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accessibility within sets of genomic features while controlling for 
known technical biases in epigenomic data (http://www.github.
com/GreenleafLab/chromVAR and Supplementary Software). 
We show that chromVAR can be used to identify transcription 
factor (TF) motifs that characterize different cell types and vary  
within populations.

The chromVAR package takes as inputs (i) aligned sequenc-
ing reads, (ii) chromatin-accessibility peaks (determined from 
either aggregate single-cell data or a bulk reference), and (iii) 
a set of chromatin features representing either motif position 
weight matrices (PWMs) or genomic annotations (Fig. 1a, 
Supplementary Fig. 1 and see Online Methods). As an input of 
chromatin features, we have curated a set of human and mouse 
PWMs from the cisBP database10. This set represents a diverse 
and comprehensive collection of known TF motifs. Alternately, 
user-provided TF motifs or other genomic annotations, such as 
enhancer modules, ChIP-seq peaks, or GWAS disease annota-
tions, may be used. chromVAR can also be applied to a collec-
tion of k-mers—short DNA sequences of a specific length k—in 
order to perform an unbiased analysis of DNA sequence features 
that correlate with chromatin-accessibility variation across cells  
or samples.

For each motif and cell, chromVAR first computes a ‘raw acces-
sibility deviation’, the difference between the total number of frag-
ments that map to peaks containing the motif and the expected 
number of fragments (based on the average of all cells). This 
aggregation across peaks yields a motif signal that is considerably 
less sparse than the signal within individual peaks. However, the 
aggregation can also amplify technical biases between cells that 
are caused by PCR amplification or variable Tn5 tagmentation 
conditions (Supplementary Note 1). These biases can lead to dif-
ferences in the number of observed fragment counts between cells 
based on the GC content or mean accessibility of a given peak set 
(Supplementary Fig. 2). To account for these technical confound-
ers, ‘background’ peak sets are created for each annotation; these 
sets comprise an equal number of peaks matched for GC content 
and average accessibility (Supplementary Figs. 2–5). The raw 
accessibility deviations for background peak sets are used to com-
pute a bias-corrected deviation and z-score for each annotation 
and cell; this provides a differential measure of the gain or loss of 
accessibility of a given genomic annotation relative to the average 
cell profile (see Online Methods). This measure can be used for 
a number of downstream analyses, including de novo clustering 
of cells and identification of key regulators that vary within and 
between cell types. The chromVAR package contains a collec-
tion of tools for such downstream analysis; these tools include 
an interactive web application for exploring the relationship  
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single-cell atac-seq (scatac) yields sparse data that make 
conventional analysis challenging. We developed chromVar 
(http://www.github.com/GreenleafLab/chromVar), an r 
package for analyzing sparse chromatin-accessibility data by 
estimating gain or loss of accessibility within peaks sharing the 
same motif or annotation while controlling for technical biases. 
chromVar enables accurate clustering of scatac-seq profiles 
and characterization of known and de novo sequence motifs 
associated with variation in chromatin accessibility.

The binding of transcription factors to cis-regulatory DNA 
sequences controls gene expression programs that define cell 
phenotype. Chromatin-accessibility assays have enabled the  
discovery of cis-regulatory elements and trans-acting factors 
across cell states and cell types1, while single-cell sequencing 
methods have allowed the deconvolution of dynamic or diverse 
cellular populations2,3. Recently, it has become possible to probe 
chromatin accessibility within single cells4–6 and thus to poten-
tially identify cis- and trans-regulators that bring about diverse 
cellular phenotypes.

However, the exceedingly sparse nature of single-cell epige-
nomic data presents unique computational challenges. Sparsity is 
intrinsic to this data, since the signal at any genomic locus is fun-
damentally limited by DNA copy number; only 0, 1 or 2 reads can 
be generated from elements within a diploid genome. Methods 
developed for single-cell RNA-seq have shown that measuring 
the dispersion of gene sets, such as Gene Ontology or coexpres-
sion modules, rather than individual genes can be a powerful 
approach for analyzing sparse data7. In this vein, and building on 
previous work from our group and others4,8,9, we have developed 
chromVAR, a versatile R package for analyzing sparse chroma-
tin-accessibility data by measuring the gain or loss of chromatin 
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between key TF motifs and cell clusters (Supplementary Fig. 6).  
We have also incorporated tools for generating previously 
described analyses characterizing the correlation and potential 
cooperativity between two TF-binding sites within the same regu-
latory element and for computing chromatin variability across 
regions in cis4.

