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The dynamic, combinatorial cis-regulatory lexicon
of epidermal differentiation
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Zhixin Zhao*, Harsh Deep®, Mahfuza Sharmin?, Deepti Rao’, Shin Lin’, Howard Y. Chang ©'489,
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Transcription factors bind DNA sequence motif vocabularies in cis-regulatory elements (CREs) to modulate chromatin state
and gene expression during cell state transitions. A quantitative understanding of how motif lexicons influence dynamic reg-
ulatory activity has been elusive due to the combinatorial nature of the cis-regulatory code. To address this, we undertook
multiomic data profiling of chromatin and expression dynamics across epidermal differentiation to identify 40,103 dynamic
CREs associated with 3,609 dynamically expressed genes, then applied an interpretable deep-learning framework to model the
cis-regulatory logic of chromatin accessibility. This analysis framework identified cooperative DNA sequence rules in dynamic
CREs regulating synchronous gene modules with diverse roles in skin differentiation. Massively parallel reporter assay analy-
sis validated temporal dynamics and cooperative cis-regulatory logic. Variants linked to human polygenic skin disease were
enriched in these time-dependent combinatorial motif rules. This integrative approach shows the combinatorial cis-regulatory
lexicon of epidermal differentiation and represents a general framework for deciphering the organizational principles of the

cis-regulatory code of dynamic gene regulation.

maintained by a dynamic homeostatic process involving the

conversion of metabolically active basal cells that adhere to
the epithelial basement membrane into cells that undergo cell cycle
arrest and migrate outwards, engaging a program of terminal dif-
ferentiation to form cornified keratinocytes' (Extended Data Fig.
1a). A host of human diseases are caused by disruption of epider-
mal differentiation’. Calcium-induced differentiation of primary
human keratinocytes in vitro mimics key properties of in vivo epi-
dermal differentiation, making it a simple, tractable and accurate
in vitro system to study this medically relevant cellular differentia-
tion process’.

Such differentiation processes involve dynamic cell state tran-
sitions accompanied by genome-wide changes in gene expression,
chromatin state and three-dimensional genome organization*”.
Transcription factors (TFs) orchestrate these chromatin and expres-
sion dynamics by cooperatively binding cognate DNA sequence
motifs residing in CREs, such as promoters and enhancers, and
forming complexes with capacity to activate nearby genes®®. The
quantitative changes in chromatin state and expression are hence
highly dependent on the cis-regulatory code of motif patterns
encoded in CREs’'% Previous studies have shown that the pro-
cess of terminal differentiation alters the expression of thousands
of genes, CREs, proteins and metabolites’’. However, increased
temporal resolution is required to map dynamic regulation of
subtle cell state transitions. While some regulators of epidermal

| he outermost layer of the skin, the epidermis, is formed and

differentiation have been identified previously>®'*'%, the combina-
torial, dynamic cis-regulatory code of epidermal differentiation has
remained elusive.

Recently, deep-learning models such as convolutional neural
networks (CNNs) have emerged as state-of-the-art predictive mod-
els of regulatory DNA. CNNs learn nonlinear predictive functions
that can map DNA sequence accurately to genome-wide profiles
of regulatory activity by learning de novo predictive motif pat-
terns and their higher-order combinatorial logic'**>. We and others
have recently developed powerful interpretation methods to extract
rules of cis-regulatory logic from these black-box models*~*. These
interpretable deep-learning models have the potential to offer new
insights into the cis-regulatory code of epidermal differentiation.

