping 1D layer is used to clip out the two edges of the sequence, tomatch the inputs concatenated to the output of each

convolution, which naturally trims the 2,114 bp sequence to a final 1,000 bp profile. Each dilated convolutional layer has a kernel

width of 21 and the dilation rate is doubled for every convolutional layer starting at 1. The model predicts the base-resolution

1,000 bp length Tn5 insertion count profile using two complementary outputs: (1) the total Tn5 insertion counts over the 1,000 bp

region, and (2) a multinomial probability of Tn5 insertion counts at each position in the 1,000 bp sequence. The predicted (expected)

count at a specific position is a multiplication of the predicted total counts and the multinomial probability at that position. To predict

the total counts in the 1,000 bp window, the output from the last dilated convolutional layer is passed through a

GlobalAveragePooling1D layer in Keras. We estimate the ‘‘tn5 bias’’ for the input sequence using the TOBIAS method.82 This total
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bias is concatenated with the output of the pooling layer and passed through a Dense layer with 1 neuron to predict total counts. To

predict the per-base logits of the multinomial probability profile output, the output from the last dilated residual convolution is ap-

pended with per base TOBIAS ‘‘tn5 bias’’ and passed through a final convolution layer with a single kernel and a kernel width of 1

to predict the per-base logits. BPNet uses a composite loss function consisting of a linear combination of a mean squared error

(MSE) loss on the log of the total counts and a multinomial negative log likelihood loss (MNLL) for the profile probability output.

We use a weight of [4.9, 4.3, 18.5, 9.8, 8.9, 4.8, 4.6, 4.9, 12.4, 15.4, 4.3, 6.3, 1.4, 2.6, 7.6, 2.3, 16.3, 7.1 & 3.7] for the MSE loss for

clusters c0–c20 (c15-c16 combined as one model), and a weight of 1 for the MNLL loss in the linear combination. The MSE loss

weight is derived as the median of total counts across all peak regions for each cluster divided by a factor of 10 12. We used the

ADAM optimizer with early stopping patience of 3 epochs.

A separate BPNet model was trained on pseudobulk scATAC-seq profiles from each scATAC-seq cluster. We used a 5-fold chro-

mosome hold-out cross-validation framework for training, tuning, and test set performance evaluation. The training, evaluation, and

test chromosomes used for each fold are as follows. Test chromosomes: fold 0: [chr1], fold 1: [chr19, chr2], fold 2: [chr3, chr20],

fold 3: [chr13, chr6, chr22] & fold 4: [chr5, chr16]. Validation chromosomes: fold 0: [chr10, chr8], fold 1: [chr1], fold 2: [chr19,

chr2], fold 3: [chr3, chr20] & fold 4: [chr13, chr6, chr22]. The model’s performance was evaluated using two different metrics for

the two output tasks separately. For the total counts predicted for the 1,000 bp region, the model’s performance is computed

with the Spearman correlation of predicted counts to actual counts. The profile prediction performance is evaluated using the

Jensen-Shannon Distance, which computes the divergence between two probability distributions; in this case, the observed and

predicted base-resolution probability profile over each 1,000 bp region.

For each cell type, BPNet models were trained, tuned, and evaluated on genomic windows consisting of 1 kb scATAC-seq profiles

from (1) signal windows centered at summits of scATAC-seq peaks from the cell type and (2) background windows randomly

sampled across the genome such that the number of background windows was 10% of the number of signal windows. The selected

signal and background windowswere further augmented with upto 10 random jitters (+/- 1000 bp). Code for training BPNetmodels is

available at https://github.com/kundajelab/Cardiogenesis_Repo.

BPNet model-derived DeepLIFT/DeepSHAP nucleotide contribution scores of accessible cRE sequences

We used the DeepLIFT algorithm23 to interrogate BPNet models and estimate the predictive contribution of each base in any query

input sequence to the predicted total counts from the model. DeepLIFT backpropagates a score, analogous to gradients, which is

based on comparing the activations of all the neurons in the network for the input sequence to those obtained from neutral ‘refer-

ence’ sequences. We use 20 dinucleotide-shuffled versions of each input sequence as reference sequences. We used the

DeepSHAP implementation of DeepLIFT (https://github.com/slundberg/shap/blob/0.28.5/shap/explainers/deep/deep_tf.py) to

obtain contribution scores for all observed bases in each sequence.83 For each cell type, we obtained consolidated DeepLIFT/

DeepSHAP contribution scores for each sequence from each of 5-folds of cross-validation and then averaged the scores per po-

sition from the 5-folds.

