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RNA-binding proteins (RBPs) control the fate of nearly every
transcript in a cell. However, no existing approach for studying
these posttranscriptional gene regulators combines transcriptome-
wide throughput and biophysical precision. Here, we describe an
assay that accomplishes this. Using commonly available hardware,
we built a customizable, open-source platform that leverages the
inherent throughput of Illumina technology for direct biophysical
measurements. We used the platform to quantitatively measure
the binding affinity of the prototypical RBP Vts1 for every
transcript in the Saccharomyces cerevisiae genome. The scale and
precision of these measurements revealed many previously un-
known features of this well-studied RBP. Our transcribed genome
array (TGA) assayed both rare and abundant transcripts with equiv-
alent proficiency, revealing hundreds of low-abundance targets
missed by previous approaches. These targets regulated diverse
biological processes including nutrient sensing and the DNA dam-
age response, and implicated Vts1 in de novo gene “birth.” TGA
provided single-nucleotide resolution for each binding site and de-
lineated a highly specific sequence and structure motif for Vts1
binding. Changes in transcript levels in vts1Δ cells established the
regulatory function of these binding sites. The impact of Vts1 on
transcript abundance was largely independent of where it bound
within an mRNA, challenging prevailing assumptions about how
this RBP drives RNA degradation. TGA thus enables a quantitative
description of the relationship between variant RNA structures, af-
finity, and in vivo phenotype on a transcriptome-wide scale. We
anticipate that TGA will provide similarly comprehensive and quan-
titative insights into the function of virtually any RBP.
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RNA-binding proteins (RBPs) constitute 5–10% of the
eukaryotic proteome (1–3) and collectively govern the lo-

calization, translation, and decay of virtually every transcript (4–6).
Despite the ubiquity of RBPs and their central importance in
gene regulation, decoding the links between RNA primary se-
quence and its cadre of regulators remains a major unresolved
challenge (7). Current approaches for characterizing RBP
function generally involve trade-offs between throughput, com-
prehensiveness, and quantitative precision. Biophysical measure-
ments can be made with targeted biochemical approaches such as
electrophoretic mobility shift assays (EMSAs) or fluorescence
polarization (FP) (8, 9), but these methods can only interrogate
known RNA–protein interactions and are inherently low-
throughput. Selection-based approaches [e.g., in vitro selection,
high-throughput sequencing of RNA, and sequence-specificity
landscapes (SEQRS)/RNA bind-n-seq (RBNS)] achieve higher
throughput, but these techniques remove binding sites from their
natural sequence context and identify “winners” based on more
than simple affinity (10). Transcriptome-wide methods, which often
use cross-linking and immunoprecipitation [e.g., photoactivatable

ribonucleoside-enhanced cross-linking and immunoprecipitation
(PAR-CLIP), high-throughput sequencing of RNA isolated by
cross-linking and immunoprecipitation (HiTS-CLIP), RNA im-
munoprecipitation (RIP-chip/seq), individual-nucleotide resolu-
tion cross-linking and immunoprecipitation (iCLIP), RNA
tagging, targets of RNA-binding proteins identified by editing
(TRIBE)] (11–16), have yielded many insights. However, they do
not generally provide quantitative information about relative
affinity and often suffer from additional drawbacks. First, they
generally require high-quality, specific antibodies and are thus
not scalable to many proteins of interest. Second, binding targets
must be appreciably expressed in an individual cell type and
condition to be observed. Third, with notable exceptions (e.g.,
iCLIP), the sequence resolution of these techniques typically
precludes nucleotide-level resolution of binding motifs. Finally,
differences in cross-linking efficiency and transcript abundance,
both of which can vary over many orders of magnitude, are sig-
nificant sources of bias in transcriptome-wide approaches (17–19).
We overcame these biases with an approach that, for rare and

abundant substrates alike, combines the genome-wide scale of
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cross-linking methods with the quantitative precision of targeted
biochemical experiments. We applied our method to character-
ize the interactions of the conserved RNA binding domain of a
sequence- and structure-specific RBP (Vts1 in Saccharomyces
cerevisiae; Smaug in metazoans). We chose to study Vts1 because
of its biological significance as a key regulator of RNA stability in
development (20) and because decades of prior study provided a
gold standard against which to benchmark our results (21–27).

Results
An Open-Source Platform for Systems Biochemistry. Our approach
directly harnessed the throughput of Illumina sequencing, using the
MiSeq sequencing flow cell itself as a platform for high-throughput
biochemistry. Although the flow cell provides an ideal substrate for
massively parallel experiments, current Illumina instruments are not
amenable to customization (28, 29). Previous methods such as RNA
on a massively parallel array (RNA-MaP) and high-throughput
sequencing–RNA affinity profiling (HiTS-RAP) overcame this is-
sue by operating on the now antiquated Genome Analyzer II. Here,
we built our own hardware platform that enables custom bio-
chemical experiments to be performed on modern sequencing
chips. We developed a high-throughput imaging station, combining
hardware components from an Illumina Genome Analyzer II with
optimized optics, fluidics, and temperature control systems (Fig.
1A). We integrated these hardware components into a fully pro-
grammable interface (Fig. S1A), creating a modular design that
provides a blueprint for future applications to interrogate other
classes of biophysical interactions. To enable transfer of the tech-
nology to other laboratories, we integrated our imaging platform
with sequencing flow cells produced by a benchtop sequencer

(MiSeq), using cross-correlation methods to identify the physical
location of each sequenced cluster with submicron accuracy (Fig. S1
B–F). This exquisite spatial resolution allowed us to link images
generated on our imaging station to specific nucleotide sequences
obtained on a commercial sequencer, decoupling the instrument
used for sequencing from that used to carry out custom bio-
chemistry applications. Our imaging station thus provides an open
platform for systems biochemistry that we expect will encourage
further methodological development.
We next densely populated a MiSeq flow cell with an S. cerevisiae

genomic DNA library. During library construction, we incorporated
an Escherichia coliRNA polymerase (RNAP) promoter and RNAP
stall sequence. We then transcribed each DNA molecule into a
tethered RNA transcript (Fig. 1A, Figs. S2 and S3A (29, 30), and
Materials and Methods). This transcribed genome array (TGA)
displays the entire potential RNA sequence space of S. cerevisiae in
a highly redundant and unbiased manner; each nucleotide is rep-
resented at a mean coverage of >30× in overlapping transcripts of
∼100–300 nt (Fig. 1B and Fig. S3B). Moreover, the enzymatically
transcribed fragments can adopt physiologically relevant folds that
are dependent on local sequence context (see below).