To test whether our computational workflow could be applied to 
single-cell data, we measured the robustness of chromVAR outputs 
to downsampling of bulk ATAC-seq data from a deeply sequenced 
set of hematopoietic cell types8. TF motif deviations using 106 to 
5 × 103 fragments per sample are highly correlated to those deter-
mined using the full data set (Fig. 1b and Supplementary Fig. 
7). The clustering accuracy using the bias-corrected deviations 
is also largely preserved after downsampling, and generally out-
performs clustering using PCA or other peak-based approaches 
(Supplementary Fig. 7; see Online Methods).

chromVAR provides robust results for 10,000 fragments per 
cell, which is a typical yield for a single cell using scATAC-seq4  
(Supplementary Fig. 7). By projecting the vector of bias- 
corrected deviations from individual cells onto two dimensions 
using tSNE11, chromVAR enables the reconstruction of the major 
hematopoietic lineages using 10,000 fragments per sample. With 
this analytical framework, we can also visualize the TFs associated 
with significant chromatin accessibility within each single-cell-
equivalent epigenome, thereby correctly identifying known mas-
ter regulators of hematopoiesis, including HOXA9, SPI1, TBX21, 
and GATA1 (refs. 12–15) (Fig. 1c).

Next, we characterized chromVAR’s ability to capture biologi-
cally relevant chromatin variability from scATAC-seq data drawn 
from multiple distinct hematopoiesis-related cell lines and human 
samples (Supplementary Fig. 8). Using tSNE with bias-corrected 
deviations for motifs and seven-mers, we clustered single cells 
into distinct cell types and observed individual motifs that best 
distinguish each cell type (Fig. 2a). Well defined, distinct clusters 
are formed in this tSNE projection when using the bias-corrected 
deviations; whereas clustering is confounded by technical biases 
when using raw deviations without bias correction. This approach 
for classifying cell types also compares favorably with performing 
tSNE on counts within peaks using a variety of alternative similar-
ity measures (Supplementary Fig. 9).

Interestingly, we observe that cells from acute myeloid leukemia 
(AML) patients cluster between lymphoid-primed multipotent 
progenitors (LMPPs), monocytes, and HL60 (an AML-derived 
cancer cell line) cells. In this unsupervised analysis, the AML 
leukemic stem cells are more similar to LMPPs, while the AML 
blasts are more similar to monocytes. In addition, patient 1 (AML 
blast 1) maintains a more stem-like state compared to patient 2 
(AML blast 2), as was anticipated from alternate analyses of these 
cells16. By layering cell-specific z-scores onto this projection, we 
can identify TFs that may promote the stem-like versus differenti-
ated leukemia phenotype. For example, the master regulators of 
myeloid cell development SPI1 (PU.1) and CEBPA17 appear to be 
the most differential motifs between AML leukemic stem cells 
(LSCs) and blasts (Fig. 2b,c).
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figure � | chromVAR enables interpretable analysis of sparse chromatin-accessibility data. (a) chromVAR aggregates chromatin accessibility across peaks 
that share a common feature (e.g., a motif) and applies bias correction to generate scores for each cell or sample that can be used for downstream 
analysis. (b) Pearson correlation of bias-corrected deviations for 77 samples from different hematopoietic populations before and after downsampling 
total sequencing reads from full data. Each point represents one of the top 20% most variable motifs (s.d. of z-score); three of the most variable 
motifs are highlighted. (c) tSNE visualization of different samples using normalized deviations calculated from data downsampled to 10,000 fragments 
per sample, a typical amount from a single cell. Left panel, cell types of the hematopoietic differentiation hierarchy. HSC, hematopoietic stem cell; 
MPP, multipotent progenitor cells; CMP, common myeloid progenitor; GMP, granulocye-macrophage progenitor; LMPP, lymphoid-primed multipotential 
progenitors; CLP, common lymphoid progenitor; Mono, monocyte; MEP, megakaryocytic-erythroid progenitor; Ery, erythroid; B, B cells; CD4, CD4+ T-cells; 
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are colored by the deviation score for the indicated motif.
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In addition to cell similarity, we can visualize motif and k-mer 
activity patterns across cells by inverting the tSNE analysis (Fig. 3a). 
By plotting motif or k-mer similarity in tSNE subspace, clusters rep-
resenting several different TF families can be identified. Different 
TFs within the same family (e.g., GATA1 and GATA2) often bind 
highly similar motifs, and therefore chromVAR alone cannot dis-
tinguish which regulator binds a particular TF motif. In the motif 
and k-mer similarity visualization, most, but not all, k-mers cluster 
with a known motif, suggesting that k-mer analysis may enable  
de novo discovery of previously unannotated motifs.