Annotation of PWM-based transcription factor motif instances in accessible cREs

We obtained position weight matrix (PWM) models of transcription factor (TF) sequence motifs from the ChromVAR motif catalog

called ‘human_pwms_v1’,27 which is collated from the Catalog of Inferred Sequence Binding Preferences (CIS-BP).26

We then annotated PWM-based motif instances in all cRE sequences from all cell types by scanning, scoring, and thresholding

(p value < 5e-5) matches from all PWMs using the motifmatchr tool (https://github.com/GreenleafLab/motifmatchr) which uses

the MOODSv.1.9.3 library.84

Annotation of cell-type specific active TF motif instances in accessible CREs with high contribution scores and motif

mutagenesis scores

For each accessible cRE in each cell type, we defined active motif instances as a subset of PWM-based motif instances that have

highDeepLIFT contribution scores or highmotif mutagenesis scores from the corresponding cell-type specific BPNetmodels relative

to a null background distribution of corresponding scores.

Motif instance contribution scores. We computed the contribution score of each PWM motif instance to accessibility in a specific

cell type as the average of the consolidated DeepLIFT contribution scores from the cell-type specific BPNet models over all bases

overlapping the motif instance.

Motif instance mutagenesis scores.

We also inferred mutagenesis scores (motif-ISM) for each PWM-motif instance in a cRE sequence with respect to accessibility in

each cell type. To generate the motif-ISM scores for a PWM motif instance in a specific cell type,

1. We first used the fold-0 BPNet model of the specific cell type to predict the total scATAC-seq counts over a 1000 bp window

(using a 2114 bp input sequence) centered at the motif instance.

2. We then generated 3 shuffled versions of the input sequence containing the motif instance such that wemaintain di-nucleotide

frequencies (dinucleotide shuffling).
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3. We obtained 3 subsequences overlapping the positions of the original motif instance from the 3 shuffled dinucleotide shuffled

sequences.

4. We replaced the subsequence of the motif instance in the original reference sequence with each of the 3 shuffled

subsequences.

5. We then use the fold-0 BPNet model to once again predict the total scATAC-seq counts for each of these 3 disrupted se-

quences containing the shuffled versions of the motif instance.

6. We then computed the log2 ratio of the total predicted counts between the reference sequence from step 1. and each of the 3

disrupted sequences from step 5.

7. The motif-ISM score of the instance was computed as the average of the log2 ratio score from step 6. over all 3 disrupted

sequences.

Empirical null distributions.

We generated empirical null distributions of motif-instance contribution scores as follows.

1. We constructed dinucleotide frequency preserving shuffled versions of all cREs from from chr4 and chr7.

2. We used the cell-type specific BPNet models from each of the 5-folds to compute DeepLIFT contribution scores over all ran-

domized sequences from step 1. For each sequence, the contribution scores at each base were averaged over all 5-folds.

3. The contribution scores from all bases in all sequences from step 2. were used to derive an empirical null distribution of contri-

bution scores.

We generated empirical null distributions of motif-instance ISM scores as follows.

1. We reused the predicted total scATAC-seq counts for each of these 3 disrupted sequences containing the shuffled versions of

the motif instance from step 5. of the motif-ISM estimation process above. We computed the log2 ratio of the total predicted

counts between each of the 3 pairs of disrupted sequences.

2. The empirical null distribution for motif-ISM scores was derived from the above computed scores over all motif instances in all

cRE sequences in chr4 and chr7.

Active motif instances. Finally, to identify active motif instances in each cell type, we select PWM-based motif instances that have

motif-instance contribution scores or motif-ISM scores that are above the 95th percentile or below the fifth percentile of correspond-

ing empirical null distribution scores of that cell type. All other PWM-based instances were labeled as ‘‘inactive’’.

Enrichment of active motif instances and all PWM-motif instances in differential, cell-type specific scATAC-seq peaks

We identified differentially accessible, cell-type specific ‘‘marker peaks’’ for the ventricular cardiomyocyte cluster (vCM) relative to all

other clusters using the getMarkerFeatures() function in ArchR,17 which uses the Wilcoxon Rank-sum test to identify marker peaks

while controlling for the TSS enrichment and log10(unique fragments) of cells when sampling the background set of cells. We then

calculated the Fisher Exact test implemented in the peakAnnoEnrichment() function in ArchR to compute the enrichment of active

motif instances of all TFs expressed in vCMs in vCM marker peaks relative to all vCM peaks. We compute analogous enrichments

of all PWM-based motif instances. We compare the statistical significance of enrichments of active and all PWM instances in

Figures 2H, 2I and S3A.