A Multitude of Additional Binding Targets. We used this platform
and a workflow that spanned just 36 h to make >107 measure-
ments of binding for Vts1 across a ∼100-fold concentration
gradient (Fig. 1 C–E). Using these measurements, we identified
325 RNAs that reproducibly bound Vts1 at physiological protein
concentrations (∼130 nM) (31) across the many redundant
clusters on the TGA. These apparent affinities were comparable
to known Vts1 target elements that we doped into our library

Fig. 1. A quantitative method for rapid, unbiased
measurements of RBP affinity and kinetics across 107

substrates. (A) Workflow for TGA. On the MiSeq, a
dense array of clonal clusters is produced as part of
the standard sequencing by synthesis workflow
(Top). Then, after moving the flow cell to a custom
imaging station, clusters serve as a template for in
situ generation of RNA (Bottom), enabling quanti-
tative measurement and analysis of 107 binding ex-
periments in less than 36 h. (B) Genome browser
track showing unique overlapping and strand-
specific Vts1 binding sequences covering each
Vts1 binding site (Top) and all candidate RNA se-
quences generated by the TGA (Bottom) for a low-
and high-abundance transcript. (C) Raw images of
fluorescently labeled Vts1 bound to a weak affinity
(TOR2, in blue) vs. a strong affinity (SRE3, in red)
substrate. The first image in each series shows the
RNA clusters, and subsequent images show Vts1
binding at increasing concentrations. (D) Quantifica-
tion of single-cluster image series from C. All reported
values are median apparent Kd estimates averaged
across multiple independent binding curves (nSRE3 =
156; nTOR2 = 14; see SI Materials and Methods for
further discussion). (E) Distribution of affinity mea-
surements across independent clusters for a strong
(SRE3)- and weak-affinity (TOR2) target (kernel den-
sity estimate). (F) Comparison of bulk solution affinity
measurements and TGA-derived measurements [lin-
ear fit, slope = 1, 95% confidence interval (CI)].
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(0.1%) as a positive control for RNA folding and protein
binding. They also were concordant with published bulk solu-
tion measurements (21, 22, 27) (Fig. 1F; see Materials and
Methods for further discussion). Using the RNAcontext algo-
rithm (32), we constructed a de novo binding motif from the 325
Vts1 targets. This analysis revealed two conserved features: (i) a
robust 11-nt motif and (ii) a strong enrichment for stem loop
structure (Fig. 2A and Fig. S4 A and B). Our data thus reiterate
yet significantly expand the consensus CNGGN0–3 hairpin loop
defined by decades of targeted biochemical studies in a wide
range of organisms (20–22) (Fig. 2A).
We next explored the specific structural features that drive

Vts1’s interactions with its target sequences. If Vts1 indeed binds
a stem loop structure, as has been hypothesized from studies of
individual substrates (33), nucleotides within the stem should
covary in a manner that preserves base pairing. We therefore
constructed a normalized covariation matrix spanning the core
0GCNGG4 motif and adjacent bases (Fig. 2B and Fig. S4 C–E).
This analysis confirmed our stem loop prediction and, without
any prior assumptions about RNA structure, allowed identifi-
cation of the Vts1 binding motif at single-nucleotide resolution
for each of its targets in the transcriptome (see Materials and
Methods for further discussion). As a negative control, we tran-
scribed and folded the entire yeast genome in silico (Fig. S5).
The consensus stem loop structure was highly enriched in our
binding targets compared with the rest of the transcriptome
(Fig. 2C).

Structural Requirements for Vts1 Binding. Our known Vts1 target
controls included three variants of the Smaug recognition ele-
ment (SRE), a widely used model Vts1 target. We compared
these targets to investigate the sequence and structural features
that modulate binding. These variants shared identical loop

residues but differed in stem composition (SRE1–3 in Fig. 3 A
and B). Although no stem composition preferences have pre-
viously been reported and no direct stem–Vts1 contacts are ob-
servable in the available structures (21, 27), TGA allowed us to
observe approximately 10-fold stronger binding under these
conditions to one of these variants (SRE3) (Fig. S6). We hy-
pothesized that the enhanced apparent affinity of SRE3 arose
from a G:C base pair at the base of the loop with guanosine on
the 5′ side (position G0), a feature not shared by the other two
SREs (SRE3 is not predicted to be more stable than SRE1 or
SRE2). Among the 325 endogenous binding targets defined by
TGA, ∼60% also had a G:C loop closure [Fig. 3C; P < 10−70 by
binomial cumulative distribution function (CDF)]. Collectively,
these targets bound Vts1 more strongly than those without G:C
closures (Fig. 3C; P = 5 × 10−6) (20). In contrast, the inverse C:G
base pair was represented in only ∼3% of targets (P < 10−14 by
binomial CDF). These bound Vts1 more weakly than average,
although many such stem loops in the transcribed genome likely
did not bind Vts1 at all. Based on the NMR structure of Vts1
[Protein Data Bank (PDB) ID code 2ESE], this preference may
arise from interactions of G0 with a highly conserved lysine
residue within Vts1 (Lys467, Fig. S7B). Indeed, Lys467 mutant
proteins exhibit reduced substrate binding (21, 22). Among all
Vts1 targets, our data revealed that among endogenous targets
C:G base pairing between loop positions 1 and 4 is preferred
(∼87% of targets) and correlates with the strongest apparent
affinities (Fig. 3D). Following position 4, a variable (0–3 nt)
uridine-rich bulge had minor discernable effects on apparent
affinity; a 1-nt bulge was most common in Vts1 targets (Fig. 3E,
Movie S1, and Materials and Methods).

Functional Consequences of Vts1 Binding. Next, we sought to de-
termine whether the Vts1–RNA interactions identified by TGA
had functional consequences in vivo, relying on Vts1’s role in
targeting its substrates for decay (20, 24). To do so, we per-
formed high-coverage, stranded RNA-sequencing data on both
S. cerevisiae wild-type and Vts1 knockout cells (vts1Δ). Because
TGA defines binding targets in a purely in vitro context, in the
absence of transfactors, posttranscriptional base modifications,
and without regard to transcript localization or abundance, one
might expect many of our TGA-defined targets to behave dif-
ferently in the complex environment of a cell. However, we
found a robust phenotypic signature for TGA-defined Vts1 tar-
gets. As a class, they were more highly expressed in vts1Δ cells
than in wild-type cells (Fig. 4C, P = 1.1 × 10−6 by permutation
test). Target transcripts showing more than twofold increase in
expression in vts1Δ cells were significantly stronger binders (P =
0.019 by bootstrap test), highlighting the unique quantitative
capability of TGA to systemically link biological phenotypes with
fundamental biophysical parameters (Fig. 4A). Conversely, some
up-regulated transcripts were not identified as Vts1 targets by
TGA. These could in principle be false negatives. However, none
of these up-regulated transcripts were predicted by in silico
folding to contain a Vts1 binding motif, making it likely that
many were perturbed by indirect effects from true Vts1 sub-
strates. As a whole, computationally predicted Vts1 binding sites
showed modest overlap with TGA targets (48/296), but se-
quences that showed no binding in our in vitro TGA assay
exhibited no up-regulation in vts1Δ cells (P < 0.0001, Welch’s
t test; Fig. S7 F and G).
We also compared the Vts1 substrates identified by TGA to

those determined in two independent RNA immunoprecipita-
tion (RIP-chip) studies (21, 23) (Fig. 4B and Fig. S6E). The two
RIP-chip experiments had poor overlap with each other (19.6%
or 42 shared substrates among 214 total). RIP-chip targets
missed by TGA were often very abundant, poor matches for the
identified binding motif (Fig. S5A), and showed no change in
expression between wild-type and vts1Δ cells (Fig. 4 C and D).