By comparing the variation in chromatin accessibility across 
cells between highly similar k-mers, we can identify critical bases 
associated with chromatin-accessibility variation. For example, 
the AGATAAG k-mer, which closely matches the GATA1 motif, 
is highly variable across single cells, whereas most k-mers dif-
fering by one nucleotide share little or no variability (Fig. 3b 
and Supplementary Fig. 10). The mismatched k-mer with the 
greatest correlated variability is TGATAAG, which matches the 
sequence with the second highest score for the GATA1 motif.  
Similarly strong sequence specificity is seen across other variable  
motifs (Supplementary Fig. 10).

We can use these comparisons of variation between highly similar 
k-mers to construct de novo motifs representing sequences associ-
ated with variation in chromatin accessibility. Briefly, we use the  
covariance between highly variable ‘seed’ k-mers and k-mers that differ 
by one mismatch or partially overlap the seed k-mer to assign nucle-
otide weights at each position of the motif model (Supplementary  
Fig. 11; see Online Methods). Many de novo motifs assembled 
using this approach closely match known motifs (Fig. 3c–f and 
Supplementary Fig. 11). For constructed motifs lacking a close 
match to a known TF, we confirmed an association with DNase 
hypersensitivity variation between samples in the Roadmap 
Epigenomics Project18 (Supplementary Fig. 12). These de novo 
motifs are thus associated with chromatin accessibility variation in 
two distinct accessibility assays. To further validate the discovery 
of these putative trans-regulators, we calculated aggregate TF ‘foot-
prints’, measures of the DNase or Tn5 cut density around the given 
motif, and found a diverse set of accessibility profiles (Supplementary  
Fig. 12). Interestingly, several of these motifs do not match canonical  
narrow (~20 bp) TF footprints; rather, they are associated with a large 
footprint (>20 bp) that is potentially indicative of larger regulatory  
complexes that would protect a larger region of DNA.

We envision that chromVAR will be broadly applicable to sin-
gle-cell and bulk epigenomics data to provide an unbiased charac-
terization of cell types and the trans-regulators that define them. 
In support of this, we analyzed two bulk chromatin-accessibility 
data sets18,19 downsampled to 10,000 fragments per sample and 
data from an alternate scATAC-seq approach, and we found that 
chromVAR generalizes to these additional data (Supplementary 
Figs. 13–15 and Supplementary Note 3). As methods for measur-
ing the epigenome in single cells and bulk populations continue 
to improve in throughput and quality, scalable analytical tools are 
needed. Analysis workflows for ATAC-seq or DNase-seq data often 
include the identification of motifs enriched in differentially acces-
sible peaks, but such approaches scale poorly to comparisons across 
many sample types and require sufficient per-locus read depth to 
determine differential peak accessibility (Supplementary Note 4). 
In contrast, chromVAR is highly robust to low sequencing depth 
and readily scales to hundreds or thousands of cells or samples.

Researchers often face a trade-off between the number of sam-
ples to sequence and the sequencing depth for each sample; sparse 
sequencing coupled with chromVAR analysis may enable the use 
of ‘bulk’ ATAC-seq, DNase-seq or other epigenomic methods as 
large-scale screening tools. We also anticipate that chromVAR will 
enable additional downstream analyses of single-cell chromatin-
accessibility data, as vectors of bias-corrected deviations provide 
a powerful, dimensionality-reduced input to existing algorithms 
for inferring spatial and temporal relationships between cells.

methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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figure � | chromVAR can be used to cluster single cells and interpret 
motifs underlying chromatin-accessibility variation. (a) tSNE visualization 
of 1,561 single cells based on chromVAR raw (left) or bias-corrected 
deviations (right) for motifs and seven-mers (see Online Methods).  
Top panels, points colored by cell type. Bottom panels, points colored 
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onLine methods
chromVAR algorithm. Bias-corrected deviations and z-scores. 
For each motif (or k-mer or genomic annotation), a ‘raw 
accessibility deviation’ for each cell or sample is computed, 
representing the total accessibility of peaks with that motif 
minus the expected count based on the accessibility profile of 
all cells, all divided by that expected count (Supplementary  
Fig. 1). Using the matrix of fragment counts in peaks X, where 
xi,j represents the number of fragments from cell i in peak j, 
and the matrix of motif matches M, where mk,j is 1 if motif k 
is present in peak j. The total number of reads mapping to 
every peak containing motif k in cell i is given by M XT× .  
For each peak, the expected number of fragments per cell E is 
computed as the fraction of all fragments across all cells map-
ping to that peak multiplied by the total number of fragments in 
peaks for that cell: 