We observed a diverse set of TFs enriched across different cell types in our fetal atlas. Briefly, we found thatMEF2, TGIF1,NFImotif

families were highly enriched in vCMs and TGIF and KLF families in aCMs. The eCMs had similar TF motifs as the vCMs and aCMs,

albeit with weaker enrichments, suggesting this cluster is the progenitor population for later cardiomyocyte subtypes. The CFPs and

CFs had similar motif enrichment for TCF21/TCF,MYOG,MSC, with CF gaining enrichment for TEAD andNFI families and implicating

a second set of TFs that become active during CF maturation. The other fibroblast-like clusters (FB1 and FB2) had lower TCF21 en-

richments than the cardiac fibroblast clusters, but stronger enrichment for JUN, FOS and JDPmotif families. The OFT cells exhibited

strong RFX and TEAD motif enrichments, while preSMC exhibited weaker enrichments for the RFX and KLF families and stronger

enrichment for motifs associated with proliferation like SP and RBPJ. These enrichments became substantially stronger in the

SMCs at PCW19, and with the gain of new TF enrichments such as theMEF2 family, indicating a continuum of TF motif activity pro-

moting the SMC cell fate trajectory. The PCW6 endocardial cells (Endo1) had stronger TF activity for ETV and STAT families and

weaker enrichments for the SOX family. The capillary (Cap) cells, which are thought to derive from the endocardium, were strongly

enriched for SOX family motifs. The aEC and Cap clusters, exhibited enrichments for SOX, FOS and JUN motifs and also retained

endocardium TFmotifs like ELF and ETV. vECs also had a motif landscape similar to the capillaries, with the addition of a few motifs,

such as STAT.

ChromVAR motif deviation scores

To compute ChromVAR motif deviation scores for any peak set, a background peak set controlling for total accessibility and GC-

content was generated using addBgdPeaks() for each cluster in ArchR. Chromvar27 was run with addDeviationsMatrix() using active

TF motif instances in both peak sets to calculate enrichment of chromatin accessibility over all active motif instances of each TF at

single-cell resolution. We then computed the GC-bias-corrected deviation scores using the chromVAR ‘deviationScores’ function

used in the addDeviationsMatrix() function in ArchR.
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Defining cell transitions and trajectories from scATAC-seq data using optimal transport

Computing gene signatures. We created a cell by gene score matrix that was used for computing the gene signatures associated

with cell cycle and apoptosis for optimal transport analysis. We used the list of curated genes for cell cycle and apoptosis as sug-

gested in the original optimal transport paper.14We scored cells based on the chromatin derived gene accessibility scores17 of genes

in the curated gene signatures. We used the same procedure as in the original manuscript. For each cell, we compute the Z score of

the gene accessibility scores for each gene in the set. We then clip these z-scores in the range of �5 to 5. We define the signature

score of the cell to be themean Z score over all genes in the gene set (Figures S3B and S3C). We estimated the initial growth rate with

the same calculations as performed in the original method14 with the cell cycle and apoptosis signal computed from the gene score

matrix (Figure S3D).

Using gene score matrix for optimal transport calculation. We performed optimal transport-based trajectory analysis by following

the original codebase (https://broadinstitute.github.io/wot/tutorial/).14 The two changes between the original method and our imple-

mentation are the use of gene accessibility scores to compute the gene signatures and the use of the cell by gene accessibility score

matrix for inferring the optimal transport maps as compared to the cell by gene expression used in the original method. The cell by

gene accessibility score matrix was scaled to read per 10K and log2-transformed. The top 2000 variable genes based on Seurat

(FindVariableGenes() method = ’’vst’’) were retained for further analysis. The coupling inference was obtained using parameters

e = 0.05; l1 = 1; l2 = 50; growth_iters = 3.14 We first computed the transport matrices between successive timepoints, inferred

long-range temporal couplings and then computed the fate matrices to obtain the transition table (Figure 3B).