Fig. 2. Genome-wide, single-nucleotide resolution of Vts1 binding targets
defines a consensus structural motif. (A, Top) De novo motif search based on
325 genomic target regions of ∼80 nt each. The nucleotide positions are
marked on Top, and the asterisk (*) indicate nucleotides known from prior
literature consensus. (B) Covariation matrix where each element (i, j) indi-
cates an enrichment score for base-pairing interactions between residues i
and j (Materials and Methods). The diagonal density in the matrix defines
the residues in the hairpin stem. (C) Base-pairing probabilities for all 325
Vts1 targets via NUPACK folding algorithm. (D) NMR structure of Vts1 bound
to consensus RNA sequence (PDB ID code 2ESE) supports sequence and
structure predictions from TGA.
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Because these targets exhibited no functional repression by
Vts1 in vivo, they could represent false positives inherent to
immunoprecipitation methods. Targets common to both TGA
and RIP-chip exhibited a stronger degree of up-regulation than
either method alone, highlighting a potential synergy between
complementary methods for studying RBP function (Fig. S7C).
TGA analysis also identified 145 binding targets that prior

studies did not (325 vs. 180) (21, 23, 27). These targets included
many key regulators of metabolism, cell cycle, and DNA repair
(e.g., Tor2, Apc1, Polς) and they clustered into distinct func-
tional subnetworks, for example, controlling nutrient sensing and
the DNA damage response (Fig. S8A). Because we identified
these binding events in the absence of additional RBPs and other
factors inherent to the cellular environment, we examined their
functional relevance. Most of these transcripts bound Vts1
strongly and harbored robust consensus motifs. Virtually all were
expressed at low levels in standard growth conditions, high-
lighting a distinct advantage of TGA’s equimolar presentation of
the entire potential RNA landscape (Fig. 4D and Fig. S7D).
Critically, these targets were expressed at higher levels in vts1Δ
cells (Fig. S7E), providing strong evidence that they were bona
fide targets in vivo.
We picked two TGA-specific targets to investigate in greater

depth in vivo. TGA identified the RNA encoding the nutrient
sensing protein Tor2, but not its paralog Tor1, as a Vts1 target.
The Vts1 binding site in TOR2 fell within a region that encodes
an identical amino acid sequence in both paralogs. However,
several synonymous mutations abolished the Vts1 binding site in
TOR1 (Fig. 4E). Consequently, in vts1Δ cells, there was an in-
crease in TOR2 expression, whereas TOR1 expression was un-
changed (Fig. 4F). Because the TOR2 gene is essential, we used a
tor2 decreased abundance by mRNA perturbation (DAmP)
partial loss-of-function allele to reduce its expression while
maintaining cell viability (34). Cells harboring the tor2-DaMP
allele were sensitive to the antifungal drug fluconazole, whereas
those harboring a vts1 deletion (vts1Δ) were resistant. If tor2-
DaMP and vts1Δ acted via independent mechanisms, the com-
bined double-mutant vts1Δ tor2-DaMP cells should display an
intermediate phenotype. However, we observed a strong epi-
static relationship between the two genes: vts1Δ tor2-DaMP cells
grew very similarly to tor2-DaMP single mutant cells (Fig. 4G). In
contrast, mutants in vts1 and tor1 exhibited no epistasis (Fig. 4H).
We next extended our analysis to Rev3, the catalytic subunit of
DNA Polς, a translesion polymerase responsible for most mu-
tagenesis in eukaryotic cells and an emerging therapeutic target

for chemoresistant malignancies (35). As others have reported,
the rev3Δ cells were sensitive to DNA-damaging agents (Fig. 4I).
vts1Δ cells, in contrast, were more resistant than wild-type cells.
The double-mutant vts1Δ rev3Δ cells phenocopied the rev3Δ
single mutant, demonstrating negative epistasis between the two
genes. These robust genetic interactions demonstrate the power
of TGA to reveal previously unknown regulatory relationships
for even an exceptionally well-studied RBP.

Vts1 and the Birth of New Genes. Nearly one-third of the
Vts1 targets we discovered fell in intergenic sequences. We
wondered whether any of these sites might represent functional
RBP targets. The S. cerevisiae genome encodes over 100,000
transcribed nongenic sequences (protoORFs). Only a small
fraction of these sequences are detectably translated, but many
are transcribed at low or moderate levels; these “protoORFs”
have been hypothesized to provide a fertile evolutionary testing
ground for the birth of new genes (36). Although previous RIP-
chip experiments were incapable of detecting protoORF targets
for various technical reasons, we asked whether TGA could.
Indeed, the vast majority of intergenic TGA targets were con-
tained in previously defined protoORFs (73%, P < 10−19, Pois-
son CDF). We observed no binding to other classes of noncoding
RNAs, such as tRNAs, small nucleolar RNAs, or rRNA. The few
remaining targets fell in sequences that rarely or potentially
never exist as RNA within a cell. These sequences may illustrate
the possibility for the Vts1 regulatory motif to arise purely through
drift, in the absence of any selection on a functional transcript.
Vts1 binding sites were even more strongly enriched among longer
(>300 nt) protoORFs (P = 0.023, Poisson CDF), which some have
argued are more “evolutionarily developed” and are more likely to
be translated (36) (Fig. 4L).
To determine whether Vts1 regulates protoORF targets in

living cells, we again examined our high-coverage, stranded
RNA-sequencing data from vts1Δ and wild-type cells. Strikingly,
Vts1-targeted protoORFs were as strongly regulated by Vts1 as
canonical ORFs, which is remarkable given their recent evolu-
tionary origins (Fig. 4J; P = 0.036, bootstrap distribution). We
obtained similar results for a set of randomly selected proto-
ORFs not detected in our RNA-seq experiment via quantitative
RT-PCR (qRT-PCR) (Fig. S8B). We propose that acquisition of
a Vts1 binding site allows a nascent gene to easily acquire a regu-
lated expression profile downstream of the complex developmental
pathways that regulate Vts1/Smaug itself.

Fig. 3. Structural determinants of affinity and kinetics. (A) Cartoon representations of the canonical Smaug recognition elements (SREs) and SSA1 target
region. (B) Median apparent Kd (Materials and Methods) of the canonical SREs reveal that the two elements derived from the nanos 3′-UTR are weaker
binders than the synthetic stem loop SRE3 and comparable to genomic target SSA1 (nSRE1 = 748; nSRE2 = 99; nSRE3 = 156; nSSA1 = 10, 95% CI). (C–E) Relationship
between binding affinity and various hairpin structures classified by loop closure bases (C), base identity in positions 1 and 4 of the loop (D), and U-rich bulge
presence and length (E) across all genomic targets identified by TGA.
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Acquisition and loss of Vts1 binding sites was not confined to
nascent genes alone—among paralogs in the yeast genome, we
found 40 pairs of paralogs where only one of the two paralogs
contains a Vts1 binding site. In all cases, the nonbinding paralog
mutated critical elements of the core Vts1 binding motif. We
also discovered three pairs of paralogs that contained Vts1
binding sites in entirely different regions of the transcript. Thus,
gain and loss of Vts1 binding sites over evolutionary time can
provide a route for diversifying gene duplications and rewiring
regulatory networks.
Finally, because TGA provides nucleotide-level resolution, we

investigated how the location of a Vts1 binding site within a
message influences transcript levels. In light of a large body of
literature implicating Vts1 binding in transcript deadenylation
via recruitment of the CCR4-NOT1 complex to 3′-UTRs (24,
37), it is striking that only seven 3′-UTR binding sites occur

across the entire transcribed genome array. Indeed, Vts1 binding
sites were strongly enriched in 5′-UTRs but not in 3′-UTRs (P =
0.0067, P = 0.31, Poisson CDF; Fig. 4L). The enrichment in
5′-UTRs could point to the importance of Vts1 in the regula-
tion of translation initiation (25). However, our genome-wide,
nucleotide-resolved dataset established that the impact of
Vts1 on transcript abundance is largely independent of where it
binds within an mRNA (Fig. 4K). We conclude that Vts1 binding
outside of the 3′-UTR may be the predominant mode by which
this RBP regulates gene expression.