E
x

x
xi i j

j i i j
i j

j
= ×=

= = =
∑

Σ
Σ Σ

1

1 1 1

,

,
,

The expected number of fragments mapping to every peak con-
taining motif k in cell i is then given by M ET× , and the raw 
accessibility deviation Y by: 

Y
M X M E

M E

T T

T= × − ×
×

For each motif or genomic annotation, background peak sets are 
sampled that match the set of peaks with the motif or genomic 
annotation in terms of the distribution of GC content and aver-
age accessibility. These background peak sets are determined by 
finding possible background peaks for each peak, as described in 
the next section. For each background iteration, we can represent 
the background peak assignments as a matrix B, where bi,j′ is 1 if 
peak j has peak j′ as its background peak and 0 otherwise. A back-
ground motif match matrix M′ is thus computed as ′ = ×M M B
, and a background raw deviation as: 

′ = × × − × ×
×

Y
M B X M B E

M E

T T

T
( ) ( )

.

Y′ is calculated for each background iteration, and these back-
ground deviations are used to compute a bias-corrected deviation 
as Y−mean (Y′). A deviation z-score is computed by dividing the 
bias-corrected deviation by the s.d. of the background raw devia-
tions for each iteration: 

Y Y
Y

− ′
′

mean
s.d.

( )
( )

Background peak selection. The state space of GC content and 
the log of the average accessibility of peaks is transformed by the 
Mahalanobis transformation in order to remove the correlation 
between the two variables. This transformed space is split into an 
even grid of bins with a specified number of divisions (50) along 
each axis evenly spaced between the minimum and maximum 
values. For a peak in a given bin j, the probability of selecting 
another peak x in bin i is given by: 

P x x b
f d i j w

i
i

( | )
( ( ) | , )

ε = − 0
n

Where f is the probability distribution function of the normal 
distribution with mean 0 and s.d. w (set to 0.01), and n is the 
number of peaks in the bin j.

Variability. The variability of a TF motif across samples or cells 
was determined by computing the s.d. of the z-scores across the 
cells or samples. The expected value of this metric is 1 if the motif 
peak sets are no more variable than the background peak sets for 
that motif.

De novo motif assembly. As a measure of the shared variability 
in chromatin accessibility between a reference k-mer (or motif) 
and other k-mers (or motifs), we compute a normalized covari-
ance based on deviation z-scores. This normalized covariance is 
simply the covariance of the z-scores across each cell divided by 
the variance of the z-scores for the reference k-mer (or motif).

For assembling de novo motifs, we start with the k-mer associ-
ated with the greatest variability in chromatin accessibility across 
the cells as a ‘seed’ k-mer. We first find the distribution of the 
normalized covariances between that seed k-mer and all other 
k-mers with an edit distance from that seed k-mer of at least 3; 
this distribution is used as a null distribution for testing the sig-
nificance of the observed covariances for k-mers with a single 
nucleotide mismatch using a Z-test. For each position along the 
k-mer, the nucleotide of the seed k-mer is given a weight of 1. 
Each alternate nucleotide is given a weight of 0 if the P value for 
the normalized covariance of the k-mer with that mismatch is 
greater than 0.05; if the P value is less than 0.05, the nucleotide is 
given a weight equal to the square of the normalized covariance. 
The weights for each base pair are then normalized to sum to 1. 
To further extend the de novo motif, we used k-mers overlap-
ping the seed k-mer with an offset of one or two bases. For the 
two bases immediately outside the seed k-mer, the weighting of 
each nucleotide is given by x y x× + − ×2 1 0 25( ) . , where y2 is the 
square of the normalized covariance for the k-mer with the given 
nucleotide offset (if significant at 0.05 and otherwise 0), and x is 
the maximum value of the normalized covariances for the four  
k-mers (bounded by 0 and 1). For the bases offset by two base pairs 
from the seed k-mer, the weighting is computed in the same way, 
except that there are four possible k-mers with a given nucleotide  
at that position that overlap the seed k-mer; only the k-mer with 
the maximum normalized covariance with the seed k-mer is used 
(Supplementary Fig. 11).