We observed 8 major differentiation trajectories within our single-cell atlas. Briefly, within the endocardium lineage, the endocar-

dium-like cell clusters (Endo1/2) were predicted to give rise to the Cap cells, which in turn were predicted to transition into the vECs in

PCW19. The aEC cluster was derived from Endo1/2 clusters as well as the PCW8 Cap cluster, suggesting that some terminal cell

states can originate from different developmental origins (Figure 3B). We also identified cells that appeared to have already

committed to their developmental fates based on their expression of lineage specific genes. For example, at PCW6, cells from

the epicardial lineage (EPC, OFT, CFP and FB1) that expressed TCF21 were predicted to transition into the cardiac fibroblasts at

PCW8 (preCF) and PCW19 (CF) (Figure 3B). The OFT cluster which lacks TCF21 expression was predicted to transition into SMC

and PC clusters through the preSMC cluster. These observations are highly concordant with results from studies with lineage tracing

in TCF21 recombinase knock-in mice.71 Finally, the FB1 cluster was predicted to transition into the FB2 cluster. For the myocardium

cells, the eCM cluster was predicted to differentiate into vCM and aCM clusters.

Chromatin and gene expression dynamics across trajectories. For all the major trajectories identified using optimal transport, we

identified the clusters that are predicted to be in the trajectory using the transition table (Figures 3C and S4). We provided these

sets of cell clusters to ArchR’s17 addTrajectory() function and assigned cells pseudotime values. We then used the plotTrajectory()

function to plot the chromatin peak dynamics associated with the identified trajectory. We estimated correlation between TF gene

expression from scRNA-seq projected into the scATAC-seq subspace and TF ChromVAR deviation scores using

correlateMatrices() in ArchR.17 We defined correlated TFs for each trajectory as those who had correlation values >0.5.

In addition to the SMC trajectory, we would like to elaborate on one more main differentiation trajectory. The vEC differentiation

trajectory captured cell state transitions from the Endo1/2 progenitor cells at PCW6 to vECs at PCW19 through the Cap cells in

PCW8 (Figure 3K). Waves of TFs including GATA2/3/4/6, NFATC2, SOX4, SOX17 andMEOX1 with correlated expression and motif

activity dynamics are predicted to regulate concordant cascades of dynamically accessible cREs targeting genes involved in

different stages of angiogenesis (Figures 3L and 3M).We once again used cell-type specific BPNetmodels to decipher TFs that regu-

late dynamic cREs in the cis-regulatory domain of the APLNR gene, a primary marker of vECs,85–87 which exhibited a coordinated

and monotonic increase in gene expression, promoter accessibility and cumulative distal chromatin accessibility (gene accessibility

scores) across the trajectory (Figure 3N). BPNet models trained on Endo1/2, Cap and vEC cells revealed GATA3, SOX17 and SP1 to

specifically regulate three representative cREs in the APLNR locus with distinct temporal dynamics of chromatin accessibility based

on cell-type specific predictive motif instances and concordant TF expression (Figures 3O–3Q).

iPSC derived in vitro cardiac cell types - scATAC-seq data processing, quality control, dimensionality reduction and

motif annotations

Raw sequencing data were converted to FASTQ format using ‘cellranger-atac mkfastq’ (10x Genomics, v.1.2.0). 150 bp paired-end

(PE) scATAC-seq reads were aligned to the GRCh38 (hg38) reference genome and quantified using ‘cellranger-atac count’ (10x Ge-

nomics, v.1.2.0). To ensure that each cell was both adequately sequenced and had a high signal-to-background ratio, we filtered

cells with enrichment at TSSs below 6 and unique fragments (1,000-1,500) depending on the individual library (Figure S5).

Projecting iPSC derived in vitro cardiac cells based on scATAC-seq into the fetal heart scATAC-seq manifold

We projected the iPSC derived in vitro cardiac cells based on the scATAC-seq profiles into the scATAC-seq LSI subspace of fetal

heart cells following the procedure described previously.38 Briefly, when computing the TF-IDF transformation on the fetal samples,

we stored the colSums, rowSums, and SVD. To project cells from additional samples into this subspace, we first zeroed out rows

based on the initial TF-IDF rowSums. We next calculated the term frequency by dividing by the column sums and computed the in-

verse document frequency from the previous TF-IDF transformation. Thesewere then used to compute the new TF-IDF. The resulting

TF-IDF matrix was projected into the previously defined SVD of the fetal heart LSI.
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Identifying scATAC-seq peaks across all in vivo and in vitro cardiac cells

To enable the comparison of epigenomic features between the in vivo and in vitro cells, we built a combined ArchR object of all post

filtered cells from the three fetal heart samples and all the samples from the iPSC differentiation to major cardiac cell types. We per-

formed peak calling on the combined data using ArchR, as described above. We used these peak calls from the combined object for

all the downstream differential analyses between the in vivo and in vitro nearest cells identified by the projection analysis. PWM-

based motif instances26 were used to compute TF motif annotations and ChromVar deviations as described above.