Discussion
TGA combines the best features of many separate methods for
studying RNA–RBP interactions and complements many of their
individual weaknesses (Table 1) (10). Like RIP- and CLIP-seq, it
identifies a transcriptome-wide compendium of functional binding

Fig. 4. TGA reveals evidence of positive selection
and enrichment in protogenes. (A) Targets with
more than twofold increase in expression upon vts1
deletion (purple; smoothed density estimation, n =
20) have generally lower apparent Kd compared
with all Vts1 targets identified by TGA (gray). (B and
C) TGA targets (blue, nonintergenic, n = 205) are
enriched vts1Δ cells compared with wild-type cells.
RIP-chip targets not detected in TGA [red, n = 108,
Hogan et al. (23); green, n = 43, Aviv et al. (21)] do
not show enhanced expression in vts1Δ cells. The
y axis in C is in log2 scale. (D) RNA abundance for
TGA targets vs. RIP-chip targets. (E) Vts1 binding site
is present in tor2 but not in its homolog tor1. (F) tor2
is more highly expressed in vts1Δ vs. wild type. tor1
is not (two biological replicates each; SEM). (G and H)
tor2 exhibits strong negative epistasis with vts1. tor1
does not (4–16 technical replicates; SEM; dotted line
represents no epistasis expectation; Materials and
Methods). (I) rev3 shows negative epistasis with vts1
under DNA damage conditions. (J) RNA-seq expres-
sion for protoORF targets. (K) Metagene showing the
distribution of Vts1 binding targets by position in
ORF. Position in ORF is not correlated to up-regulation
in vts1Δ cells. (L) Enrichment analysis based on
equimolar representation of all genomic sequences.
Vts1 targets are enriched in 5′-UTRs and but not in
3′-UTRs. Vts1 targets are also highly enriched on the
template strand compared with the nontemplate
strand (P < 10−16, binomial CDF).

Table 1. Summary characteristics for various methods of studying RNA–protein interactions [adapted from Campbell
and Wickens (10)]

Method
De novo motif
ID (length)

Measurement of
equilibrium Kd

Transcriptome-wide
analysis

Unbiased equimolar
transcriptome In vivo context

TGA Yes (11) Direct Yes Yes No
HiTS-RAP Direct Direct No No No
CLIP-seq No No Yes No Yes
RIP-chip/seq Yes Indirect Yes No Yes
SEQRS Yes (3) Correlated No No No
RNA tagging Yes Indirect Yes No Yes
EMSA No Direct No No No
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targets. Like EMSA and FP, TGA can provide estimates of
binding parameters for each target. Like selection-based methods
(SEQRS/RBNS), de novo primary sequence and structural motifs
are recovered in a single experiment (38, 39). Last, unlike other
methods, TGA enables a quantitative description of the relation-
ship between variant RNA structures, affinity, and in vivo pheno-
type irrespective of transcript abundance. Although TGA is at its
core an in vitro measurement between a recombinant protein and a
highly redundant array of RNA fragments, our data demonstrate
that experimental evaluation of sequence- and structure-specific
binding synergistically complements in vivo measurements of RBP
occupancy.
Our technology establishes a flexible platform for high-throughput

biochemistry that can be easily extended to any nucleic acid
template (e.g., the human exome), used to study diverse types of
biochemical interaction (e.g., RNA-guided nucleases), and adap-
ted to even higher- throughput systems (e.g., HiSeq). Our appli-
cation of TGA to Vts1 (i) doubled the number of known Vts1
targets, identifying key regulators of cell cycle and the DNA
damage response; (ii) provided a marked improvement in the
specificity of the protein’s binding motif; (iii) generated struc-
tural insight into its ability to discriminate among targets; and
(iv) suggested that Vts1 may have a role in regulating the transcripts

of evolutionarily nascent genes. The breadth of findings stemming
from analysis of an already exceptionally well-studied RBP sug-
gests that TGA technology will be similarly enabling for other
RBPs and establishes a paradigm for quantitative, ultrahigh-
throughput biochemistry.

Materials and Methods
Detailed information is provided in SI Materials and Methods. After sequencing,
additional chemistry was performed on theMiSeq flow cell to generate RNA in a
manner similar to RNA-MaPmethodology (29). A custommicrofluidic station was
built from repurposed components harvested from an Illumina Genome Ana-
lyzer II (GAII) (see Table S1 for parts list). Vts1 recombinant protein was purified
from E. coli. Biological validation of TGA hits was performed in S. cerevisiae.
Additional tables, example images, and code can be found at https://www.
dropbox.com/s/juo3bnow2wdd8zq/Supplemental%20Data.zip?dl=0.
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SI Materials and Methods
Strains Used in This Study. The strains used in this study are as
follows: query strain: S. cerevisiae BY4742 MATα vts1Δ::NatMX
can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0
(40); single deletion strains: BY4741 MATa vts1::KanMX his3Δ1
leu2Δ0 ura3Δ0 met15Δ0; BY4741 MATa tor1::KanMX his3Δ1
leu2Δ0 ura3Δ0 met15Δ0; BY4741 MATa rev3::KanMX
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0; DaMP strain: BY4741 MATa
tor2-DaMP his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 (34); double deletion
strains: BY4741 MATa vts1Δ::NatMX tor1::KanMX can1Δ::
STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0; BY4741
MATa vts1Δ::NatMX tor2-DaMP can1Δ::STE2pr-Sp_his5 lyp1Δ
his3Δ1 leu2Δ0 ura3Δ0 met15Δ0; BY4741 MATa vts1Δ::NatMX
rev3::KanMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0
ura3Δ0 met15Δ0.

Construction of a Custom Microfluidic Imaging Platform. Internally,
the MiSeq determines the sequence of each cluster by fluores-
cence imaging of reversibly labeled and 3′-terminated nucleotides
that are serially incorporated by a DNA polymerase as templated
by library constructs. Randomly arrayed clonal clusters on the
flow cell are imaged in “tiles,” where each tile corresponds to a
field of view along the length of the flow cell lane (41). Because
the MiSeq is not amenable to custom protocols, we use the fact
that tile number and cluster position are reported along with
each sequence to enable downstream assays that are read out
on a separate, custom-built instrument, using the previously se-
quenced MiSeq flow cell as an ultrahigh-throughput array and a
substrate for subsequent in situ RNA generation.
The custom imaging station was built from repurposed com-

ponents harvested from an Illumina Genome Analyzer II (GAII).
The GAII is a previous-generation sequencer that, due to limi-
tations in read length, speed, reagent availability, as well as the
large amount of hands-on time required for operation, is all but
defunct and is rapidly being phased out in favor of newer se-
quencers that are more convenient and economical. Although
pioneering sequencing-flow cell-array experiments done by our
group and others have used the GAII as both a platform for
sequencing and subsequent assays (28, 29, 42), the Genome
Analyzer is likely not a practical option for further development
of these high-throughput experiments. However, as outdated
GAII sequencers are decommissioned and often available for
repurposing, many high-quality components still within their
usable service life are readily available.
We built an instrument that accepts previously sequenced

MiSeq flow cells, interfacing with the fluidics, allowing thermal
control, and enabling fluorescence imaging. Using separate in-
struments for sequencing and downstream assays allows maximum
flexibility for custom protocols, for example, RNA generation and
binding. This instrument was built combining many components
from used GAII instruments with custom-engineered retrofit
components, electronics, and software (Table S1).
Just as in the MiSeq, our custom imaging station images the

flow cell in tiles along the length of the lane. To associate the
signal from each cluster in the image with its corresponding se-
quence, cross-correlation methods are used to register tile images
from the custom imaging station to the sequence data positions
for each tile from the MiSeq. However, nonaffine optical aber-
rations between the two platformsmake simple translation (by the
offset indicated by the cross-correlation peak) insufficient for
precise registration. To this end, we use a hierarchical registration
method where the entire image is first globally registered to the

data, and then the data within a progressively finer grid of subtiles
are each individually registered to the subimage in their local
neighborhood. In this study, we did two levels of hierarchical
registration, a coarse registration with a 4 × 4 grid followed by a
fine registration with a 16 × 16 grid. After this progressive dis-
crete registration is complete, a continuous function describing
the aberrations between platforms in both x and y is fit to a
quadratic surface:

fΔxðx, yÞ = Axy2 +Bxx2 +Cxyx+Dxy+Exx+Fx,

fΔyðx, yÞ = Ayy2 +Byx2 +Cyyx+Dyy+Eyx+Fy.