Here, we use a battery of assays to comprehensively profile the
multimodal landscape of chromatin and expression dynamics
across a densely sampled timecourse of epidermal differentiation.
We train robust CNN models that can accurately predict quanti-
tative changes in chromatin accessibility from DNA sequence
across the entire timecourse (Fig. 1a). We interpret the models to
annotate tens of thousands of dynamic CREs with homotypic and
heterotypic combinations of active motif instances. We introduce
an in silico combinatorial perturbation framework to decipher
quantitative rules of higher-order cis-regulatory logic encoded in
CREs. We identify multiplicative and supermultiplicative effects of
co-occurring motif combinations on chromatin accessibility, pre-
dict putative TFs that cooperatively bind these combinatorial motif
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Fig. 1| A high-resolution integrated multiomic data resource in primary keratinocyte differentiation. a, Schematic of the integrative framework for
discovery of a dynamic, combinatorial cis-regulatory lexicon. CNNs are trained to predict quantitative ATAC-seq signal from DNA sequence across a
timecourse, augmented with prediction tasks for active chromatin marks. After model training, base-resolution contribution scores are inferred for all
sequences using backpropagation-based interpretation methods, followed by motif scanning to identify predictive motif instances. In silico combinatorial
perturbation analyses are used to identify interaction effects between co-enriched combinatorial motif rules. Gene expression (PAS-seq) across the
timecourse enables identification of TFs that may bind motif rules and downstream target gene modules. MPRAs validate predicted effects of combinatorial
cis-regulatory logic. b, Schematic of multiomic data collected across the epidermal differentiation timecourse. ¢, PCA of ATAC-seq data highlight time as the
primary axis of variation. PC, principal component. d, Gene set enrichments validate veridical activation of keratinocyte differentiation in the gene expression
data. GSEA, gene set enrichment analysis. e, Representative loci around the ITGB4 (chr17:73690537-73721129), KRT78 (chr12:53237434-53276997) and
CEBPA (chr19:33777249-33796123) genes exhibit different trajectories of chromatin and expression dynamics. Dynamic ranges across loci are as follows:

ATAC-seq, 0-800; H3K27ac ChIP-seq, 0-200; H3K4mel ChIP-seq, 0-100; H3K27me3 ChlIP-seq, 0-150 (units, -log,, Pvalue).

patterns, and link dynamic CREs to their putative target genes.
Finally, we validate temporal dynamics and cis-regulatory logic of
combinatorial motif rules on intrinsic regulatory activity across
differentiation using massively parallel reporter assays (MPRAs).
Genetic variants associated with diverse skin-related complex traits
are found to be enriched in time-dependent combinatorial motif
rules, supporting a potential disease-relevant role in mediating

phenotypic effects. This integrative framework can be applied
broadly to discover dynamic cis-regulatory logic across diverse cell
states, cell types and conditions.

Results

Multimodal regulatory dynamics in epidermal differentiation. To
characterize the multimodal regulatory landscapes of keratinocyte
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differentiation, transcriptional and chromatin state was profiled
across several timepoints of calcium-induced in vitro differentia-
tion (Fig. 1b) with high-quality, replicated poly(A) site sequenc-
ing (PAS-seq), assay for transposase-accessible chromatin with
sequencing (ATAC-seq), H3K27ac chromatin immunoprecipita-
tion sequencing (ChIP-seq), H3K4mel ChIP-seq, H3K27me3
ChIP-seq and H3K27ac HiChIP experiments (Extended Data Fig.
la—e and Supplementary Tables 1-6). Principal-component analy-
sis (PCA) showed high consistency between biological replicates
(Fig. 1c). Gene set enrichments validated veridical activation of
keratinocyte differentiation in these data®” (Fig. 1d). Homogeneity
and timepoint specificity of the cell cultures were verified by com-
paring the ATAC-seq replicates with single-cell ATAC-seq data
from the same differentiation system? (Extended Data Fig. 1f).
Important epidermal gene loci showed complex dynamic regula-
tory landscapes (Fig. le).

Using the epigenomic datasets, we identified 424,700 genomic
regions enriched for chromatin accessibility or histone modifica-
tions across all timepoints (Fig. 2a). We used the ATAC-seq profiles
to identify 225,996 high-confidence, reproducible CREs across all
timepoints, of which 40,103 CREs exhibited significant variation
of chromatin accessibility across the timecourse. Clustering these
CREs on the basis of their ATAC-seq profiles resulted in 15 dis-
tinct trajectories across differentiation”** (Fig. 2b). Chromatin
accessibility dynamics were correlated strongly with the dynamics
of activating histone marks H3K27ac and H3K4mel. We associ-
ated the dynamic CREs to their putative target genes on the basis of
proximity and H3K27ac HiChIP looping data. Functional enrich-
ment analysis of the gene sets associated with each dynamic CRE
cluster highlighted relevant and expected biological functions that
were consistent with expression dynamics (Fig. 2b and Extended
Data Fig. 2a,b). For example, CREs linked to hemidesmosome
genes, whose expression characterizes progenitors®, decreased in
accessibility during differentiation. In contrast, CREs linked to dif-
ferentiation genes’ were enriched in trajectories activated during
differentiation. Analysis of gene expression quantification from
the PAS-seq experiments identified 3,069 dynamic transcripts that
clustered into 11 dynamic trajectories (Fig. 2c). The dynamic CRE
clusters and their associated target genes also exhibited synchro-
nous concordance of gene expression and chromatin accessibility
dynamics (Fig. 2d,e), consistent with a picture of coordinated waves
of target gene activation driven by dynamically accessible CREs.
These data map the dynamic regulatory landscape of keratinocyte
differentiation and indicate a coordinated interplay of tens of thou-
sands of CREs with thousands of genes.