Identifying differential scATAC-seq peaks and TF motif enrichments between matched in vivo and in vitro cardiac

cell types

Differential peaks between in vivo and in vitro cell types were identified within the integrated peak set described in the above section.

For each pair of match cell types, we obtained the integrated cell x peak matrix. We then computed row-wise two-sided t-tests for

each peak and estimated the FDR using p.adjust(method = ‘‘fdr’’). Peaks with absolute log2(fold changes) > 1 and FDR < 0.05 were

labeled as differential.

To calibrate themagnitude of these differences, we also estimated differential peaks between two distant in vivo cell types, namely

vCMs and excitatory neurons.13 Reassuringly, the differences between in vitro and in vivo cardiac cells were substantially smaller

than differences between vCMs and neurons (Figure 5A).We next identified the TFmotifs enriched in up or down regulated differential

peaks relative to all peaks for each pairwise comparison using peakAnnoEnrichment() in ArchR.

Predictingmutation impact scores of de novo non codingmutations fromCHD cases and controls on cell-type resolved

scATAC-seq profiles using neural network models

We obtained de novo, non coding mutations from CHD patients from the Pediatric Cardiac Genomics Consortium (PCGC) and from

healthy controls (unaffected siblings) from the Simons simplex collection (SSC) from Richter, et al.15 We restricted our analysis to

single-nucleotide (point) mutations within these cohorts.

For each cell type, we used cell-type specific BPNet models to predict the allelic impact of all mutations that were found within

1000 bp windows around summits of scATAC-seq peaks in that cell type. For each mutation, we used the BPNet model to predict

the base-resolution read count profile corresponding to the input sequence (2,114 bp) containing the reference allele of the mutation

at its center. We then used themodel to predict the 1 kb base-resolution read count profile (which is decomposed into total predicted

counts over 1 kb and base-resolution read probability profile) corresponding to the input sequence (2,114 bp) containing the alternate

allele of themutation at its center. Using these predicted read probability profiles from the two alleles, we computed the impact score

of the mutation as the log2 fold change in cumulative probability between the reference allele and the alternate allele, over a 100 bp

window around the mutation using the formula:
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where i = position of mutation

Pref
j = predicted profile probability at position j for sequence containing reference allele

Palt
j = predicted profile probability at position j for sequence containing alternate allele

For each mutation, the cell-type specific impact scores were computed and averaged over cluster-specific BPNet models trained

on each of 5-folds.

We also computed an alternate mutation impact score based on the predicted cumulative read counts over the 100 bp window

around the mutation, instead of the predicted cumulative read probability.
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where i = position of mutation

Yref
j = predicted counts at position j for sequence containing reference allele

Yalt
j = predicted counts at position j for sequence containing alternate allele

We found high concordance of cell type specific enrichments of high impact mutations in cases vs. controls for both scores

(Figure S6B).

Thresholding mutation impact scores to define high impact prioritized mutations

Because we are investigating a cohort of children with CHD born to parents without CHD, our expectation is that the some of these

cases will be caused by de novo mutations. On average, each individual has approximately 70 such mutations,15 and because we

assumemutations that lead to CHDare generally rare, wewould expect just onewould be a causal presentation andwewould expect

only a fraction of the cohort to have such causal mutations. Based on the expectation that a small proportion of mutations from CHD

cases in cell type resolved scATAC-seq peaks will have a causal role, we prioritized high-impact mutations in each cell type, as those

that have an impact score >95th percentile of the distribution of cell-type specific impact scores of all mutations from the CHD cohort

that fall in 1kb scATAC-seq peak regions in that cell type. The same thresholds were used for mutation impact scores of control mu-

tations as well to obtain enrichments as specified below.
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Selection of prioritized mutations in aEC for deeper investigation

We further restricted deeper investigation into a subset of higher confidenceCHDmutations prioritized by the arterial endothelial cells

(aEC) BPNet model to those that were within 200 bp (+/� 100 bp) of summits of aEC scATAC-seq peaks that had >75 reads in a +/�
250 bpwindow aroundmutation. For each of these selectedmutations, we obtained predicted profiles for sequences centered at the

mutation for both alleles as well as the corresponding DeepLIFT scores and active motif instances. The gene closest to the mutation

in linear genomic sequence was assigned as the putative target gene of the mutation.