Together, these functions constitute a continuous offset map,
which is then applied to the data to achieve precise alignment
of sequence data and experimental images.

Library Design and Construction. We used a standard Nextera li-
brary preparation kit (Illumina) to enzymatically fragment the
S. cerevisiae genome into 80- to 300-nt fragments. We used PCR
to attach an 8-nt i5 barcode, an E. coli RNA polymerase (RNAP)
promoter, an RNAP stall sequence, and Illumina sequencing
adapters (Fig. S3A). This initial PCR was run with 0.5 μM of
each primer (IDT) and stopped before completion. The con-
centration of DNA was quantified via qPCR and the PCR was
further amplified to a final concentration of 4 nM using short P1/
P2 primers that anneal to the 5′ ends. The final PCR was puri-
fied using AMPure XP beads (Beckman Coulter). A conceptu-
ally similar PCR protocol was used to amplify each of the 3 SRE
variants from a parent vector kindly provided by C. Smibert,
University of Toronto, Toronto (https://benchling.com/s/EHytJEzc/
edit). Primers were chosen such that an additional Nextera adapter
sequence was added on each end to match the fragmented genomic
library. The SRE library preparation was added to the genomic
library prep at a molar ratio of 1:1,000.

Sequencing Amplified Libraries. The library was sequenced using a
paired-end 2 × 75 MiSeq Reagent Kit, version 3, at a cluster
density of 946,000 per mm2 with 95% clusters PF and 97% ≥
Q30. The flow cell was removed from the sequencer before the
standard postrun wash step and stored in its original storage
buffer for up to 1 mo. All FASTQ files from individual barcodes
were provided as input for the software analysis pipeline.

Generation of a Transcribed Genome Array. Double-stranded DNA
(dsDNA) clusters on the MiSeq flow cell were denatured with
formamide at 55 °C to remove all fluorescent nucleotide analogs.
Following denaturation, we confirmed no residual fluorescence
from the sequencing. To regenerate dsDNA with standard nu-
cleotides, we annealed a 5′ biotinylated primer to the 3′ se-
quencing adaptor and resynthesized dsDNA using Klenow DNA
polymerase (1× NEB buffer 2, 250 μM dNTP mix, 0.1 units/μL
NEB Klenow, 0.01% Tween 20) incubated for 30 min at 37 °C.
We then flowed in 1 μM RNase-free streptavidin to bind to the
5′ biotinylated primer and passivized with a 5 μM biotin wash. To
block and quantify all potential single-stranded DNA, we
annealed an Alexa 647-labeled oligo complementary to the
constant stall sequence. As a control, we flowed in 10 nM Vts1 at
this stage and observed no binding to DNA. We then incubated
the dsDNA with a transcription initiation mix containing sigma-
saturated RNAP and 3 nt at 2.5 μM (1× T7A1 reaction buffer
[20 mM Tris, 20 mM NaCl, 7 mM MgCl2, 0.1 mM EDTA, 0.1%
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BME, 0.03 mg/mL BSA, 2.14% (vol/vol) glycerol], 25 μM of each
NTP [ATP, GTP, and UTP], 125 U/mL RNAP [sigma-saturated
holoenzyme from NEB], and 0.01% Tween-20) for 10 min at
37 °C. In this buffer, RNAP initiated onto dsDNA clusters and
progressed to the first cytosine where it stalled. These initial
26 bases of transcription were sufficient to keep the RNAP
bound to the dsDNA, but short enough such that the footprint
from the stalled RNAP occluded the initiation site from addi-
tional RNAP. Excess RNAP was washed from solution with the
original transcription initiation mix minus RNAP. Finally, ex-
tension buffer (1 mM all four NTPs in 1× T7A1 reaction buffer)
was added for 5 min at 37 °C to allow transcription to proceed.
After transcription, RNAP was terminally stalled at the biotin–
streptavidin roadblock, generating a stable RNAP-mediated
DNA–RNA tether.

Vts1 Protein Purification, Labeling, and Quantification. Gibson
cloning was used to insert the RNA binding domain of Vts1 (442–
523) into a pET vector containing C-terminal SNAP and 6×His
tags (https://benchling.com/s/yBCqWM/edit). The resultant plas-
mid [Vts1(442–523)-SNAP-His6] was transformed into E. coli
BL21(DE3) cells. Following induction trials, a 2-L culture derived
from a single transformant was grown at 37 °C in Luria–Bertani
medium containing 50 μg/mL kanamycin until the OD600 reached
0.6. The culture was then adjusted to 1 mM isopropyl β-D-1-thi-
ogalactopyranoside (IPTG) and incubated for 3 h at 37 °C with
continuous shaking. Cells were harvested by centrifugation, and
the pellet was stored at −80 °C. All subsequent procedures were
performed at 4 °C. Thawed cell pellets were resuspended in 30 mL
of buffer A [50 mM Tris·HCl, pH 7.4, 250 mM NaCl, 10%
(wt/vol) sucrose] in presence of two protease inhibitor tablets
(Roche). Lysozyme was added to a final concentration of 0.2 mg/mL.
After mixing for 1 h, the lysate was sonicated to reduce viscosity,
and insoluble material was removed by centrifugation for 45 min
at 30,000 × g. The soluble extract was mixed for 1 h with 10 mL
of a 50% (vol/vol) slurry of Ni-NTA resin (Qiagen) that had been
equilibrated in buffer A. The resin was recovered by centrifu-
gation and resuspended in 20 mL of buffer B [50 mM Tris·HCl,
pH 7.4, 150 mM NaCl, 10% (vol/vol) glycerol]. The cycle of
centrifugation and resuspension of the resin was repeated thrice,
after which the resin (5 mL) was poured into a column. The
column was washed serially with 10 mL of buffer C (50 mM
Tris·HCl, pH 7.4, 2 M KCl) and 10 mL of buffer B containing
25 mM imidazole. The bound proteins were eluted stepwise in
10-mL aliquots of 100, 200, 300, 400, and 500 mM imidazole in
buffer B. The elution profile was monitored by SDS/PAGE. The
300 and 400 mM imidazole eluate fractions containing Vts1
(442–523)-SNAP-His6 were pooled and dialyzed for 3 h against
4 L of buffer C [50 mM Tris·HCl, pH 7.4, 20 mM NaCl, 10%
(vol/vol) glycerol, 2 mM DTT]. The dialysate was then mixed for
1 h with 2 mL of a 50% (vol/vol) slurry of SP-Sepharose resin
(GE) that had been equilibrated in buffer C. The resin (1 mL)
was then poured into a column and Vts1(442–523)-SNAP-His6
was recovered as a flow-through and subsequently concentrated by
centrifugal ultrafiltration (Fig. S7A). Protein concentration was
measured both by Bradford dye reagent and A280 absorbance. A
high yield of highly purified protein (∼25 mg per L of bacterial
culture) was obtained. Subsequently, Vts1(442–523)-SNAP-His6
was fluorescently labeled using SNAP-Surface549 (NEB). Co-
valent labeling of the SNAP tag was conducted by incubating
80 μL of reaction mixture containing 50 mM Tris·HCl, pH 7.4,
100 mM NaCl, 0.1% Tween 20, 2 mM DTT, 10 μM Vts1(442–
523)-SNAP-His6, and 20 μM SNAP-Surface 549 (NEB) at 4 °C for
16 h. Excess fluorescent dye was removed using 7K MWCO Zeba
spin desalting columns (Thermo) following manufacturer’s in-
structions, and the labeled protein was recovered in buffer TMK
(100 mM Tris·HCl, pH 7.4, 80 mM KCl, 10 mM MgCl2, 1 mM

