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A U T O I M M U N I T Y

Integrated single-cell transcriptomics and epigenomics 
reveals strong germinal center–associated etiology 
of autoimmune risk loci
Hamish W. King1*†, Kristen L. Wells2,3†, Zohar Shipony3†, Arwa S. Kathiria3, Lisa E. Wagar4,5, 
Caleb Lareau3,6, Nara Orban7, Robson Capasso8, Mark M. Davis4,9,10, Lars M. Steinmetz3,11,12, 
Louisa K. James1, William J. Greenleaf3,13*

The germinal center (GC) response is critical for both effective adaptive immunity and establishing peripheral 
tolerance by limiting autoreactive B cells. Dysfunction in these processes can lead to defective immune responses 
to infection or contribute to autoimmune disease. To understand the gene regulatory principles underlying the 
GC response, we generated a single-cell transcriptomic and epigenomic atlas of the human tonsil, a widely studied 
and representative lymphoid tissue. We characterize diverse immune cell subsets and build a trajectory of dynamic 
gene expression and transcription factor activity during B cell activation, GC formation, and plasma cell differen-
tiation. We subsequently leverage cell type–specific transcriptomic and epigenomic maps to interpret potential 
regulatory impact of genetic variants implicated in autoimmunity, revealing that many exhibit their greatest reg-
ulatory potential in GC-associated cellular populations. These included gene loci linked with known roles in GC 
biology (IL21, IL21R, IL4R, and BCL6) and transcription factors regulating B cell differentiation (POU2AF1 and 
HHEX). Together, these analyses provide a powerful new cell type–resolved resource for the interpretation of 
cellular and genetic causes underpinning autoimmune disease.

INTRODUCTION
Autoimmune diseases result from a loss of tolerance to otherwise 
harmless endogenous or exogenous antigens, in part as a conse-
quence of dysregulation in the selection, differentiation, or function 
of immune cells. The propensity for such immune cell dysfunction 
can be potentiated by specific inherited genetic variants, as identified 
through genome-wide association studies (GWAS). However, the 
majority of GWAS genetic variants reside in noncoding regions of the 
genome, and the identification of risk-associated genetic variants alone 
does not identify the cellular populations likely affected by the variant. 
Recent progress has been made linking autoimmune- associated genetic 
variants to immune cell type–specific gene regulation by examining 
functional epigenomic measures like chromatin accessibility, histone 
acetylation, and/or chromatin topology, especially in activated immune 
cell states of immune subsets (1–3). However, such analysis re-
mains incomplete due to limited mapping of important yet transient 
subpopulations of cells that exist in diverse immune organ contexts.

The development and commitment of different immune cell lineages 
occur in primary lymphoid organs such as the bone marrow and 

thymus. Following lineage commitment and egress from these organs, 
adaptive immune cells can undergo additional maturation and dif-
ferentiation in secondary lymphoid organs such as the spleen, lymph 
nodes, and tonsils to generate T cell–mediated immunity and B cell–
dependent antibody responses (4). The latter, in particular, is pre-
dominantly dependent on the formation of the germinal center (GC) 
response. This requires major histocompatibility complex II 
(MHCII)–dependent presentation of antigen-derived peptides by 
dendritic cells that can be recognized by naïve CD4+ T cells, leading 
to their differentiation into T follicular helper (TFH) cells. TFH cells 
are vital to support activated B cells to form GC reactions and undergo 
somatic hypermutation and affinity maturation of their antibody 
genes before differentiating into plasma cells or memory B cells.

Mechanisms that ensure immune tolerance to self-antigen target 
autoreactive B cell clones during early development in the bone 
marrow (central tolerance) and de novo generation in GC responses 
in secondary lymphoid organs (peripheral tolerance). Autoantibodies 
are a feature of many systemic autoimmune diseases, and numerous 
studies have found that autoantibodies can bear somatic hyper-
mutation and class switch recombination signatures indicative of 
GC-derived B cell populations (5), pointing to defects in peripheral 
tolerance. Because these tissues and GC-associated immune cell 
populations are directly involved in establishing both peripheral 
tolerance and forming effective adaptive immune responses, mapping 
the regulatory potential of autoimmune-associated genetic variants 
in these dynamic populations will enable the interpretation of how 
these variants may contribute to autoimmunity.

Here, we apply single-cell transcriptomics [single-cell RNA se-
quencing (scRNA-seq)], surface-protein profiling [single-cell 
antibody-derived tag sequencing (scADT-seq)], and epigenomics 
[single-cell assay for transposase-accessible chromatin using se-
quencing (scATAC-seq)] to map the cellular states and gene regulatory 
networks of immune cells from the human tonsil, a model secondary 
lymphoid organ. By integrating gene expression and chromatin 
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accessibility across 37 immune cell populations spanning bone marrow, 
peripheral blood, and tonsils, we identify putative target genes of 
fine-mapped autoimmune-associated genetic variants and reveal exten-
sive GC-specific regulatory potential, including at loci of major GC 
regulators such as IL21, IL21R/IL4R, and BCL6, as well as two genes re-
quired for MBC fate commitment, POU2AF1 and HHEX. Our inte-
grative analyses ultimately provide original insights into the cellular and 
genetic etiology of autoimmune-associated genetic variants and generate 
a framework to functionally dissect their potential in the maintenance of 
peripheral tolerance and the generation of adaptive immunity.

RESULTS
Single-cell transcriptomics and epigenomics of a model human 
secondary lymphoid organ to define immune cell states
To map the diverse immune cell states of the adaptive immune re-
sponse in human secondary lymphoid organs, and the gene regulatory 

elements active in these different populations, we performed high- 
throughput scRNA-seq coupled with scADT-seq for 12 surface pro-
tein markers on tonsillar immune cells obtained from pediatric 
patients undergoing routine tonsillectomy for obstructive sleep ap-
nea or recurrent tonsillitis (Fig. 1, A to C, fig. S1, and data file S1; 
n = 3). In parallel, we performed scATAC-seq (6) to profile active 
chromatin regulatory elements in tonsillar immune cells (Fig. 1, A to C, 
and fig. S1; see Fig. 2 for more detailed analysis; n = 7). We first anno-
tated nine broad populations based on their surface protein and RNA 
levels of known markers (Fig. 1B) and observed good concurrence 
between RNA, surface protein expression, and chromatin accessibility 
of key marker genes and the frequency of different cell types (Fig. 1C, 
figs. S1 and S2, data files S1 and S2). We observed a relationship 
between patient age and the relative frequencies of B cells in our 
scRNA-seq datasets (fig. S3A). Cytometry by time-of-flight (CyTOF) 
profiling of pediatric and adult tonsils revealed significantly fewer 
GC-specific B and T cell populations in older pediatric donors 
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Fig. 2. Tonsillar immune cell type–specific TF regulatory activity. (A) UMAP of tonsillar immune scATAC-seq with high-resolution annotation of immune cell types. 
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(>5 years old) and adults (fig. S3, B to D), consistent with reduced 
GC activity in older individuals (7). As the GC is a major site of many 
important cell fate decisions during adaptive immune responses, this 
demonstrates the need to profile pediatric and/or immunologically 
relevant (e.g., after vaccination or infection) lymphoid tissue, in 
contrast to peripheral blood–derived immune populations or lym-
phoid tissue from older individuals that lack these populations.

We next annotated B or T lymphocyte subpopulations at a higher 
resolution using our scRNA-seq dataset (Fig. 1, D to G, fig. S4, and 
data files S3 and S4). Within the T cell lineage, we identified naïve 
and central memory T (TCM) cells, cytotoxic lymphocytes (CTLs), 
natural killer (NK) cells, regulatory T (Treg) cells, and two populations 
of TFH cells, with one population expressing high levels of CXCL13, 
CD200, and IL21, likely representing GC TFH (Fig. 1, D and E) (8). 
We also defined clusters with previously identified gene expression 
markers for many expected B cell populations, including naïve, ac-
tivated, memory, tissue-resident FCRL4+ memory, and GC (light zone 
and dark zone) B cells, as well as plasmablasts (Fig. 1, F and G) (9). 
A large population of proliferating B cells were predominantly dark 
zone GC B cells, as expected (fig. S4C). We also found a small cluster 
of B cells expressing markers of type I interferon (IFN) response genes 
such as IFI44L, XAF1, and MX1 (Fig. 1, F and G) that are known to 
be up-regulated after early stages of vaccination (10) and in patients 
with autoimmune diseases like systemic lupus erythematosus and 
Sjögren’s syndrome (fig. S5) (11–13). All cellular populations, in-
cluding this rare IFN-responsive state, were identified at consistent 
frequencies across all patient donors (fig. S4, D and E), and these 
annotations broadly agreed with recent single-cell studies of lym-
phocytes in pediatric tonsils and adult lymph nodes (9, 14).