Cell-type specific enrichment analysis of prioritized mutations in cases relative to controls

To compute the enrichment of case vs. control mutations in scATAC-seq peaks (cREs) of each cell type in the fetal heart, we

computed a 2 x 2 contingency table. The first axis splits all de novo mutations based on whether they were found in cases versus

controls. The second axis splits all de novomutations based on whether they overlap a cluster-specific peak. The enrichment p value

and odds ratio (OR) was computed using the Fisher Exact Test implemented in the SciPy package in Python.

We used a similar procedure to estimate enrichment of de novo mutations prioritized by cell-type specific models from cases

versus control. In this case, the first axis of the 2 x 2 contingency table splits all de novomutations based on whether they were found

in cases versus controls. The second axis splits all de novo mutations based on whether they are predicted to have a high impact

score (>95th percentile) or not using a cell-type specific BPNet model. High impact score mutations are pre-filtered to those in

peak regions in the cell type. This analysis was performed for each cell type separately and for the pseudobulk of all cell types

separately.

Enrichments of case and control mutations using mutation impact scores from the HeartENN model

We obtainedmutation impact scores as computed by the authors of the HeartENNmodel for all non-coding de novomutations in the

PCGC case and SSC unaffected controls.15 We retained the de novomutations that overlap 1 kb scATAC-seq peak regions in any of

the fetal heart cell types. Finally, we performed Fisher’s exact test for enrichment of high impact (scores R 0.1 as recommended in

Richter et al.15) mutations in peaks in cases vs controls.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in R v4.0.5 or Python v3.8. Statistical tests are described in the relevant methods sec-

tions above.

ADDITIONAL RESOURCES

https://resgen.io/kundaje-lab/sundaram-2022/views/cardiogenesis.

https://cardiogenesis-atac.cells.ucsc.edu.
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Figure S1. Quality control, clustering of cells and gene score of representative cell type markers for scATAC-seq data from fetal hearts at

PCW 6 (left), PCW 8 (middle), and PCW19 (right), related to Figure 1

(A–C) Shown are the number of unique ATAC-seq nuclear fragments in each single cell (each dot) compared to TSS enrichment of all fragments in that cell.

Dashed lines represent the thresholds for filtering cells (1,000 unique nuclear fragments and TSS score R 6).

(D–F) The fragment length distribution for PCW 6 (left), PCW 8 (middle), and PCW19 (right).

(G and H) UMAP of cells from three timepoints combined. Cells are colored according to (G) sample gestational time and (H) cluster membership.

(I) scATAC-seq gene activity profiling of immune marker gene CD19.

(J) Units: log2(normalized ATAC gene-score). Scale: MYL6 (min = 0.6,max = 1), MYL7 (min = 0.25,max = 1.4), ACTN2 (min = 0.2,max = 1.2), HAND1 (min =

0.4,max = 1.2),TTN (min = 0.4,max = 2.2),GATA4 (min = 0.5,max = 1.6), HAND2 (min = 0.5,max = 1.75),TBX10 (min = 0.2,max = 0.8),HEY1 (min = 0.8,max = 1.4),

SRF (min = 1,max = 1.3), NKX2-5 (min = 0.5,max = 2),TBX5 (min = 0.2,max = 1), ABCC9 (min = 0.15,max = 0.7),WT1 (min = 0.4,max = 1),LUM (min = 0.05,max =

0.3),COL9A2 (min = 0.2,max = 0.6), TCF21 (min = 0.2,max = 1),TBX18 (min = 0.2,max = 0.9),CNN1 (min = 0.2,max = 0.6), PDGFRB (min = 0.4,max = 1.4),HOXA3

(min = 0.2,max = 0.8), PRDM6 (min = 0.2,max = 1), TAGLN (min = 0.2,max = 0.9),TFAP2A (min = 0.25,max = 0.7), UNC5B (min = 0.9,max = 1.4), CD36 (min =

0.4,max = 1.2),PECAM1 (min = 0.25,max = 1.25), CDH5 (min = 0.3,max = 1.5), CDH11 (min = 0.3,max = 1.5),GJA5 (min = 0.2,max = 1), APLNR (min = 0.4,max =

1.5), CAV1 (min = 0.2,max = 0.8),SELE (min = 0,max = 0.45), CA4 (min = 0.3,max = 1.1), SELP (min = 0,max = 0.25),LYVE1 (min = 0.1,max = 0.6)
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Figure S2. Integration of scRNA-seq and scATAC-seq data using canonical correlation analysis (CCA), related to Figure 1

(A) UMAP of cells from 5 scRNA-seq studies without (left) and with (right) batch effect correction and harmonization using Harmony (right). Cells are colored by the

scRNA study of origin.