DTT) (Fig. S7A). Concentration of labeled protein was measured
using A280 absorbance and was corrected for dye absorbance.

Vts1 Binding Experiments on the TGA. SNAP-Surface 549 labeled
Vts1 was diluted in binding buffer (20 mM Tris·HCl, pH 7.4,
150 mM NaCl, 0.01% Tween 20, 5 mM MgCl2, 0.1 mg/mL BSA)
to obtain a twofold protein dilution series from 1 to 128 nM. The
MiSeq flow cell was first imaged in the green channel under
buffer-only conditions (zero concentration point) and subse-
quently after flowing protein at increasing concentrations. At
each concentration, we took nine images over a period of ∼40–
45 min to empirically verify that equilibrium had been reached.
Following binding at the highest concentration (128 nM of la-
beled protein), a washout experiment was conducted by flushing
binding buffer containing no protein into the flow cell and re-
peated imaging at 12 time points spanning 800 min in a geo-
metric spread over time.
A fraction of the fluorescence signal was often present at the

end of the experiments on clusters positive for binding, suggesting
the possibility of incubation time-dependent off-rates or a per-
manently bound fraction, which is an area of future character-
ization. Before fitting of Kd, therefore, we normalized this
residual signal such that the fraction expected for each in-
cubation time was proportional to the incubated protein con-
centration. This normalization generally had small effects on the
fitting of Kd. Photobleaching and photo–cross-linking controls
were also performed, with bleaching effects estimated to be in
the ∼1% range. After correcting for bleaching, we report median
apparent Kd values from clusters that were observed to bind
above background at each genomic locus to provide relative
measures of binding strength under the described experimental
conditions.
Median apparent Kd values for TGA substrates were calcu-

lated by fitting an equilibrium-binding curve at different protein
concentrations. Although the relative concentrations of protein
were controlled by dilution, the absolute quantification of pro-
tein was measured by A280. An error in this absolute quantifi-
cation may account for the constant correction factor between
TGA measurements and fluorescence polarization measurements
of Kd from the literature. The absolute protein concentration
could have been overestimated due to (i) incomplete SNAP-
labeling and the presence of unlabeled dark Vts1-SAM in the
A280 quantification, and (ii) an increase in absorbance per unit
protein due to conjugation with the dye. Overestimating the ab-
solute concentration of protein would result in underestimating
the true Kd by a constant factor, which matches the observation
that bulk solution measurements of affinity are stronger by a
constant factor. Furthermore, literature-reported Kd values derive
from an idealized stem loop that does not exist in the yeast ge-
nome. We therefore compared the literature-reported Kd values
to cohorts of stem loops sharing the same structural features,
which necessarily includes both weak and strong binders.

Neighborhood Mapping Method. We used standard MATLAB
image-processing algorithms to identify Vts1 binding events in the
highest concentration image (128 nM). We first performed a
morphological opening to correct for background illumination
and set a manual threshold to segment binding events (Fig. S2).
Roughly 500 binding events per image were identified (1 in 1,000
RNA clusters). The subpixel resolution sequencer coordinate
map was used to map each binding event to its underlying se-
quence. Due to chromatic aberration between the red channel
(used to quantify RNA) and the green channel (used to measure
Vts1 binding), a direct overlay was not possible. Instead, we
leveraged the bounded nature of the chromatic aberration to
consider all RNA clusters within a 10 × 10-pixel radius as can-
didate clusters (Fig. S2E). We pooled the candidate clusters and
mapped all candidate substrates to the yeast genome (43–46).
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True binding regions were defined as regions with at least
12 unique binding events mapping to that region in a highly
strand-specific manner (P < 0.001, binomial test). Highly de-
generate or high coverage regions were removed by subtracting
regions found from candidate sequence pools generated from
control neighborhoods offset by 10 pixels from the true binding
event. One remaining set of degenerate targets derived from
subtelomeric regions (YRF1-1 to YRF1-8) was not included in
downstream analysis, even though four of these targets have
been identified in previous studies.

Fitting Kd. Integrated fluorescence values at eight concentrations
of Vts1 (from 1 to 128 nM) were measured from a constant mask
for each cluster. After accounting for a relatively small immobile
signal fraction (see above) and a bleaching correction, these
values were fit to a binding curve with the following equation:

Fobs =
Fmax

1+
�Kd
x

�n +Fmin,

where Fobs is observed fluorescence, Fmax is fit maximum fluo-
rescence, Fmin is fit minimum fluorescence, Kd is affinity con-
stant, x is concentration of Vts1, and n is the Hill coefficient.
The Hill coefficient was found to be approximately equal to 1 in
all cases and was subsequently set to 1 for refitting.

De Novo Primary Motif Search. The bounds of each binding region
were defined using a crude peak-calling algorithm based on read-
depth coverage. The edges of the binding region were set as the
location where the read coverage dropped below the half-
maximal coverage for that region, which produced compacted
intervals of ∼80 nt in length. The FASTA sequences for the
325 binding regions were input in the RNAcontext algorithm
(31) with the reverse complement sequences used as nonbinding
controls to maintain equal base composition. The algorithm was
run with the PHIME structural alphabet, 200-nt local folding
window, and a min/max motif length of 4/12. As a control,
325 regions containing CNGGN motifs were randomly chosen
from the S. cerevisiae genome and analyzed using the RNAcontext
algorithm with the same parameters. No significant motif or
structural preference was found in this control dataset (Fig. S4A).

Covariation Matrix Construction. A covariation matrix was con-
structed by creating a multiple sequence alignment centered on
each instance of “GCNGGN” within the binding regions. The
covariance between each pair of positions was calculated as a
raw count of all pairwise nucleotide combinations (Fig. S4C).
The matrix was then reduced by substituting covariance with the
probability of base pairing (including G:U base pairs). A z score
was calculated by comparing the observed frequency of base
pairing to the null expectation, accounting for nucleotide dis-
tribution at each individual position (Fig. 2B). As a control, a
covariance matrix was constructed using a multiple sequence
alignment of all instances of GCNGGN in the S. cerevisiae ge-
nome (Fig. S4D). No significant structural features were ob-
served in this covariance matrix.
The strong diagonal signal in the covariation matrix defines a

region of base pairing that spans between 5 and 8 bp (Fig. 2B;
z score ∼ 10; loop length is defined by the number of residues
between the two diagonals). All loop regions began at the in-
variant cytosine (C1; Fig. 2A, shown in blue) and extended for
4–7 nucleotides, encompassing a pair of invariant guanosines.