Mapping chromatin accessibility and transcription factor 
activity in tonsillar immune subsets
Our high-resolution annotation of immune cell populations by 
scRNA-seq (Fig. 1) allowed us to more comprehensively annotate 
our scATAC datasets (Fig. 2A; see Materials and Methods for de-
tails) (15). We limited our annotations of the chromatin accessibility 
maps to 14 cell populations to maximize coverage and representa-
tion of cell type–specific peaks in subsequent analyses. We identi-
fied naïve, activated, memory, FCRL4+ memory, and GC (light zone 
and dark zone) B cell subsets, as well as plasmablasts, TFH, Treg, 
naïve, TCM, and cytotoxic T cells, and two smaller clusters repre-
senting a combination of monocytes, macrophages, and dendritic 
cells (Fig. 2A). We found a strong correspondence between cluster 
identities and cell type–specific markers used in both scATAC-seq 
and scRNA-seq annotation of our datasets (figs. S1 and S2). Cells at 
different stages of the cell cycle, such as proliferating dark zone GC 
B cells, were difficult to distinguish based on their chromatin acces-
sibility profiles, as we and others have observed few qualitative dif-
ferences in chromatin accessibility profiles between mitotic and 
interphase cells (16, 17). As in our scRNA-seq analysis, most scAT-
AC-seq clusters were identified reproducibly in all tissue donors 
(fig. S6, A and B), although we did observe higher frequencies of 
activated and dark zone GC B cells in two patients with recurrent 
tonsillitis compared with patients with obstructive sleep apnea. How-
ever, previous studies, including scRNA-seq analysis, have found no 
or few differences in the cellular phenotypes of immune cells between 
these two patient groups (9, 18). Overall, we provide a comprehensive 
resource of cell type–specific gene regulatory elements across 
14 tonsillar immune cell populations in this model secondary 

lymphoid organ (fig. S7, A and B, and data files S5 to S8), including 
at the immunoglobulin heavy chain locus (fig. S7, C and D). We 
also report putative peak-to-gene linkages by correlating peak chro-
matin accessibility with scRNA-seq expression in our integrated 
analysis pipeline (see Materials and Methods for details) (fig. S7B 
and data files S7 and S8) (15), which, when paired with cell type–
specific accessibility and gene expression, can provide insights into 
potential gene regulatory landscapes across these different immune 
cell populations.

Lymphocyte activation, maturation, and differentiation are under-
pinned by transcriptional networks controlled by sequence-specific 
transcription factors (TFs). To understand the regulatory potential 
of different TFs in vivo, we correlated the expression of TFs with 
the chromatin accessibility of their target motif sequences in B and 
T lymphocyte populations (Fig. 2, B to D). Specifically, we sought to 
identify TFs whose enrichment of their motif sequences in accessi-
ble chromatin was significantly and positively correlated with ex-
pression of that TF within a given cell type (as shown for all B cells 
in Fig. 2B) as a means to predict TFs most likely to regulate gene 
expression in those cells. This successfully identified enrichment of 
TFs known to be important for gene regulation in B and T cell sub-
set–specific states, such as PAX5, EBF1, TCF7, and BATF (Fig. 2C). 
Our analysis also revealed shared regulatory TF activities between 
similar cell states, such as those active in naïve, activated, and mem-
ory B cells (KLF2, BCL11A, ELF2, ETV6, and ELK4) or GC B cells 
(EBF1, REST, POU2F1, and PKNOX1) (Fig. 2, C and D). We also 
found highly cell type–specific activities, such as for EOMES, IRF1/2, 
and RUNX1/3  in cytotoxic lymphocytes and ID3, ASCL2, NFIA, 
and TCF12 in TFH cells (Fig. 2, C and D).

While these analyses of defined cell types and states revealed pu-
tative transcriptional regulators specific to different populations, TFs 
also play major roles in shaping dynamic cell fate decisions during 
activation or differentiation of immune cells. B cell activation and 
subsequent participation in the GC reaction is essential for high- 
quality B cell–dependent immune responses, yet the dynamics of 
different gene regulatory networks involved in this key process are 
poorly understood. We therefore performed a pseudotemporal re-
construction of a single-cell trajectory encompassing B cell activa-
tion, the GC reaction, and plasmablast differentiation and identified 
modules of TF regulatory activity that corresponded with different 
stages of this trajectory (Fig. 2, E and F, and fig. S7E). Intriguingly, 
the pseudotemporal ordering of activated B cells identified two dis-
tinct peaks of dynamic TF expression and chromatin accessibility at 
corresponding motif sequences before commitment to the GC state 
(Fig. 2, E and F; modules 2 and 3). This included early expression of 
nuclear factor B (NFB) family members (module 2; REL, RELA, 
NFKB1, and NFKB2), which was highly correlated with chromatin 
accessibility at their predicted binding sites genome wide. We iden-
tified an NFB/RELA binding site predicted to be disrupted by a 
rheumatoid arthritis (RA)–associated single-nucleotide polymorphism 
(SNP) (rs74405933; G  →  T), for which chromatin accessibility is 
strongly correlated with CD83 expression (Fig. 2G), a key gene in-
volved in B cell activation and maturation (19). In addition to this 
initial activation module, we identified a secondary activation state 
comprising several poorly understood TFs, including BHLHE40, 
CEBPE/Z, ZBTB33, and ZHX1 (module 3). We also identified dynamic 
expression and chromatin activity in GC B cells, including one 
module that decreases through GC exit and plasma cell differentia-
tion (module 4; HNF1B, EBF1, SMAD2, POU2F1, and MEF2B) and 
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one module that is maintained or increases during commitment to 
the plasma fate (module 5; NR2F6, FOXO4, JDP2, and MSC). In 
contrast, a transcriptional regulatory module containing master 
plasma cell regulators such as IRF4, PRDM1, and XBP1 (module 6) 
exhibited reduced accessibility at target sites within GC B cells com-
pared with both naïve and plasma populations, suggesting that 
these sites may be actively repressed to prevent inappropriate 
or premature commitment to the plasma fate during affinity 
maturation in the GC. Unfortunately, we were not able to recon-
struct a trajectory for the memory B cell fate, perhaps due to the 
presence of both GC-derived and extrafollicular sources of memory 
B cells in tonsil tissue, the proposed stochastic nature of this cell fate 
decision (20), or limited number of B cells within our scATAC 
datasets.

Integration of secondary lymphoid organ datasets 
with bone marrow and peripheral blood single-cell 
transcriptome and epigenome atlases
Other scRNA-seq analyses have recently demonstrated that tonsils 
are a transferable model tissue to study secondary lymphoid organs 
and adaptive immune responses more generally (9, 14, 21). In con-
trast to circulating or bone marrow–resident lymphocyte populations, 
immune cells within secondary lymphoid organs exist in a range of 
activation and maturation states, including GC-associated popula-
tions, that may reflect varied tissue niches, cell-cell communication, 
and cytokine signaling. To examine the potential relevance of tissue- 
specific gene expression and chromatin-based regulatory activities, 
we integrated our tonsillar scRNA-seq and scATAC-seq datasets 
with those from publicly available bone marrow and peripheral 
blood immune cell atlases (22) to generate an overview of leukopoi-
esis comprising data for 60,639 and 91,510 high-quality cells for 
scRNA-seq and scATAC-seq, respectively (Fig. 3A, figs. S8 and S9, 
and data files S9 to S12). As expected, activated B cells, GC-associated 
lymphocytes (GC B and TFH cells), and tissue-resident macrophages 
were strongly enriched in secondary lymphoid organs, whereas 
progenitor populations like common lymphoid progenitors (CLPs) 
and granulocyte-monocyte progenitors (GMPs), and circulating 
monocytes were enriched in the bone marrow and peripheral blood, 
respectively (Fig. 3B). In addition to differences in the frequency of 
immune cell subsets, we also examined whether there might be dif-
ferences between circulating or tissue-resident B cells. We found 
significant differences in both the chromatin accessibility and gene 
expression of naïve and memory B cells in the tonsil compared with 
matched populations in the periphery (Fig. 3, C and D, and fig. S10). 
In particular, chromatin accessibility profiles of tonsillar B cells were 
enriched with POU2F2 (also known as OCT2) motif sequences 
(Fig. 3E), a TF known to be important in the regulation of humoral 
B cell responses (23). These tissue-specific phenotypes likely reflect 
differences in cytokine exposure and microenvironment of the ton-
sil compared with circulating blood and highlight that it is essential 
to examine immune cell populations across varied tissue contexts, 
even for a single cell type.