Input data and preprocessing. ATAC-seq, scATAC, and DNase 
data. In addition to the previously published data, we gener-
ated three new biological replicates of single-cell K562s (ATCC; 
validated using STR genotyping (Genetica DNA laboratories)), 
representing three individual experiments on different days, 
using the previously published protocol4,8. Bulk ATAC-seq 
and scATAC-seq data were aligned and filtered as previously 
described4,8. Uniformly processed DNase data was downloaded 
from the Roadmap Epigenomics Project Portal18. ATAC-seq 
data from ref. 19 were obtained from GSE63341 and processed 
as follows: adapters were trimmed using Cutadapt20, reads were 
aligned using Bowtie2 (ref. 21) and filtered for mapping quality 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63341
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(mapq > 30). For the scATAC-seq data from the GM12878 and 
HEK293T mixture from the combinatorial indexing approach, a 
count matrix was obtained from GSM1647122.

Peaks. For the bulk data analysis, we obtained DNase hypersen-
sitivity peaks from the Roadmap Epigenomics Project. MACS2 
(ref. 22) peaks for blood cells (primary monocytes from periph-
eral blood, primary B cells from peripheral blood, primary T cells 
from peripheral blood, primary natural killer cells from periph-
eral blood, primary hematopoietic stem cells G-CSF-mobilized 
female, primary hematopoietic stem cells G-CSF-mobilized 
male, and monocytes-CD14+ RO01746 Cell line) were down-
loaded from the Epigenomics Roadmap Portal18. For the single-
cell ATAC-seq data, peaks were called for each cell line or type 
using MACS2 applied to the merged single-cell ATAC-seq data. 
All peaks were resized to a uniform width of 500 bp, centered at 
the summit. For both the set of peak calls from the blood cells 
in Roadmap and the set of peak calls from the scATAC-seq data, 
peaks were combined by removing any peaks overlapping with a 
peak with greater signal. Peak width was chosen based on typical 
sizes of ATAC-seq peaks across a wide collection of experiments, 
although chromVAR is fairly robust to the exact size of the peaks 
used (Supplementary Fig. 5 and Supplementary Note 2).

Motif collection. From cisBP, we curated position frequency 
matrices that represented a total of 15,389 human motifs and 
14,367 mouse motifs. To filter motifs to a representative subset, 
we first categorized motifs as high, medium or low quality, as 
designated in the cisBP database. We then grouped all 870 unique 
human or 850 unique mouse TF regulators represented in the 
database and assigned these regulators to their most representa-
tive TF motif(s). To do this, we first iterated through each TF 
regulator to find all motifs associated with that regulator from the 
high-quality motif list. For these associated high-quality motifs, 
we first computed a similarity matrix using the Pearson correla-
tion of the motifs. To calculate the Pearson correlation between 
pairwise motifs, the shorter motif was padded with an equal dis-
tribution of A,C,G,T. Then the Pearson correlation was calculated 
at every possible offset, and the maximum correlation of all offset 
comparisons was recorded. To select a representative subset of 
motifs for each TF regulator, we first found the motif correlated 
with the most other motifs at R > 0.9. Treating that motif and all 
of the correlated motifs (R > 0.9) as a group, we next found the 
motif with the greatest mean correlation to the other members 
of the group, and we kept that motif as a representative motif for 
the TF. Motifs highly correlated with that chosen motif (R > 0.9)  
were then discarded from further analysis, and the process was 
iterated until no motifs remained. We repeated the process using 
the medium- and low-quality databases for TF regulators with no 
associated motifs in the high-quality database. The final curated 
motif database contains 1,764 human motifs and 1,346 mouse 
motifs representing 870 human and 850 mouse regulators. The 
resulting names are formatted as follows: “ensemble ID”_”unique 
line number”_”common TF name”_”direct (D) or inferred (I)”_” 
number of similar motifs grouped”. These position frequency 
matrices were then converted into position weight matrices 
(PWMS) by taking the log of the frequency after adding a 0.008 
pseudocount and dividing by 0.25.

These PWMs were used for all analyses in main text fig-
ures. For Supplementary Figures 2–5 and 13, a smaller set 
of motifs from the JASPAR CORE database 2016 were used23.  

For Supplementary Figure 14, motifs downloaded from  
http://homer.ucsd.edu/homer/custom.motifs were used24; and for 
Supplementary Figure 15 motifs downloaded from http://comp-
bio.mit.edu/encode-motifs/ were used25 in order to use the same 
motifs as the original publication for those data sets.