(B) Harmonized UMAP of scRNA-seq analysis used for downstream analysis. Cells are colored by clusters.

(C) Gene expression (Units: TP10K) of cell type specific and cluster specific markers in harmonized scRNA-seq UMAP.

(D) UMAPs of matched cells from scATAC-seq and scRNA-seq data modalities using the CCA subspace. On the left, cells are colored by their assay type and on

the right, cells are colored by clusters from scRNA-seq.

(E) Heatmap showing the cluster–cluster mapping between scRNA-seq and scATAC-seq clusters after CCA matching.
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Figure S3. Overlap motif enrichment from fetal hearts and optimal transport cell signatures, related to Figures 2 and 3

(A) Overlap enrichment (-log10p adjusted) of position-weight matrix basedmotif instances in cell-type-specificmarker scATAC-seq peaks of each cell type cluster

from Figure 1E.

(B–D) UMAP of cells from scATAC-seq data showing (A) cell cycle signature Z scores, (B) apoptosis signature Z scores, and (C) growth rate estimates for optimal

transport.
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Figure S4. Optimal transport based developmental trajectories for vCM, aCM, CF, Cap, aEC, and FB2 cells using scATAC-seq, related to

Figure 3.

(A) UMAPs of scATAC-seq cells in the ventricular cardiomyocyte (vCM) trajectory colored by the gestational sample time.

(B) Heatmaps showing Z score of ChromVARmotif deviation scores (left) and gene expression in units of log2(TP10K) (right) of TFs with correlated variable activity

in cells identified to be in the vCM trajectory, as ordered by pseudotime.

(C) Expression dynamics of MYL2, an important marker gene for the vCM cell type.

(D–F) Trajectory analysis for atrial cardiomyocyte cluster (aCM), analysis as above.

(G–I) Trajectory analysis for cardiac fibroblast cluster (CF), as above.

(J–L) Trajectory analysis for capillary cells (Cap), as above.

(M–O) Trajectory analysis for arterial endothelial cell cluster (aEC), analysis as above.

(P–R) Trajectory analysis for Fibroblast like cells 2 (FB2), as above.
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Figure S5. Quality control data and gene score of cell type markers for iPS derived cardiac cell types, related to Figures 4 and 5

(A) (Left to right, top to bottom) Representative scATAC-seq data quality control filters for Day 0, Day 2, Day 5, Day 15, Day 30 cardiomyocytes, Day 30 endothelial

cells, Day 30 epicardial cells, Day 30 cardiac fibroblast cells, and Day 30 smooth muscle cells (top to bottom, left to right). Shown are the number of unique

(legend continued on next page)
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ATAC-seq nuclear fragments in each single cell (each dot) compared to TSS enrichment of all fragments in that cell. Dashed lines represent the filters for high-

quality single-cell data.

(B) UMAP plots showing gene scores of cell-type-specific and cluster specific markers. Units: log2(normalized ATAC gene-score). Scale: POU5F1 (min = 0,max =

0.7),MESP2 (min = 0.25,max = 1.25), HAND1 (min = 0.4,max = 1.6), HAND2 (min = 0.8,max = 1.4), TNNT2 (min = 0.25,max = 1.4), TTN (min = 0,max = 2), CDH5

(min = 0.3,max = 1.5), CDH11 (min = 0.4,max = 1.2), TCF21 (min = 0.2,max = 0.9), TBX18 (min = 0.4,max = 1), PDGFRB (min = 0.4,max = 1.2) & PDGFRA (min =

1.4,max = 2.2).
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Figure S6. Prioritizing disease-associated non-coding variants using the cell-type-resolved scATAC-seq and predictive sequence models,

related to Figures 6 and 7

(A) Enrichment of cases versus control mutations using naive overlap with cluster-specific ATAC-seq peaks, showing relevance of the deep learning model to

capture pathogenic disruptions.

(B) Enrichment (log2(OR) counts within +/� 50 bp, Fisher Exact Test) of prioritized mutations from each cell-type-specific BPNet model in CHD cases vs. controls

plotted on the scATAC-seq UMAP of all fetal heart cells.