Last, we examined the cell type–specific expression of nine genes 
recently identified to be most commonly mutated within a sporad-
ic primary immunodeficiency cohort (Fig. 3F) (24). Two genes, 
TNFRSF13B and CTLA4, were relatively cell type–specific in their 
expression pattern. TNFRSF13B (encoding TACI) was most highly 
expressed in memory B cells, particularly tonsillar FCRL4+ memory 
B cells. Patients with immunodeficiency and TNFRSF13B mutations 

have fewer memory B cells expressing class-switched antibodies, 
although the mechanisms and penetrance of different coding 
TNFRSF13B mutations remain unclear given the prevalence of coding 
variants in healthy individuals (25, 26). CTLA4 expression peaked 
in TFH and Treg populations, as expected. In contrast, BTK, LRBA, 
and the TF genes STAT1, STAT3, NFKB1, NFKB2, and IZKF1 were 
broadly expressed across varied subsets. We used our scATAC-seq 
data to examine the enrichment of their motif sequences in accessi-
ble chromatin to determine which cell type might be most sensitive 
to altered activity of these TF genes. This revealed that tonsillar myeloid 
cells (labeled here primarily as macrophages) had the highest activity 
of these immunodeficiency-associated TFs (Fig. 3F), although we ob-
served enrichment of NFKB2 in activated B cells (Figs. 2, F and G, and 3F) 
and signal transducer and activator of transcription 1 (STAT1)/
STAT3 in circulating monocytes and T cells (Fig. 3F).

Identification of fine-mapped autoimmune GWAS variants 
in cell type–specific chromatin
Our integrated scRNA-seq and scATAC-seq atlas of immune cell 
populations in the bone marrow, peripheral blood, and tonsils pro-
vided a unique opportunity to understand the regulatory potential 
and cell type specificity of autoimmune-associated genetic variants 
across a broad diversity of immune cell types. By examining 12,902 
statistically fine-mapped SNPs, of which 9493 were significantly as-
sociated with disorders of the immune system (1, 27), we found that 
our single-cell accessibility profiles of immune cells were broadly 
enriched in immune-related genetic variants compared with non–
immune-related traits and background genetic variation (Fig. 4A and 
fig. S11, A and B). We found specific enrichment of disease-specific 
genetic variants in different immune cell lineages or subsets (Fig. 4B 
and fig. S11, C and D). For example, we found a strong enrichment 
of genetic variants associated with Kawasaki disease and systemic 
lupus erythematosus in chromatin accessibility maps of the B cell 
lineage, particularly tonsillar naïve and memory B cells, as well as 
enrichment of genetic variants associated with alopecia, autoimmune 
thyroiditis, systemic sclerosis, and Behçets disease in cytotoxic lym-
phocyte regulatory elements (Fig. 4B and fig. S11, C and D). In contrast, 
genetic variants associated with multiple sclerosis were enriched in 
both B and T cell–specific chromatin, perhaps reflecting the multi-
genic nature and complex etiology of this disease (Fig. 4B and 
fig. S11, C and D).

Of the 1213 immune-related SNPs that overlapped with accessi-
ble chromatin peaks in our atlas (data file S13), many were localized 
in cell type– or lineage-specific chromatin (Fig. 4C). Three hundred 
forty-two (28.2%) of these SNPs fell within accessible chromatin only 
identified in tonsil-enriched immune subsets (Fig. 4D), demonstrating 
the value of our tonsillar immune cell atlas for interpretation of 
GWAS genetic variants. We next predicted the putative gene targets 
of these genetic variants by using our integrated scRNA-seq and 
scATAC-seq to identify highly correlated accessibility at chromatin 
regions to nearby gene expression (15, 22). This enabled us to examine 
358 chromatin-accessible regions (containing 460 unique immune- 
linked SNPs) for which we identified significant peak-to-gene link-
age correlations (Fig. 4E). These linkages revealed cell type–specific 
patterns of both the chromatin accessibility at autoimmune genetic 
variants and correlated expression of putative gene targets, providing 
a powerful resource to explore the potential regulatory mecha-
nisms of these genetic variants and their relationship to auto-
immune disease.
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Chromatin regulatory activity at immune-associated genetic 
variants predicts importance of GC activity in autoimmunity
Many studies examining the relationship between immune-associated 
genetic variants and their regulatory activity with functional genomics 
methods such as ATAC-seq or chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) have been limited to studying 
peripheral immune cell populations. This limitation is likely significant, 
given our knowledge that many lymphocyte maturation and antibody- 
based selection events occur in secondary lymphoid organs and that 
GC-derived autoantibody production is a feature of many autoimmune 
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Fig. 3. Integrated single-cell transcriptomics and epigenomics of human bone marrow, peripheral blood, and tonsillar immune cell states. (A) UMAP of integrated 
scATAC-seq and scRNA-seq for human bone marrow, peripheral blood, and tonsils. CLP, common lymphoid progenitors; GMP, granulocyte-monocyte progenitors; CM, 
central memory; EM, effector memory. (B) Relative frequency of cell type clusters in (A) across different tissues. BMMC, bone marrow mononuclear cells. (C) Differential 
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and MBC clusters in integrated scRNA-seq dataset. Selected genes are annotated. (E) Ranking of TF motif deviation enrichment within tissue-enriched (red, top) or tis-
sue-depleted (blue, bottom) peaks naïve and MBCs. (F) Expression of top genes identified to be mutated by whole-genome sequencing in a sporadic immunodeficiency 
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diseases. Although we found examples of genetic variants in cell type–
specific chromatin across diverse immune subsets (e.g., GZMB/GZMH, 
NKX2-3, COTL1/KLHL36, KSR1/LGALS9, and TNFRSF1A/LTBR; 
Fig. 4E and figs. S12 and S13), we observed a notable enrichment of 
fine-mapped autoimmune variants in chromatin accessibility regions 
specific to GC-associated B and T populations, such as GC B cells 
and TFH cells (Fig. 4E), including the IL21, IL21R/IL4R, BCL6/LPP, 
CD80, PRAG1, SLC38A9, VAV3/SLC25A24, and DLEU1/DLEU1/ 
TRIM13 loci (Figs. 5 and 6 and figs. S14 and S15).

We identified GC-specific regulatory elements at the IL21 locus 
and the locus of its receptor IL21R (Fig. 5, A and B, and fig. S16). 
Cytokine signaling by interleukin-21 (IL-21), primarily secreted by 
TFH cells, is essential for B cells to form and participate in normal 
GC reactions. B cells respond to IL-21 through the IL-21 receptor 

(IL-21R). We identified several fine-mapped SNPs at the IL21 locus 
highly correlated with both chromatin accessibility and gene ex-
pression at the IL21 promoter (Fig. 5A). These SNPs exhibited TFH- 
specific chromatin accessibility, although one SNP, rs13140464, was 
also highly accessible in several progenitor populations. These fine-
mapped SNPs at IL21 have been associated with alopecia (1), juvenile 
idiopathic arthritis, or autoimmunity more generally (27), and some 
of these same SNPs are also significantly associated with celiac dis-
ease (rs7682241 and rs6840978) (28), inflammatory bowel disease 
(rs7662182) (29), primary sclerosing cholangitis (rs13140464) (30), 
and lupus (rs13140464) (31). Conversely, we found two fine-mapped 
SNPs in strong linkage disequilibrium (rs6498021 and rs6498019) 
located in close proximity to IL21R in B cell–specific chromatin 
accessibility regions that have been linked with allergy (1) and/or 
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asthma (Fig. 5B and fig. S16) (32). As well as significant correlations 
with IL21R expression, the chromatin accessibility of these two SNPs 
was also highly correlated with the nearby IL4R gene, encoding the 
IL-4R, which, similar to IL21R, was most highly expressed in GC B cells 
and is vital for T cell–dependent maturation of B cells.