Motif matching. The MOODS26 C++ library (Version 1.9.3) was 
used for identifying peaks containing a motif match, using a P 
value cutoff of 5 × 10−5. As background frequencies we used the 
nucleotide frequencies across all peaks. We wrapped the MOODS 
library into an R package, motifmatchr, which enables fast deter-
mination of motif presence or positions within genomic regions. 
The package is available at http://www.github.com/GreenleafLab/
motifmatchr and https://bioconductor.org/packages/devel/bioc/
html/motifmatchr.html.

Analysis. Downsampling analysis. To downsample a sample with X 
total fragments to a depth of Y total fragments, we use the fragment 
count matrix; and for each fragment within a peak we retained 
each fragment with probability Y/X. Thus the downsampled sam-
ples are equivalent to having approximately Y total fragments.

The set of peaks used for the analysis remained the same for 
each downsampled data set, as the peaks used were from an exter-
nal data source (Roadmap Epigenomics Project).

For clustering samples using chromVAR results, highly corre-
lated motifs were first removed, and then one minus the Pearson 
correlation of the bias-corrected deviations was used as the dis-
tance matrix for input into hierarchical clustering. For cluster-
ing samples using PCA, PCA was performed on the log of the 
fragment counts for all peaks after normalization for the total 
number of reads in peaks, and clustering was performed on the 
Euclidean distance between the first five principal components. 
Hierarchical clustering was performed with complete linkage, and 
the resulting dendrogram was cut into 13 groups (the number of 
cell types). Clustering accuracy was measured using normalized 
mutual information27.

Differential accessibility and variability. For determining dif-
ferentially accessible motifs between AML LSC and blast cells, 
an unequal variances t-test (two sided) was used on the bias-
corrected deviations. For determining differential variability, a 
Brown–Forsythe test was used on the deviation z-scores.

Sample similarity tSNE. For performing sample similarity tSNE, 
highly correlated motifs or k-mers as well as motifs or k-mers 
with variability below a certain threshold (1.5) were first removed 
from the bias-corrected deviations matrix. The transpose of that 
matrix was then used as input to the Rtsne package (http://CRAN.
R-project.org/package=Rtsne), with a perplexity parameter of 8 
used for the downsampled bulk hematopoiesis data and a param-
eter of 25 for the single-cell ATAC-seq data.

Motif and k-mer similarity tSNE. For performing motif sim-
ilarity tSNE, motifs or k-mers with variability below a certain 
threshold (1.5) were first removed from the bias corrected devia-
tions matrix, which was then used as input to the Rtsne package 
(http://CRAN.R-project.org/package=Rtsne) with perplexity 
parameter set to 15.

Motif similarity scores. To score the similarity between a de novo 
motif and the most similar known motif, we first computed the  
normalized Euclidean distance between the de novo motif and all the 
known motifs in our collection using the optimal local alignment 
with at least five overlapping bases. We then selected the known motif 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1647122
http://homer.ucsd.edu/homer/custom.motifs
http://compbio.mit.edu/encode-motifs/
http://compbio.mit.edu/encode-motifs/
http://www.github.com/GreenleafLab/motifmatchr
http://www.github.com/GreenleafLab/motifmatchr
https://bioconductor.org/packages/devel/bioc/html/motifmatchr.html
https://bioconductor.org/packages/devel/bioc/html/motifmatchr.html
http://CRAN.R-project.org/package=Rtsne
http://CRAN.R-project.org/package=Rtsne
http://CRAN.R-project.org/package=Rtsne


©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.4401 nature methods

with the lowest distance as the closest match. The similarity score was 
computed as the negative of the z-score for this distance using the 
distribution of distances for all the motifs in the collection.

Software availability. The chromVAR R package is freely available 
under the MIT license at http://www.github.com/GreenleafLab/
chromVAR and as Supplementary Software. The motifmatchr  
R package is freely available under a GPL-3 license is available 
at http://www.github.com/GreenleafLab/motifmatchr and as 
Supplementary Software.

Data availability statement. The additional K562 scATAC-
seq data have been deposited at GEO with accession number 
GSE99172. Previously published single-cell ATAC-seq data are 
available from GSE74310 and GSE65360. Bulk hematopeisis 

ATAC-seq data are available at  GSE74912. Macrophage bulk 
ATAC-seq data was obtained from GSE63341, combinatorial 
scATAC-seq from GSM1647122, and Roadmap Epigenomics 
data from the Roadmap Epigenomics Portal (http://egg2.wustl.
edu/roadmap/web_portal/).

A Life Sciences Reporting Summary is available.
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