(C–E) Evaluation of robustness in disease prioritization of aECmodel across different threshold values. (D) the -log10 (Fisher exact test p value), (E) the Fisher exact

test odds ratio and (E) excess number of causal mutations observed in cases compared to controls are plotted across all threshold values.

(F–H) Similar metrics as (D–F) for a classification model with the same parameters as the BPNet model in aEC cluster.

(I) Barplot indicating the Fisher exact test odds ratio of the HeartENNmodel (Richter et al.15) subsetted to the de novomutations in cases and controls overlapping

cell type resolved peaksets (blue) scoring above 0.01 as recommended by (Richter et al.15) vs classification model in aEC cluster (light green) and BPNet model in

aEC cluster (dark green). Stars indicate p values. (*** Fisher exact p value = 0.008).

(J–L) Gene expression of FOLH1 (A), PIP5K1C (B) & JARID2 (C) genes in UMAP of cells based on scATAC-seq data. Units: log2(TP10K).

(M) Sanger sequencing confirms CRISPR/Cas9 targeted homozygous deletion in iPSC at the JARID2 cRE (red line).

ll
Article


	Integrative single-cell analysis of cardiogenesis identifies developmental trajectories and non-coding mutations in congeni ...
	Introduction
	Results
	Integrating single-cell ATAC and RNA sequencing data into a unified cell-type-resolved regulatory atlas of the developing h ...
	Deciphering cell-type-resolved cis-regulatory sequence lexicons with deep learning models of base-resolution chromatin acce ...
	Inferring dynamic regulatory control across major cellular differentiation trajectories in human cardiogenesis
	A systematic comparison of regulatory landscapes of in vitro differentiated cardiac cell types and their in vivo counterpar ...
	Prioritizing putative causal non-coding de novo mutations, TFs, target genes, and cell types in congenital heart diseases

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Patient recruitment

	Method details
	Experimental methods
	Generation and culture of human induced pluripotent stem cells
	Cardiomyocyte differentiation
	Endothelial cell differentiation

	Epicardial cell differentiation (old protocol)
	Epicardial cell differentiation (new protocol)

	Cardiac fibroblast differentiation
	Smooth muscle cell differentiation
	Single-cell ATAC-seq on iPSC-derived cardiac cells and human fetal heart
	CRISPR–Cas9-mediated genome editing of iPSCs
	Tubular network formation assay
	Luciferase reporter vector construction
	Transfection and luciferase assays

	Computational methods
	Fetal tissue - scATAC processing
	Fetal tissue - scATAC-seq quality control, dimensionality reduction, filtering and identification of cell types
	Fetal tissue - Peak calling in scATAC-seq datasets
	Fetal tissue - scRNA processing
	Fetal tissue - Matching cells from scRNA-seq and scATAC-seq data
	BPNet deep learning models to predict base-resolution, cell-type resolved pseudobulk scATAC-seq profiles from DNA sequence
	BPNet model-derived DeepLIFT/DeepSHAP nucleotide contribution scores of accessible cRE sequences
	Annotation of PWM-based transcription factor motif instances in accessible cREs
	Annotation of cell-type specific active TF motif instances in accessible CREs with high contribution scores and motif mutag ...
	Motif instance contribution scores
	Motif instance mutagenesis scores
	Empirical null distributions
	Active motif instances
	Enrichment of active motif instances and all PWM-motif instances in differential, cell-type specific scATAC-seq peaks
	ChromVAR motif deviation scores
	Defining cell transitions and trajectories from scATAC-seq data using optimal transport
	Computing gene signatures
	Using gene score matrix for optimal transport calculation
	Chromatin and gene expression dynamics across trajectories
	iPSC derived in vitro cardiac cell types - scATAC-seq data processing, quality control, dimensionality reduction and motif  ...
	Projecting iPSC derived in vitro cardiac cells based on scATAC-seq into the fetal heart scATAC-seq manifold
	Identifying scATAC-seq peaks across all in vivo and in vitro cardiac cells
	Identifying differential scATAC-seq peaks and TF motif enrichments between matched in vivo and in vitro cardiac cell types
	Predicting mutation impact scores of de novo non coding mutations from CHD cases and controls on cell-type resolved scATAC- ...
	Thresholding mutation impact scores to define high impact prioritized mutations
	Selection of prioritized mutations in aEC for deeper investigation
	Cell-type specific enrichment analysis of prioritized mutations in cases relative to controls
	Enrichments of case and control mutations using mutation impact scores from the HeartENN model


	Quantification and statistical analysis
	Additional resources