Autoimmune risk variants within a GC-specific locus 
control region
Our analysis of genetic variants linked with autoimmunity identified a 
concentration of recently fine-mapped autoimmune-associated SNPs 
from the United Kingdom Biobank (UKBB) databank (27) in a GC- 
specific locus control region (LCR) (33) located between BCL6 and 
LPP (Fig. 5C and fig. S16). Of the genetic variants that fell within 

accessible chromatin across this locus, there were associations with 
celiac disease [rs11709472 (34), rs7628982 (UKBB), rs9834159 (35), and 
rs4686484 (1)], allergy [rs56046601 and rs12639588 (1)], multiple 
sclerosis [rs4686953 (formerly rs66756607) (36, 37)], asthma [rs7640550 
and rs7628982 (38)], and vitiligo [rs7628982 (39)]. Many of these 
SNPs were present in chromatin-accessible regions specific to GC B or 
TFH cells, in which BCL6, LPP, and the long noncoding RNA at the 
LCR (LINC01991) are most highly expressed (Fig. 5C). We report 
significant correlations in chromatin accessibility between many of 
these SNPs (and the LCR in general) with the expression of both 
BCL6 and LPP, consistent with chromosome conformation interac-
tions detected in GC B cells between this LCR and the BCL6 pro-
moter (33). Deletion of this LCR has been shown in mouse models 

2 kb 5 kb2 kb 2 kb 2 kb

10 kb

NK
T_CD8

Treg

TFH

T_CD4
Macrophages

Monocytes
cDC
pDC
GMP

B_Plasma
B_MBC

B_GC
B_activated

B_naive
preB
CLP

Erythroid
Basophil

CD34+

NK
T_CD8
Treg

TFH

T_CD4
Macrophages
Monocytes
cDC
pDC
GMP
B_Plasma
B_MBC
B_GC
B_activated
B_naive
preB
CLP
Erythroid
Basophil
CD34+

TFH

rs7
66

21
82

rs1
51

29
73

rs7
68

22
41

rs7
68

24
81

rs1
05

18
40

2

rs2
39

03
51

rs1
31

40
46

4

rs6
49

80
19

rs6
49

80
21

rs6
49

80
19

rs6
49

80
21

rs7
66

21
82

rs1
51

29
73

rs1
31

37
07

2

rs1
31

43
86

6

rs7
68

22
41

rs7
68

24
81

rs6
84

09
78

rs6
84

09
78

rs1
05

18
40

2

rs2
39

03
51

rs1
31

40
46

4

SNP
peak

NK
T_CD8

Treg

TFH

T_CD4
Macrophages

Monocytes
cDC
pDC
GMP

B_Plasma
B_MBC

B_GC
B_activated

B_naive
preB
CLP

Erythroid
Basophil

CD34+

GC B cells

TFH

SNP
peak

NK
T_CD8

Treg

TFH

T_CD4
Macrophages

Monocytes
cDC
pDC

GMP
B_Plasma

B_MBC
B_GC

B_activated
B_naive

preB
CLP

Erythroid
Basophil

CD34+

NK
T_CD8
Treg

TFH

T_CD4
Macrophages
Monocytes
cDC
pDC
GMP
B_Plasma
B_MBC
B_GC
B_activated
B_naive
preB
CLP
Erythroid
Basophil
CD34+

GC B cells

TFH

SNP
peak

NK
T_CD8

Treg

TFH

T_CD4
Macrophages

Monocytes
cDC
pDC
GMP

B_Plasma
B_MBC

B_GC
B_activated

B_naive
preB
CLP

Erythroid
Basophil

CD34+

NK
T_CD8
Treg

TFH

T_CD4
Macrophages
Monocytes
cDC
pDC
GMP
B_Plasma
B_MBC
B_GC
B_activated
B_naive
preB
CLP
Erythroid
Basophil
CD34+

GC B cells

SNP
peak

0.0 0.60.3

IL21

0
0.0

5
0.1

0

Expression

IL21–AS1

IL4R
IL21R

20 kb

IL21R

0.0 0.5 1.0

IL4R

0.0 0.5

Expression

IL21R

Allergy
Asthma

rs
64

98
01

9
rs

64
98

02
1

A B

0.0 0.5 1.0 1.5

BCL6

0.0 0.2 0.4

LINC01991

0 1 2

Expression

LPP

100 kb

10 kb 2 kb 5 kb 1 kb 2 kb 5 kb

BCL6
LINC01991

LPP
BCL6

rs1
42

48
68

03

rs7
62

88
33

4

rs1
49

91
05

25

rs1
44

13
34

26

rs7
58

77
77

9

rs7
81

46
08

8

rs1
14

55
80

62

rs7
48

02
57

3

rs1
39

60
92

81

rs5
37

15
18

83

rs9
83

37
69

rs7
31

88
69

7

rs7
30

51
56

6

rs1
68

62
81

5

rs1
17

09
47

2

rs7
64

05
50

rs7
62

89
82

rs4
68

69
53

rs5
60

46
60

1

rs9
83

41
59

rs4
68

64
84

rs1
26

39
58

8

LINC01991
LPP

LPP

rs1
42

48
68

03

rs7
62

88
33

4

rs1
49

91
05

25

rs1
44

13
34

26

rs7
58

77
77

9

rs7
81

46
08

8

rs1
14

55
80

62

rs7
48

02
57

3

rs1
39

60
92

81

rs5
37

15
18

83

rs9
83

37
69

rs7
31

88
69

7

rs9
81

83
31

rs7
30

51
56

6

rs1
68

62
81

5

rs1
17

09
47

2

rs7
64

05
50

rs7
62

89
82

rs4
68

69
53

rs5
60

46
60

1

rs9
83

41
59

rs4
68

64
84

rs1
26

39
58

8
rs

14
24

86
80

3
rs

76
28

83
34

rs
14

99
10

52
5

rs
14

41
33

42
6

rs
75

87
77

79
rs

78
14

60
88

rs
11

45
58

06
2

rs
74

80
25

73
rs

13
96

09
28

1
rs

53
71

51
88

3

rs
98

33
76

9
rs

73
18

86
97

rs
98

18
33

1

rs
73

05
15

66
rs

16
86

28
15

rs
11

70
94

72
rs

76
40

55
0

rs
76

28
98

2
rs

46
86

95
3

rs
56

04
66

01
rs

98
34

15
9

rs
46

86
48

4
rs

12
63

95
88

AID (UKBB)
Allergy

Asthma
Celiac

MS
Vitiligo

C

IL21
IL21-AS1

GC LCR

Peak2Gene
SNP2Gene Significant

correlations Peak2Gene
SNP2Gene Significant

correlations

Peak2Gene
SNP2GeneSignificant

correlations

AID (UKBB)
Alopecia

Juv Idio Arthritis
IBD

Scl cholangitis
Lupus

Celiac

rs
76

62
18

2

rs
15

12
97

3

rs
13

13
70

72
rs

13
14

38
66

rs
76

82
24

1
rs

76
82

48
1

rs
68

40
97

8
rs

10
51

84
02

rs
23

90
35

1

rs
13

14
04

64

Fig. 5. Chromatin regulatory landscapes of GC-specific autoimmune risk variants. (A) Genomic snapshot of fine-mapped autoimmune-associated GWAS variants 
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to lead to defects in GC B cell formation (33), presumably through its 
transcriptional regulation of BCL6, one of the master regulatory TFs 
required for both GC B cells and TFH cells. These observations suggest 
that association of this locus with autoimmunity is primarily driven 
through GC B and TFH defects. However, some genetic variants 
(rs142486803, rs76288334, and rs78146088) were accessible across 
many different immune lineages, as was rs4686484, which has pre-
viously been proposed to be located in a B cell–specific enhancer 
(35), revealing an additional layer of complexity to this autoimmune 
regulatory locus.