CREs overlapping gene promoters and distal CREs showed dif-
fering composition and dynamics of chromatin states across the
timecourse (Fig. 2f-h). Distal CREs associated with increasing

and decreasing chromatin accessibility also exhibited concordant
dynamics of flanking active histone modification profiles but no
discernable changes in the repressive H3K27me3 mark (Fig. 2f,g).
In contrast, promoters of dynamically expressed genes were associ-
ated with temporally invariant chromatin accessibility despite being
marked by dynamic active histone modifications (Extended Data
Fig. 2¢,d). Promoters of active genes with invariant temporal expres-
sion were associated with invariant accessibility and active histone
marks (Extended Data Fig. 2e). Promoters of inactive genes were
enriched for the repressive H3K27me3 histone mark (Extended
Data Fig. 2f). We also noted a small set of dynamically expressed
genes (n=414) enriched for H3K27me3 at their promoters (Fig.
2i,j). These promoters lost H3K27me3 across the timecourse while
simultaneously gaining H3K27ac. Prominent regulators of epider-
mal differentiation, such as MAFB and OVOLI, were among genes
associated with H3K27me3 release of repression at their promot-
ers (Fig. 2i). These observations are supported by previous studies
that have found release of repression to be an important regulatory
mechanism in terminal differentiation®-*.

Deep learning shows a dynamic DNA motif lexicon. To learn pre-
dictive sequence models of chromatin dynamics, we trained multi-
task CNNs to map 1-kb DNA sequences tiled across the genome to
associated quantitative measures of ATAC-seq signal at ten time-
points across the differentiation timecourse (Fig. 3a). We used a
tenfold chromosome hold-out cross-validation scheme to train and
evaluate the predictive performance of the model (Supplementary
Table 7). We used a multistage transfer learning protocol. We first
trained a reference model on a large compendium of DNase-seq
data from 431 diverse cell types and tissues, then fine-tuned it
on the ATAC-seq data from our timecourse, accounting for the
cross-validation structure of the ten folds (Extended Data Fig. 3a
and Supplementary Tables 8 and 9). The model’s predictions on
all held-out test set chromosomes were correlated strongly with
the observed ATAC-seq signal in each timepoint (Fig. 3a,b and
Extended Data Fig. 3b,c). The model’s predictions for dynamic
CREs were also correlated strongly with their measured ATAC-seq
signal across the timecourse (Extended Data Fig. 3d). The trans-
fer learning approach substantially improved the performance and
stability of the model’s predictions across models and folds (Fig. 3a
and Extended Data Fig. 3b,c). The predictions of the models from
the ten folds for each CRE in each timepoint were subsequently cali-
brated and assembled for downstream inference and prediction.
Next, we used the ensemble of trained models to infer sequence
features in each CRE that are predictive of chromatin accessibility
at each timepoint. Specifically, we used efficient backpropagation
methods®* that can infer contribution scores of each individual
nucleotide in each input sequence to the predicted output from the

>
>

Fig. 2 | Epigenomic and transcriptomic landscapes in epidermal differentiation. a, Segmentation of the epigenome into chromatin states by accessibility
(ATAC-seq), assayed marks (H3K27ac, H3K4mel and H3K27me3 ChlIP-seq) and transcription start sites (TSSs) or distal regions. Accessibility is divided
into dynamically accessible (dark blue) and stably accessible (light blue) regions. TSSs are divided into TSSs of dynamic (dark purple), stable (light
purple) and nonexpressed (gray) genes. b, ATAC-seq and ChIP-seq (H3K27ac and H3K4me1) heatmaps of 40,103 dynamic cis-regulatory elements,
ordered by 15 trajectories of dynamic accessibility; gene set enrichments of proximal genes of CREs in each trajectory (right). ATAC-seq signals are
relative to day O. ¢, Eleven trajectories of 3,609 dynamically expressed genes; gene set enrichments for each trajectory (right). RNA signals are relative