Single-Nucleotide Resolution of Binding Sites. Once the covariation
matrix confirmed the structural requirement for a hairpin loop,
the location of the hairpin lop within each binding interval was
determined to single-nucleotide resolution using a custom algorithm.

First, all candidate CNGGN loop regions were identified via
regular expressions. Next, the length of the adjoining stem region
was calculated for potential loop lengths between 4 and 7, with the
maximal stem length being kept. If the stem contained less than
4 bp (43 cases), a new regular expression search was initiated with
alternate base pairs at the 1 and 4 positions in the loop. Each
alternate base pair was evaluated for all possible loop lengths, and
that with the longest stem was chosen. This resulted in a uniquely
defined, single-nucleotide resolution stem loop variant for each
binding region.

Comparison with Immunoprecipitation-Based Methods. For stem
loops that fell within the transcribed strand of an ORF (205/325),
we compared TGA-identified targets to those previously pub-
lished from two immunoprecipitation datasets for Vts1 (22, 23).
We rejected the null hypothesis that TGA-defined targets are
uncorrelated to previously defined targets (P < 10−30) by using a
Poisson cumulative distribution to simulate a randomized se-
lection of 205 ORF targets. For targets specific to one dataset
and not present in the other, we report absolute transcript
abundance as measured by Miura et al. (17).

Correlation Between Structural Features and Apparent Kd. We
grouped binding targets according to structural features such as
G:C loop closure, loop length, and C1:G4 status. To calculate
bootstrapped error for each substrate, we used MATLAB to
bootstrap mean Kd values 5,000 times (without replacement) and
report 95% confidence intervals of the resulting distribution
(Fig. S6 A and B).

Identifying ProtoORF Targets. We identified Vts1 binding sites
within the set of 107,425 protoORFs as defined by Carvunis et al.
(36). These protoORFs span about 60% of noncoding sequence
space 9,380,000 nt out of 15,400,000 nt). The filtered set of
protoORFs (>300 nt) span 437,946 nt of sequence space and
contain more Vts1 binding sites compared the null expectation.
We found that 73% of intergenic Vts1 targets fall within at least
one protoORF. Enrichment was calculated against the null ex-
pectation that the 100 Vts1 hairpins observed in intergenic se-
quence arose at random positions, independently of any functional
annotations. The P value for an enhanced enrichment for longer
protoORFs was calculated based on the observed frequency of
Vts1 binding any protoORF.

In Silico Folding of the Yeast Genome. NUPACK3.0.4 was used to
computationally fold local regions of the yeast genome. Local
regions were centered on sequences that matched the consensus
CNGGN hairpin sequence (total, 37,173) with 50 bp of flanking
sequence on both sides. All sequences were folded using the
“pairs” function, and all .ppairs outputs were parsed via a custom
MATLAB script that sums all of the dot matrix outputs. Each
dot matrix was also scored according whether a stem loop is
predicted to form with CNGGN0–3 residues in the loop region.
There were 296 loci with a stem loop score of >5. These loci
were annotated by their position within the yeast genome,
matched to our RNA-seq data, and functionally evaluated via
transcript levels in vts1Δ vs. WT cells (Fig. S7F).

Analysis of Loop Composition and Length. Our dataset revealed a
strict requirement for G3 and for base pairing between positions
1 and 4 within the loop. This observation is consistent with NMR
and X-ray crystallographic structural studies: G3 is the only
nucleobase within the binding motif that directly contacts Vts1.
Although most targets conformed to this C1–G4 base-pairing
consensus, 43 of the 325 did not contain this canonical C:G
base pair (Fig. 3C). In each of these targets, we detected alter-
native stem loops with A:U, G:C, and even G:U base pairs be-
tween positions 1 and 4. These targets were weaker Vts1 binders
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compared with loops with C1–G4 base pairs. Finally, following
G4, we observed a variable uridine-rich bulge of 0–3 nt in length.
Among Vts1 targets, a 1-nt uridine bulge was most common
(48%), even though motifs without a bulge (25%) had slightly
stronger affinities (Fig. 3E). Notably, the nucleotide at position
5 shows the greatest flexibility among the loop nucleotides in
NMR ensembles (21), providing a possible structural explanation
for why variation in loop length is tolerated, whereas the other
structural features are more strictly required (Movie S1).

RNA Sequencing and Analysis. RNA sequencing was performed on
two biological replicates of wild-type (WT) and vts1Δ cells. Fifty
milliliters of cells were grown to midexponential phase (OD
∼0.6), harvested, and snap frozen in liquid nitrogen. RNA ex-
traction and library preparation was performed using standard
kits (stranded, Ribo-Zero rRNA removal). All samples were
sequenced to ∼30,000,000 read depth (1 × 50 bp) on one lane of
a HiSeq 4000. Reads were cleaned and trimmed, aligned using
Bowtie2, and quantified using Cufflinks (43–47). RNA-seq data
will be deposited to Gene Expression Omnibus (GEO) before
publication.

Growth Phenotyping and Analysis. Growth phenotypes were mea-
sured for WT, single-deletion, and double-deletion strains in
parallel with 4–16 technical replicates per strain. Strains were
pinned onto agar plates using a Singer ROTOR robot and im-
aged at 24, 48, and 72 h time points using an Epson V700 photo
scanner. Colony sizes were quantified using SGAtools (sgatools.
ccbr.utoronto.ca) and normalized to WT. Edge effects were
minimized by pinning control strains at all edge positions. No
epistasis expectations were calculated according to both additive
and multiplicative epistasis models. Added epistasis expectation
is shown in Fig. 4 G–I.

Calculating Functional Enrichment.We identified 298 Vts1 targets in
transcribed sequences including protoORFs (16,650,091 bp to-
tal), but only 27 targets in nontranscribed strands (7,664,158 bp
total) by our calculation). Given the equal representation of
RNAs from all sequences in the TGA, we calculated functional
enrichment against the null hypothesis that any stretch of se-
quence should be equally likely to contain a Vts1 binding site. For
5′-UTRs and 3′-UTRs, we calculated enrichment relative to the
null expectation that a UTR sequence of a given length is as likely
to contain a Vts1 binding site as any other genomic sequence of

identical length. P values were calculated as the Poisson prob-
ability of having at least as many Vts1-binding sites as observed,
given the null frequency of finding a binding site. The annota-
tion of the yeast transcriptome was on the basis of Nagalakshmi
et al. (48).

qRT-PCR for ProtoORFs. RNA extraction was performed using
standard hot-phenol method from midlog cultures of WT and
delta Vts1 yeast cells (BY4741 background). Contaminating
DNA was removed from the samples by treating with DNA-free
DNA removal kit (Thermo AM1906) as per the manufacturer’s
instructions. Primers to target protoORF regions were designed
using Primer3 web tool. cDNA was generated from the input
RNA using oligo-dT primers and SuperScript II Reverse Tran-
scriptase (Thermo). Quantitative PCR assays were conducted in
optical-grade 96-well plates on a Bio-Rad CFX Connect setup.
The reactions were performed in 20-μL volumes with 2 μL of
input cDNA, 1.5 μM of locus-specific forward and reverse pri-
mers, and 10 μL of 2× SYBR Green Master Mix (KAPA). All of
the amplifications were carried out with an initial step at 95 °C
for 5 min followed by 35 cycles of 95 °C for 30 s, 55 °C for 1 min
followed by a melt curve analysis (65–95 °C in steps of 0.5 °C).
Melt curve analysis for every reaction indicated a single product,
which was further confirmed by agarose gel electrophoresis. The
CQ was determined automatically by the instrument. No product
was detected in control reactions in which primers, cDNA, or
reverse transcriptase were omitted. All of these control reactions
had CQ values of >35 cycles. Data were analyzed from three
biological replicates for each sample using TAF10 as a reference
gene. Log2 enrichment score for each sample was computed by
the standard delta-delta-CQ method.