Autoimmune risk variants at the loci of transcriptional 
regulators POU2AF1 and HHEX
We identified cell type–specific chromatin accessibility at autoim-
mune risk variants across loci for many regulatory TFs or transcrip-
tional regulators including POU2AF1, HHEX, ETS1, STAT4, IKZF3, 
NKX2-3, and IRF8 (Fig. 6 and figs. S12, S17, and S18), in addition to 
the GC master regulator BCL6 (Fig. 5C). Of particular interest were 
POU2AF1 and HHEX, which have recently been proposed to con-
trol memory B cell fate selection in the GC (40, 41). POU2AF1, also 
known as OCT binding factor 1 (OBF1), is a largely B cell–specific 
transcriptional coactivator with no intrinsic DNA binding activity 
that interacts with TFs POU2F1 (OCT1) and POU2F2 (OCT2). It is 
indispensable for formation of GCs and GC-dependent B cell matu-
ration (42). We found two genetic variants associated with primary 
biliary cirrhosis/cholangitis (PBC) [rs4938541 and rs4393359 (1, 43)] 
within B cell–specific accessible chromatin and observed that 
POU2AF1 expression peaks in GC B cells (Fig. 6A). Our analysis of 
B cell activation dynamics predicted POU2F1/POU2F2 as regula-
tors in GC B cells (Fig. 2), and POU2F2 is more highly expressed in 
tonsillar B cells compared with those circulating in peripheral blood 
(Fig. 3), suggesting that B cells within lymphoid tissues are likely to 
be most sensitive to altered POU2AF1 levels.

HHEX has recently been reported to be an essential regulator of 
the memory B cell fate decision by GC B cells (41), although its 

potential mechanistic involvement in autoimmune disease is not 
known. Our integrated epigenomic and transcriptomic analyses 
identified three fine-mapped SNPs at the HHEX locus that fell within 
B cell–specific accessible chromatin, were implicated in the regula-
tion of HHEX through peak-to-gene correlation analysis, and were 
associated with multiple sclerosis (MS) (rs11187144, rs4933736, 
and rs10882106) (Fig. 6B). We also identified correlated peak-to-
gene linkages between these SNPs and neighboring genes KIF11 
and EXOC6 (fig. S19). We note that rs4933736 falls within a pre-
dicted KLF TF binding site (Fig. 6B), providing a potential mecha-
nism for disruption of HHEX expression.

DISCUSSION
Here, we generated paired transcriptome and epigenome atlases of 
immune cell subsets in the human tonsil, a model system to study 
the GC reaction, which is a major site for developing adaptive 
immunity to respond to infection and establishing peripheral toler-
ance to prevent autoimmunity. We defined gene expression and gene 
regulatory elements across dynamic immune cell states and exam-
ined the regulatory potential of TFs in these populations. We sub-
sequently leveraged our single-cell resource to profile the cell 
type–specific chromatin accessibility at fine-mapped GWAS vari-
ants linked with autoimmune disorders to reveal that the chromatin 
of many such variants is most accessible in GC-associated cell types, 
and this accessibility is highly correlated with cell type–specific ex-
pression of genes required for normal cytokine signaling or tran-
scriptional regulation in the GC response.

Our single-cell transcriptomic analysis identified a rare B cell 
population that expresses high levels of IFN-induced gene expres-
sion (Fig. 1). Unfortunately, we were unable to identify this rare B cell 
population in our scATAC profiling to explore how it may be linked 
to different autoimmune traits at the chromatin level. One of the 
genes most highly expressed by the IFN-responsive B cells was 
IFI44L. Splice and missense genetic variants at the IFI44L locus 
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(rs1333973 and rs273259) have previously been linked with neutralizing 
antibody titers to the measles vaccine (44), and type I IFN–positive 
B cells have previously been implicated in the development of auto-
reactive B cells (45). Many of the genes uniquely expressed by this 
B cell state are also up-regulated in the peripheral blood B cells of pa-
tients with lupus (fig. S5) (13). These observations suggest that this 
rare and poorly characterized B cell state may be involved in B cell–
mediated antibody responses to vaccines and/or processes linked 
with autoimmunity.

The integrated analysis of gene expression with chromatin acces-
sibility landscapes allowed us to predict putative TF regulators in both 
steady state and dynamic immune cell populations, including tem-
porally dynamic TFs during B cell activation and their participation 
in the GC reaction. As part of a dominant B cell activation, matura-
tion, and plasma cell differentiation trajectory, we identified a 
secondary B cell activation state after an initial NFB-associated 
activation presumably linked with strong B cell receptor activation 
and/or T cell help. One particularly interesting TF identified was 
BHLHE40, which has previously been shown to be required for the 
transition from an activated state before entry into the GC (46, 47) 
and is capable of binding key regulatory elements at the immuno-
globulin heavy chain locus (9). Recent spatial epigenomic mapping 
of the human tonsil found BHLHE40 regulatory activity outside of 
the GC reaction, consistent with our pseudotemporal analyses (48). 
How this and other putative regulators we identify in this secondary 
activation state (such as CEBPE/Z, ZBTB33, and ZHX1) may contrib-
ute to the transition from the activated B cell state to a GC-associated 
gene expression program will be an important question for future 
mechanistic studies. However, as the human tonsil represents a highly 
polyclonal source of B cells, which may arise from many different 
antigen sources, subtissue locations, or clonal expansion events, it 
remains challenging to resolve potentially more complex B cell fate 
trajectories, such as whether the chromatin accessibility and TF net-
work dynamics in antigen-naïve or antigen- experienced (memory) 
B cells vary during activation and the GC response.

The molecular mechanisms by which many GWAS-identified 
genetic polymorphisms contribute to autoimmune disease remain 
poorly understood. To address this, we and others have examined 
the relationships between noncoding SNPs and lineage- or cell 
type–specific expression of putative gene targets to predict the po-
tential functional relevance of genetic variants [reviewed in (49)]. 
For immune-associated GWAS variants, many resources have focused 
on gene expression or epigenomic profiles of cell types circulating 
in the peripheral blood or bone marrow (1, 50), although there is an 
emerging prioritization of activation or tissue-specific immune cell 
states (2, 3). Our analysis of chromatin accessibility and gene ex-
pression at GWAS loci in tonsillar immune cell states highlights the 
importance of examining cellular populations in secondary lym-
phoid tissues, especially of pediatric patients with highly active GC 
responses, to understand how regulatory activity at noncoding 
genetic variants in dynamic and tissue-specific populations might 
contribute to autoimmune disease. Specifically, we found that many 
autoimmune disease–associated genetic variants are localized within 
chromatin most accessible in GC B and T cell populations, includ-
ing at the loci of genes with well-established roles in B cell activation 
(CD83 and CD80), survival and participation in the GC (IL21, 
IL21R, IL4R, and BCL6), and fate selection (POU2AF1, HHEX, and 
IRF8). While our findings do not exclude dysregulation of auto-
immune-associated loci in stromal cell populations that we did not 

profile here, or potential pleiotropic genetic effects from variants 
that are accessible across multiple immune cell lineages or tissues, 
they strongly implicate lymphocyte-intrinsic dysfunctional GC re-
sponses as a major feature in the genetic etiology of autoimmune 
disease.

Our integrated scRNA-seq and scATAC-seq resource maps the 
cell type–specific chromatin accessibility of autoimmune variant loci 
genome-wide and identifies highly correlated peak accessibility–
gene expression relationships to identify gene targets that may be 
affected by those SNPs (15). Chromosome conformation capture 
methods such as Hi-C have also been used to predict putative gene 
targets of autoimmune GWAS variants in GC-associated cell popu-
lations (33, 51), but these experimental approaches can be limited in 
their ability to detect short-range interactions (e.g., <10 kb) and are 
challenging to perform at scale across many cell types at once or at 
single-cell resolution. Although the inferred peak-to-gene relation-
ships we report here do not provide direct evidence of physical in-
teractions and will require experimental follow-up in future studies, 
our integrated approach to predict gene targets has advantages over 
other co-accessibility models that link distal regulatory elements to 
promoters without taking into account changes in gene expression, 
and our approach has successfully linked GWAS variants with pu-
tative targets in previous studies (22, 52).

To explain how individual noncoding genetic variants may con-
tribute toward the development or pathology of autoimmune disease, 
it will be necessary to further understand their precise regulatory 
impact on gene expression. Our analyses do not predict whether 
specific polymorphisms might positively or negatively regulate gene 
expression of their putative gene targets. Expression quantitative 
trait loci (eQTL) analyses can be used to infer whether genetic vari-
ants are associated with loss or gain of gene expression (53). However, 
current eQTL databases have profiled either circulating immune 
cell subsets or whole tissues (e.g., spleen) from adult donors [GTEx 
Project (GTEX) median donor age is 50 to 59 years old]. In both 
cases, these resources lack adequate representation of GC-associated 
gene expression to confidently dissect the directionality of many 
SNP-to-gene relationships we predict in our analyses. New advances 
in neural network–derived methods may prove useful to quantita-
tively model effects on gene expression in cell type–resolved chro-
matin accessibility maps (17, 54).