to day 0. d, Accessibility trajectories mapped to gene expression trajectories on the basis of activity correlation across the timecourse. Correlation of
mean activity of accessibility trajectories (rows) to mean activity of gene expression trajectories (columns). e, Normalized enrichment of CREs from each
accessibility trajectory (rows) relative to CREs associated with each gene expression trajectory (columns) on the basis of proximity. f, Chromatin state
(average ATAC-seq, H3K27ac, H3K27me3 and H3K4me1 profiles) in 10-kb windows around ATAC-seq peak summits of distal CREs exhibiting dynamically
increasing chromatin accessibility. g, Chromatin state (average ATAC-seq, H3K27ac, H3K27me3 and H3K4meT profiles) in 10-kb windows around
ATAC-seq peak summits of distal CREs exhibiting dynamically decreasing chromatin accessibility. h, Chromatin state (average ATAC-seq, H3K27ac,
H3K27me3 and H3K4meT profiles) in 10-kb windows around TSSs of genes with dynamically increasing expression. i, MAFB (chr20:39306135-39321639)
and OVOL1 (chr11:65551663-65562811) as examples of genes with release of repression at the TSS in terminal differentiation. Dynamic ranges of assays
are as follows: ATAC-seq, 0-800; H3K27ac, 0-200; H3K4mel, 0-100; H3K27me3, 0-150 (units, -log,, P value). j, Chromatin states (average ATAC-seq,
H3K27ac, H3K27me3 and H3K4me1 profiles) in 10-kb windows around TSSs showing release of repression in terminal differentiation.
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model at each timepoint (Fig. 3c). Although the sequence of a given  or repressive effect of predictive sequence features through the lens
CRE is the same across all timepoints, the base-resolution contribu-  of the model. To evaluate the potential functional consequences of
tion scores are dynamic and reflect the timepoint-specific activating  predictive nucleotides highlighted by the model, we estimated the
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allelic imbalance of ATAC-seq reads’” of 16,686 SNPs in CREs. SNPs
overlapping bases with high contribution scores were associated
with larger allelic effect sizes (Extended Data Fig. 3e). Furthermore,
model-derived predicted allelic effects using an in silico mutagen-
esis approach were stronger for SNPs exhibiting statistically sig-
nificant (false discovery rate (FDR)<0.10) allelic imbalance than
for SNPs that were allele-insensitive. These results indicate that the
base-resolution contribution scores are enriched for nucleotides
with putative functional effects on chromatin accessibility.

The base-resolution contribution scores highlighted short con-
tiguous stretches of bases, reminiscent of TF binding motifs (Fig.
3c). Hence, we used a comprehensive compendium of known TF
binding sequence motifs from the HOCOMOCO database®® to scan
each CRE at each timepoint for predictive motif instances as sub-
sequences with statistically significant (empirical P<0.05) motif
match scores to the sequence and to the sequence weighted by the
base-resolution contribution scores (Fig. 3d and Supplementary
Table 10). We identified 185 motifs with predictive motif instances
across all timepoints, of which only 49 were identified by a con-
ventional motif discovery method® that estimates motif enrich-
ments based solely on sequence match scores (Extended Data Fig.
3f). We identified a subset of 59 motifs whose predictive motif
instances exhibited dynamic contribution-weighted motif match
scores across the timecourse that were correlated strongly (Pearson
R>0.75) with RNA expression levels of TFs previously annotated
to bind them (Fig. 3¢). For most of these 59 motifs, the ATAC-seq
signal of peaks containing motif instances identified solely on the
basis of statistically significant sequence match scores showed sig-
nificantly lower correlation with the TF expression dynamics of the
corresponding TFs (Fig. 3f). Hence, the model-derived contribu-
tion scores of motif instances distilled from the ATAC-seq signal
are critical to obtain improved estimators of the cis-regulatory activ-
ity of TFs. Predictive motif instances were also strongly supported
by ChIP-seq experiments of matched TFs, indicating that they are
probably capturing bound motif instances. For example, TP63,
ZNF750 and KLF4 ChIP-seq*~* profiles exhibited higher occu-
pancy at their predictive motif instances as compared with inactive
motif instances with low contribution scores in CREs (Fig. 3g and
Extended Data Fig. 3g). Predictive motif instances had consistently
higher overlaps with ChIP-seq peaks across the entire dynamic
range of contribution-weighted match scores compared to motif
instances ranked on the basis of sequence match scores (Extended
Data Fig. 3h). Similarly, ATAC-seq footprinting analysis* identi-
fied stronger TF footprints at predictive motif instances compared
with all motif instances in peaks (Fig. 3h and Extended Data Fig.
3i). Genes linked to CREs containing predictive instances of each
of the 59 motifs were also enriched strongly for epidermis-specific
functions (Supplementary Fig. 1). These results support the utility

of the model-derived contribution scores to decipher active motif
instances in CREs and infer their dynamic regulatory activity across
the timecourse.