ProtoORF Conservation. The conservation score track from the
University of California, Santa Cruz (UCSC) genome browser
was used to measure conservation for each protoORF. The
conservation score is based on a genome-wide multiple sequence
alignment of seven fungal genomes that span several hundred
millions of years of evolution. Conservation scores were averaged
across all Vts1-targeted protoORFs and plotted for individually
validated protoORF targets (Fig. S8C).

Additional Data. Additional tables, example images, and code
can be found at https://www.dropbox.com/s/juo3bnow2wdd8zq/
Supplemental%20Data.zip?dl=0.
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Fig. S1. (A) Modular design blueprint colored by parts. The imaging station accepts a sequenced MiSeq flow cell (red) and is constructed from parts borrowed
from the GAIIx (blue) and custom-engineered retrofit components, electronics, and software (green). (B) Cross-correlation is performed between a binary
pseudoimage of sequencer coordinates [red plus signs (+)] and the custom image station image of RNA clusters (white). Even with a dense surface of clusters,
low-density areas (black) can guide alignment. (C) Cross-correlation peak defines x and y coordinate offsets to subpixel resolution. (D) Original image is divided
into subtiles, and each subtile is individually cross-correlated to sequencer coordinates. (E and F) The x and y offsets from each subtile are fit to a 2D quadratic
surface.
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Fig. S2. (A) High-level software flowchart for analyses performed. (B) Illumination correction via a standard MATLAB image-processing algorithm (mor-
phological opening with disk radius of 25 pixels). (C) Image segmentation is performed via a manually adjusted threshold value and filtered for object size.
(D) Neighborhood mapping method defines candidate sequencing clusters [red plus signs (+)] within a 10-pixel radius of a Vts1-binding event (white disks).
Each cluster is then mapped to the S. cerevisiae genome. On-target binding substrates are identified based on reproducible, strand-specific peaks
with >12 independent binding clusters. (E and F) Chromatic aberration between red (RNA) and green (protein) channel images is then plotted in Cartesian and
polar coordinates.
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Fig. S3. (A) Custom library design to allow for in vitro transcription of the S. cerevisiae genome (https://benchling.com/s/GDDULj). (B) Distribution of genomic
DNA insert sizes (Picard tools).
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Fig. S4. (A and B) RNAMotif output for random CNGGN containing sequences from S. cerevisiae genome (A) and for Vts1 targets as identified by TGA (B).
(C) Full covariation matrix without base-pairing probability decomposition. Each 4 × 4 subtile shows the pairwise probability of the 16 possible nucleotide
combinations at position (i, j). (D) Computational estimate of base-pairing probability for non-Vts1 targets that fit the GCNGGN consensus motif. (E) Control
covariance matrix for all CNGGN in genome.
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Fig. S5. (A) NUPACK computational folding output for all CNGGN targets in the genome, targets defined by TGA, and targets defined by RIP-chip (higher
score ∝ higher likelihood of CNGGN hairpin). (B) Absolute number of computationally predicted CNGGN hairpins across the entire genome compared with
those experimentally identified by TGA. (C) Empirical specificity of Vts1 binding [log2(24 Mb of sequence space/325 targets)] compared with the theoretical
informational content of a CNGGN stem loop with 4 bp and the information content captured by the NUPACK folding algorithm. (D) Sensitivity/specificity plot
for NUPACK-defined targets compared with TGA-defined targets. (E) Computational fold score does not correlate to Kd measurements.
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Fig. S6. (A) Bootstrapped 95% confidence intervals (Kd) for all Vts1 targets, sorted by Kd rank. (B) Histogram of 95% confidence interval range, scaled by median
apparent Kd. (C) Weak correlation of Fmax (arbitrary units) vs. Kd (in nanomolar concentration) in equilibrium binding curve fit. (D) Histogram of Fmax values for SRE3
(one of the strongest Vts1 targets) vs. all other Vts1 targets. (E) Number of candidate CNGGN hairpins in RIP-chip–only target genes vs. all genes.
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Fig. S7. (A) Protein purification gel and SNAP-tag labeling quantification. (B) Stereoview of predicted interaction between nucleotide at position “0” and
conserved lysine residue (Lys467). (C) Log2 ratio of gene expression between Δvts1 cells and WT cells. Out of all RIP-chip–defined targets, TGA picks out a subset
that is much more highly expressed in Δvts1 cells than in WT cells. The remaining leftover targets show no enrichment compared with control targets. (D) RIP-
chip targets are more abundant than TGA targets as measured by fragments per kilobase of transcript per million mapped reads (FPKM) in WT cells. (E) Targets
unique to TGA are more highly expressed in Δvts1 cells compared with a control set of transcripts. (F) Predicted in silico targets with fold score of >5 exhibit
modest overlap with TGA targets (48/296). Among nonoverlapping targets, the 92 genic targets [Nupack∩(:TGA)] are functionally assessed by transcript levels
in Δvts1 cells vs. WT cells. (G) Forty-eight shared targets between TGA and Nupack (Nupack∩TGA) assessed via transcript expression.
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Fig. S8. (A) STRINGdb representation of the protein interaction network of all TGA targets. The TGA network contains significantly more interactions than
expected (almost three times). Clusters of genes involved in DNA damage response and nutrient sensing are highlighted in blue and red. (B) qRT-PCR for
randomly selected protoORFs in Δvts1 cells vs. WT cells. (C) Conservation of Vts1-targeted protoORFs as defined by the UCSC genome browser across seven
fungal species.
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Table S1. List of components used to construct the custom image station

Component Model no. (if applicable) Source

Objective lens Nikon 0500-0087 GaIIx
660-nm laser CVI Melles Griot 85-RCA-400 660 nm/

Universal Laser Controller
GaIIx

532-nm laser Laser Quantum Gem FC 532 nm/
SMD6000 Controller

GaIIx

Fiber optic tables GaIIx
MiSeq flowcell mount/thermal interface Custom GaIIx/custom-retrofitted parts
Thermoelectric module VT-127-1.0-1.3-71P TE Technology
Thermistor MP-2444 TE Technology
DAQ USB-6009 National Instruments
Fiber optic switch Luminos Industries CORALIGN #CO12 GaIIx
Motorized Z stage ASI 1000201 GaIIx
Motorized X–Y stage ASI 1000197 GaIIx
Motorized filter wheel ASI FW-1000-BR GaIIx
RS232 stage and filter wheel controller ASI LX-4000 GaIIx/custom-retrofitted parts
CCD camera Photometrics CoolSNAP K4 TE Technology
Camera/laser timing control board Custom Custom PCB
Fiber optic phase scrambler General Photonics MMS-101B-6X-ILM GaIIx
Cooling pump SolidState Cooling 10-150-G1-P1 GaIIx
Syringe pump Kloehn VersaPump 6 8-Channel Pump 20480 GaIIx

Movie S1. NMR ensembles (21) showing the structural flexibility of a uridine at position 5 in the stem loop.

Movie S1
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