Although at some loci we identified variants that appear likely to 
disrupt predicted TF binding sites, the highly context-dependent 
activating or repressive gene regulatory functions for many TFs re-
main poorly understood. This therefore makes it difficult to confi-
dently predict whether the downstream gene targets are more likely 
to be activated or repressed. Inferring downstream targets of TFs 
without cell type–specific ChIP-seq datasets is likewise challenging, 
making prediction of the phenotypic impact of potentially altered 
TF expression at several loci we predict (BCL6, HHEX, POU2AF1, 
ETS1, IKZF3, STAT4, and IRF8) difficult. Functional genomics, 
single-cell multi-omics, and eQTL analyses in varied healthy and 
diseased immune organs and model systems will be essential to pro-
vide further mechanistic insights, as studies of healthy individuals 
lacking specific variants may miss gain-of-function mutations that 
create disease-specific regulatory elements de novo (55). Although 
functional (epi)genomic editing of primary human immune cells re-
mains challenging, high-throughput screening strategies are emerg-
ing as powerful new tools (56) to assign loss- or gain-of-function to 
GWAS variants linked with autoimmune disease. However, whichever 
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method is used to dissect mechanism of noncoding polymorphisms, 
the fact that many variants associated with disease are in linkage 
disequilibrium poses a significant challenge to confidently identify 
causal variants for any given locus.

Although we are unable to confidently predict whether expres-
sion of a specific gene is enhanced or disrupted by autoimmune- 
associated genetic variants, either defective or enhanced GC phenotypes 
could contribute to the development of autoimmune disease by 
providing an opportunity for the expansion of self-reactive B cells 
that are normally inhibited in the periphery of healthy individuals 
(57). As a model example to illustrate this principle, we discuss 
here how altered signaling by IL-21 through IL-21R, for which we 
identified several autoimmune-associated genetic variants in 
TFH- or GC B cell–enriched gene regulatory elements, could lead 
to altered cellular and immunological phenotypes that might con-
tribute to autoimmunity. If at these loci any of the genetic variants 
we characterize result in decreased IL21 or IL21R expression and 
subsequently reduced IL-21 signaling, even subtly, this could re-
sult in reduced B cell survival within the GC, and enhanced cell 
death would lead to high concentrations of nuclear autoantigens 
that might promote autoreactive B cells and loss of tolerance. 
Conversely, if IL21 or IL21R gene expression was enhanced by 
genetic variation at distal regulatory elements, elevated autocrine 
IL-21 signaling by TFH cells could result in TFH expansion and pro-
liferation that limit competition among GC B cells and lead to 
the survival of self-reactive B cells (58, 59). B cell–specific deple-
tion of IL-21R in a mouse model of lupus prevents the develop-
ment of autoantibodies and disease (60), demonstrating that this 
pathway can play a major role in autoimmunity. Although many 
of the precise molecular and immunological pathways involved 
in autoimmunity remain unclear, our genetic analyses provide a 
powerful resource to dissect the transcriptional and epigenetic 
landscapes of immune cells in secondary lymphoid organs of 
healthy individuals.

Last, the development of transient GC-like lymphoid follicles in 
nonlymphoid tissue (termed ectopic GCs) has been associated with 
site-specific inflammation in autoimmune diseases and may con-
tribute to loss of tolerance by promoting maturation of self-reactive 
B cell clones (61). Analysis of B cells from ectopic GCs in several 
autoimmune diseases provides evidence of site-specific clonal ex-
pansion and somatic hypermutation of antibody genes and an absence 
of normal GC regulation (62–64). Single-cell analyses of “defective” 
and “ectopic” immune structures in different autoimmune diseases 
will be essential to understand how the regulatory and gene ex-
pression dysfunction we predict in the normal immune cell 
landscape may drive autoimmunity through altered GC response 
dynamics.

MATERIALS AND METHODS
Study design
In this study, we aimed to define the gene expression and accessible 
DNA landscapes of different immune cell populations found in the 
human tonsil, a model secondary lymphoid organ to study adaptive 
immune responses. This study used tonsil samples from pediatric 
patients undergoing routine tonsillectomy, and numbers of samples 
per experiment are reported in data file S1. We first looked at pa-
tients covering a wide range of ages and chose to focus for this study 
on patients ranging from age 3 to 7 where GC populations were most 

abundant for subsequent analysis by scRNA-seq coupled with scADT-
seq and scATAC-seq, performed at Stanford University (n = 3). 
During initial analysis, four additional tonsillar scATAC-seq datasets 
that had been generated with an identical protocol at Queen Mary 
University of London were integrated into the data analysis pipeline 
and used in all subsequent analyses. We used known gene expres-
sion markers to define different cell populations in the human tonsil 
scRNA-seq resource before using this fine-scaled definition to an-
notate clusters in matched scATAC-seq datasets. Pseudotemporal 
ordering of single-cell chromatin accessibility profiles was per-
formed to examine the dynamics of TF activities between different 
B cell maturation stages. To understand cell type–specific regula-
tory potential of autoimmune genetic variants, we intersected pub-
lished statistically fine-mapped GWAS variants with regions of 
cell type–specific chromatin accessibility and examined the chro-
matin accessibility and gene expression of exemplar autoimmune 
gene loci.

Human ethics, tissue collection, and preparation
Tonsil samples were collected from children and adults undergoing 
routine tonsillectomy. All participants provided written informed 
consent, and the protocols were approved by Stanford University’s 
Institutional Review Board (protocol numbers 30837 and 47690). 
Whole tonsils were collected in saline and processed within 4 hours 
of receipt. Tissues were treated with penicillin, streptomycin, and 
normocin for 30 min on ice, and heavily clotted or cauterized areas 
of the tissue were removed. Tonsils were then dissected into small 
pieces (roughly five to eight pieces per tonsil) before mechanical 
dissociation through a 100-m cell strainer using a syringe plunger. 
Mononuclear cells were isolated by Ficoll density gradient centrifu-
gation (GE Healthcare), and the buffy coats were collected. Cells 
were cryopreserved in 90% fetal bovine serum and 10% dimethyl 
sulfoxide until use. Four additional cryopreserved tonsil samples at 
Queen Mary University of London included for scATAC-seq anal-
yses were prepared as described previously (9) under approval from 
North West/Greater Manchester East Research Ethics Committee 
(17/NW/0664).

CyTOF staining and analysis
Cryopreserved samples were thawed in prewarmed cell culture me-
dium (RPMI 1640 with 10% fetal bovine serum, nonessential amino 
acids, sodium pyruvate, and antibiotics), washed, and rested for 1 hour 
at 37°C in culture medium supplemented with deoxyribonuclease 
(25 U/ml). Cells were then washed and resuspended in fluorescence- 
activated cell sorting (FACS) buffer [phosphate-buffered saline (PBS) 
with 0.1% (w/v) bovine serum albumin, 2 mM EDTA, and 0.05% (v/v) 
sodium azide]. Individual donor samples were barcoded using a com-
bination of metal-tagged CD45 antibodies, combined into barcoded 
pools, stained for surface antibody markers (table S1), and treated 
with cisplatin for viability staining as described (65). Samples were 
then fixed overnight with 2% paraformaldehyde diluted in PBS. The 
next day, cells were permeabilized using a permeabilization buf-
fer (eBioscience), stained with a DNA intercalator for 30 min, and 
washed. Just before CyTOF data collection, samples were washed 
three times with PBS and then three times with MilliQ water. Bar-
coded pools were run on a CyTOF2 instrument (Fluidigm), and fcs 
files were exported for analysis in FlowJo software. Live intact sin-
glets were gated and samples were manually debarcoded using com-
binations of CD45 channels (5-choose-2 scheme), and individual 
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donor samples were exported as separate fcs files before dimensionality 
reduction analyses.

Single-cell library preparation, sequencing, and alignment
Tonsillar immune cells were loaded onto the 10X Genomics Chro-
mium according to the manufacturer’s protocol using either the 
single-cell 3′ kit (v3) or the single-cell ATAC kit (v1). Cell surface 
labeling for scADT-seq libraries was performed with 12 oligo-la-
beled TotalSeq antibodies (BioLegend; table S2). Library prepara-
tion was performed according to the manufacturer’s protocol 
before sequencing on either the Illumina NovaSeq 6000 or NextSeq 
500 platforms. scRNA-seq libraries were sequenced with 28/10/10/90 
bp (base pair) cycles, whereas scATAC-seq libraries were se-
quenced with 70/8/16/70 bp read configurations. BaseCall files 
were used to generate FASTQ files with either cellranger mkfastq 
(v3; 10X Genomics) or cellranger- atac (v1; 10X Genomics) before 
running cellranger count with the cellranger-GRCh38-3.0.0 reference 
or cellranger-atac count with the cellranger-atac- GRCh38-1.1.0 
reference for scRNA-seq and scATAC- seq libraries, respectively.

Quality control, integration, and cell type annotation 
of tonsillar scRNA-seq
Gene expression count matrices from cellranger were processed 
with Seurat (v3.0.2) (66, 67) for genes detected in greater than three 
cells. Cell barcodes were filtered on the basis of the number of genes 
per cell (between 200 and 7500), percentage of mitochondrial reads 
per cell (0 to 20%), and the number of ADTs (less than 4000). Initial 
data quality control was performed separately on each biological 
sample. Data from technical replicate libraries were combined and 
normalized with SCTransform (68) before highly variable gene 
identification and principal component analysis (PCA) dimensional-
ity reduction. Jackstraw plots were visually assessed to determine 
the number of principal components (PCs) for subsequent analysis: 
Tonsil1 = 11, Tonsil2 = 13, Tonsil3 = 12. Preliminary clusters were 
identified (FindClusters; res = 0.8) before computing Uniform 
Manifold Approximation and Projection (UMAP) dimensionality 
reduction and identifying putative doublets with DoubletFinder (69) 
(sct = TRUE, expected_doublets = 3.9%). Preprocessed Seurat ob-
jects were then merged, with SCTransform normalization and PCA 
computation repeated using all variable features (except for IGKC, 
IGLC, IGLV, HLA, and IGH genes). Batch correction was performed 
with harmony (70). UMAP dimensionality reduction and cluster 
identification were performed (27 PCs, res = 0.8). Broad cell type 
cluster frequencies (as in Fig. 1B) from an independent scRNA-seq 
analysis of human tonsils (9) were obtained to compare cell type 
frequencies between patients of different ages. For higher-resolution 
analysis of B cells and T cells, data from B or T cells only were pro-
cessed separately, with repeated variable gene identification (re-
moving IGKC, IGLC, IGLV, HLA, and IGH) before repeated PCA, 
batch correction with Harmony, UMAP reduction, and cluster 
identification (30 PCs, res = 0.6 for B cells; 20 PCs, res = 0.6 for 
T cells). Gene expression markers for clusters were identified 
[FindAllMarkers; log fold change (FC) > 1, adjusted P < 0.05]. Im-
putation of gene expression counts (for plotting only) was per-
formed with MAGIC (71). Mean gene expression values per cell type 
per donor were used to calculate Spearman correlation coefficients 
between donors. Top 50 marker genes for the IFN_active B cell 
cluster were analyzed with the “Gene Set Query” function in the 
Autoimmune Disease Explorer (https://adex.genyo.es/) (11).

scATAC-seq quality control, batch correction, 
and integration with scRNA-seq datasets
Mapped Tn5 insertion sites (fragments.tsv files) from cellranger 
were read into the ArchR (v0.9.4) package (15) retaining cell bar-
codes with at least 1000 fragments per cell and a TSS enrichment 
score > 4. Doublets were identified and filtered (addDoubletScores 
and filterDoublets, filter ratio = 1.4) before iterative latent semantic in-
dexing (LSI) dimensionality reduction was computed (iterations = 2, 
res = 0.2, variable features = 25000, dim = 30). Sample batch correc-
tion was performed with harmony (70). Clustering was then performed 
on the harmony-corrected data (addClusters, res  =  0.8) before 
UMAP dimensionality reduction (nNeighbors = 30, metric = cosine, 
minDist = 0.4). One cluster enriched for high doublet scores (cluster 7) 
was removed. A preliminary cell type annotation was performed using 
gene accessibility scores of known cell type markers. Tonsillar scRNA- 
seq gene expression and metadata were integrated with tonsillar 
scATAC data with ArchR as previously described (15). To im-
prove cell type assignment of closely related cell types, we performed 
this step as a constrained integration, grouping GC B cell clusters, 
other B cell clusters, and non–B cell clusters together during 
addGeneIntegrationMatrix. The most common predicted cell type 
from the integration with RNA expression in each previously iden-
tified ATAC-seq cluster was used to annotate scATAC cluster identity. 
The quality of mapping between the RNA and ATAC was confirmed 
by identifying marker gene scores in scATAC clusters using 
getMarkerFeatures. In addition, cluster annotations derived from 
scATAC-only analysis were compared with annotations derived from 
scRNA-seq integration.

For high-resolution clustering of B and T cell subsets (Fig. 2), 
scATAC clusters identified as B cells or T cells after scATAC/
scRNA integration were subset and used to recompute iterative LSI 
dimensionality reduction as described above, except that 30 dimen-
sions were used for B cell analysis. Batch correction, cluster identi-
fication, and UMAP reduction were also performed as above, except 
that minDist = 0.1 (T cells) or 0.3 (B cells). Integration of B cell and 
T cell scATAC-seq datasets with gene expression and high-resolution 
cluster annotations was performed using the T cell– or B cell–specific 
scRNA-seq Seurat objects as previously described with addGene-
IntegrationMatrix in ArchR. Integration between assays was con-
strained with the following broad groups: B cell subgroups; plasmablasts, 
memory, naïve/activated and GC B cell clusters, T cells; CD8+/cytotoxic 
T cells and remaining T cell clusters. Mean peak accessibility scores 
per cell type per donor were used to calculate Spearman correlation 
coefficients between donors.

Peak calling and inference of TF activity in  
scATAC-seq datasets
Single-cell chromatin accessibility data were used to generate 
pseudobulk group coverages based on high-resolution cluster iden-
tities of scATAC-seq datasets before peak calling with macs2 (72) 
using addReproduciblePeakSet in ArchR. A background peak set 
controlling for total accessibility and GC content was generated using 
addBgdPeaks and used for TF motif enrichment analyses. Chromvar 
(73) was run with addDeviationsMatrix using the cisbp motif set to 
calculate enrichment of chromatin accessibility at different TF mo-
tif sequences in single cells. To identify correlations between the 
gene expression and TF activity, RNA expression projected into the 
ATAC subspace (GeneIntegrationMatrix) and the Chromvar devi-
ations (MotifMatix) were correlated using correlateMatrices. A 
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correlation of greater than 0.25 was used to determine whether TF 
expression and activity were positively correlated, and the list of 
correlated TFs was further subset by only including TFs that were 
expressed in at least 25% of cells in one or more cell type cluster. To 
analyze TF activity during B cell activation, GC entry, and plasma 
differentiation, the harmony-corrected B cell ArchR object was sub-
jected to “addTrajectory” from ArchR using the following user- 
defined trajectory as a guide: Naive → Activated → LZ GC → DZ 
GC → Plasmablasts. Gene expression and Chromvar deviation scores 
were correlated throughout pseudotime using correlateTrajectories 
(corCutOff = 0.25, varCutOff1 = 0.25, varCutOff2 = 0.25) and visual-
ized using plotTrajectoryHeatmap. “Peak-to-gene links” were cal-
culated using correlations between peak accessibility and integrated 
scRNA-seq expression data using addPeak2GeneLinks.

Integration of tonsil scATAC-seq and scRNA-seq with bone 
marrow and peripheral blood datasets
Published bone marrow and peripheral blood scRNA-seq and 
scATAC-seq (22) were aligned to the hg38 genome as described 
above. Additional hg38-aligned PBMC (peripheral blood mononuclear 
cell) scATAC-seq datasets were downloaded from 10X Genomics 
(https://support.10xgenomics.com/single-cell-atac/datasets).
Single-cell RNA sequencing
Cellranger gene expression matrices were used to sum and quantify 
mitochondrial gene expression before mitochondrial genes were 
removed from the gene expression matrices. Similarly, V, D, and J 
gene counts from T cell and immunoglobulin receptors were summed 
and removed from matrices. Closely related immunoglobulin H 
(IgH) constant region genes were also summed and removed (IgG1-4 
and IgA1-2). Cell barcodes expressing >200 genes and genes detected 
in >3 cells were then processed in Seurat (66, 67), with doublet pre-
diction using default settings with scrublet (74) (expected doublet 
frequency, 8 × 10−6 × 1000 cells). Predicted doublets were removed, 
and cell barcodes with <750 or >30,000 Unique molecular identifiers 
(UMIs), <500 or >6000 genes detected, or >20% mitochondrial gene 
expression were also removed. Individual datasets were then merged 
together, before normalization and batch correction with SCTransform 
(3000 variable features) and scoring of cell cycle phase with Seurat. 
“IGLsum,” “IGKsum,” “IGHG,” “IGHA,” “IGHM,” and “IGHD” 
were subsequently removed from highly variable gene list so that 
they would not contribute to downstream dimensionality reductions. 
PCA was then computed before UMAP reduction (n.neighbors = 20, 
min.dist = 0.35, dims = 1:50), nearest neighbor identification (Find-
Neighbours; dims = 1:50), and cluster identification (FindClusters; 
res = 1.75). Some additional subclustering was performed to better 
match cell type annotations from previous tonsil analysis (this study) 
and peripheral blood/bone marrow analysis (22). In general, previ-
ous annotations were closely adhered to and confirmed by exam-
ination of known cell type–specific gene expression markers. 
Differential gene expression between clusters was performed with 
FindAllMarkers or FindMarkers, with Padj < 0.05 and avg_logFC > 0.5. 
Imputation of gene expression counts (for plotting only) was per-
formed with MAGIC (71).
Single-cell assay for transposase-accessible chromatin using 
sequencing
Cellranger-derived fragments.tsv files of tonsil, peripheral blood, 
and bone marrow samples were processed with ArchR (15) 
(createArrowFiles; filterTSS = 6, filterFrags = 1000, minFrags = 500, 
maxFrags = 1e+05). Doublets were identified (addDoubletScores; 

k = 10) and removed with a filterRatio = 1.4, before additional 
filtering of cell barcodes to remove those with TSSEnrichment of 
<6, <103.25 or >105 fragments per barcode, nucleosome ratio of 
>2.5, ReadsInBlacklist of >800, or BlacklistRatio of >0.009. Preliminary 
LSI reduction was performed with addIterativeLSI [corCutOff  = 
0.25, varFeatures = 30000, dimsToUse = 1:40, selectionMethod = 
“var,” LSIMethod = 1, iterations = 6, filterBias = FALSE, cluster-
Params = list(resolution = c(0.1,0.2,0.4,0.6,0.8,1), sampleCells = 10000, 
n.start  =  10]. To account for differences in sequencing coverage, 
Harmony batch correction (corCutOff = 0.25, lambda = 0.75, sig-
ma = 0.2) was performed using library ID for tonsil samples, public 
10X Genomics PBMC datasets, and sample BMMC_D6T1, whereas 
the remaining samples from Granja et al. (22) were treated as a single 
batch. Preliminary identification of clusters (addClusters; res = 1.5) 
identified two poor-quality clusters enriched with doublets (C38, C7). 
These were removed from subsequent analysis. Quality-controlled 
datasets were then subjected to new LSI dimensionality reduction and 
Harmony batch correction with the same settings, before computing 
UMAP (RunUMAP; nNeighbors = 80, minDist = 0.45, seed = 1) 
and identifying cell type clusters with at least 80 cells (addClusters; 
method = “Seurat,” res = 1.1 or 1.5, nOutlier = 80). Broad lineages 
were first annotated to help with integration and transfer of scRNA 
expression. Normalized, noncorrected scRNA expression counts and 
annotated cell types were transferred to nearest neighbor scATAC 
cells using addGeneIntegrationMatrix [sampleCellsATAC = 10000, 
nGenes (RNA) = 4000, sampleCellsRNA = 10000] with a constrained 
integration to the following groups: CD4T_cells, CD8T_cells, GC_PB, 
MBC_B_cells, Myeloid_cells, NaiveAct_B_cells, NK, Peripheral_B_cells, 
Progenitors. Accessibility gene scores and transferred RNA expression 
counts were imputed with addImputeWeights (corCutOff = 0.25). 
Cell type clusters were carefully annotated with a combination of 
preexisting annotations from Granja et al. (22) and tonsil immune 
cell scATAC data (this study), transferred cell annotations from 
scRNA-seq, and examination of known subset markers.

Pseudobulk group coverages of cell type clusters were calculated 
with addGroupCoverages and used for peak calling using macs2 
(addReproduciblePeakSet in ArchR). A background peak set con-
trolling for total accessibility and GC content was generated using 
addBgdPeaks for TF enrichment analyses. Cell type–specific mark-
er peaks were identified with getMarkerFeatures with the Wilcoxon 
test and controlled for TSSEnrichment and fragment count. Peak 
accessibility was deemed significantly different between clusters if 
false discovery rate (FDR) < 0.05 and log2FC > 0.56. Peak-to-gene 
links were calculated using correlations between peak accessibility 
and integrated scRNA-seq expression data using addPeak2GeneLinks. 
Motif annotations and enrichment were calculated as described 
above with addMotifAnnotations and addDeviationsMatrix.

Analysis of fine-mapped GWAS variants
The results of two independent GWAS statistical fine-mapping studies 
(1, 27) (www.finucanelab.org/data) were combined. Probabilistic 
Identification of Causal SNPs (PICS) from both immune and non-
immune traits were included in analyses (1), whereas only SNPs from 
the study mapping the UK BioBank resource that were associated 
with a combined autoimmune disease trait (labeled as AID_UKBB) 
were included (27). This provided a total of 12,902 nonredundant 
SNPs, of which 9493 were significantly associated with disorders of the 
immune system. Fisher’s exact test was used to calculate enrichment 
of immune trait–associated SNPs and non–immune trait–associated 
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SNPs, against a background of common genetic variants (Common 
dbSnp153), in cell type–resolved peak sets or control background 
genomic intervals (either matched for GC content or distance to 
nearest TSS). Trait-specific enrichment analysis was performed 
using cell type–specific marker peaks (FDR < 0.05, log2FC > 0.25), 
with a background SNP set comprising all fine-mapped SNPs 
across all traits. Cell type and tissue specificity of accessibility at 
SNPs were determined by the presence or absence of a scATAC 
peak in each cell type, with cell type clusters regrouped on the 
basis of enrichment in tonsils, peripheral blood, or bone marrow. 
Of the immune-related SNPs that overlapped with accessible chro-
matin peaks (1213, 12.8%), we subsequently identified 460 unique 
immune-linked SNPs that fell within 358 chromatin-accessible re-
gions for which a significant Peak2Gene link had been identified to 
at least one gene (P2G_Correlation > 0.4; FDR < 0.01). Mean normal-
ized chromatin accessibility counts (scATAC) and RNA expression 
counts for linked genes (scRNA) for each cell type cluster were cal-
culated and used for heatmap visualization, whereas pyGenome-
Tracks was used to visualize grouped scATAC pseudobulk tracks 
(75). Linkage disequilibrium scores of top candidate SNPs were cal-
culated using LDlink across all populations (76).

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/sciimmunol.abh3768
Figs. S1 to S19
Tables S1 and S2
Data file S1 to S14

View/request a protocol for this paper from Bio-protocol.
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Decoding autoimmune genetic risk
Autoimmunity involves loss of immune tolerance that is normally maintained, in part, through tight regulation of
germinal center (GC) responses. King et al. used single-cell sequencing to examine the gene expression and
chromatin landscape of GC-rich human tonsils and predict the cell type–specific regulatory potential of autoimmune
risk-associated genetic variants. After mapping tonsillar immune cell states and comparing with those found in bone
marrow and peripheral blood, they found that fine-mapped autoimmune-associated SNPs were enriched in accessible
chromatin detected only within tonsils, including GC-specific regulatory elements of IL21/IL21R, IL4R, and BCL6 and
the transcription factors POU2AF1 and HHEX. This resource provides a cellular map of putative targets of genetic
variation in autoimmune disease and highlights a key role for GC-specific regulation.
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