We were able to confidently assign 59 predictive motifs to 100 TFs
from among paralogous sets of candidate TFs with similar binding
motifs, on the basis of high correlation of motif contribution scores
and TF expression across the timecourse (Fig. 3i, Extended Data Fig.
3j,k and Supplementary Table 11). Several of these TFs are known
to be essential in keratinocyte differentiation, such as p63, CEBPA,
GRHL2, AHR, FOSB, DLX3, VDR, ZNF750, MAFB, RARG, JUNB,
KLF4 and OVOLI (refs. *'%%*). We also identified sets of paralo-
gous TFs with different patterns of concordant or discordant expres-
sion across the timecourse. For example, ETV1, ETV4, ETV5 and
ETS1 are paralogs that recognize the same motif and concordantly
decrease expression across differentiation. In contrast, the AP-1 fam-
ily member FOSL1 is most active early in differentiation, while the
other paralogs FOS, FOSB, JUNB and JUND are most active late in
differentiation. These results indicate potential coordination among
some TF family members, as well as possible regulatory transitions
mediated by switching between TF family members.

Next, we identified predictive motifs with strong negative con-
tribution scores since these motifs could highlight potentially
repressive TFs that are predicted to reduce chromatin accessibility.
We focused specifically on dynamic CREs that decreased acces-
sibility across differentiation as these are most likely to be bound
by repressive TFs (Fig. 2g). Motifs of CEBPA and KLF4 showed
significant negative contribution scores specifically in this set of
dynamic CREs as well as strong negative correlation of motif activ-
ity with TF expression across the timecourse (Extended Data Fig.
4a,b). Genes linked to CREs containing these predictive motifs were
enriched for epidermis-specific proliferation, migration and adhe-
sion processes (Extended Data Fig. 4c), indicating a functional role
for these TFs in decommissioning the progenitor maintenance pro-
gram. This hypothesis is supported by previous studies in repro-
gramming systems that have noted important roles for both CEBPA
and KLF4 in decommissioning enhancers by modifying chromatin
state through interactions with LSD1, HDAC1 and BRD4 as well
as by TF displacement*~*". Furthermore, CEBPA has been known
to be an important reprogramming factor in at least two cell types,
fibroblasts and B cells**. CEBPA and KLF4 were also identified as
having predictive motifs with positive contribution scores in other
CREs (Fig. 3e), indicating that CEBPA and KLF4 probably play
both activating and repressing roles during chromatin remodeling
in keratinocyte differentiation by activating terminal differentiation
programs and decommissioning progenitor maintenance programs.

Model interpretation shows combinatorial regulatory logic.
CREs are often composed of a multiplicity of motifs of one or more

>
>

Fig. 3 | Deep-learning models of chromatin accessibility show dynamic predictive motif instances across the differentiation timecourse. a, Left, schematic
of a multitask CNN that maps 1-kb DNA sequences across the genome to quantitative chromatin accessibility signal across timepoints. Right, Pearson
correlation (R) between predicted and observed accessibility across CREs of each timepoint for ten folds of held-out test set chromosomes for randomly
initialized (Fresh init.) and pretrained (transfer) models. Box-and-whisker plots show all points, minimum to maximum, with 25th to 75th interquartile
range. b, Scatter plots of predicted versus observed accessibility signal (units of log depth-normalized coverage) across CREs in test set chromosomes

for three timepoints: (left to right) ATAC-seq at days O, 3 and 6. ¢, Left, schematic of inference of base-resolution contribution scores for a sequence with
respect to predicted output at specific timepoints using efficient backpropagation methods. Right, a CRE linked via H3K27ac HiChlP to the promoter of the
KRT77 gene (chr12:53090924-53099998) shows progressively increasing contributions of nucleotides in CEBPA and TP63 motifs across the timecourse
together with increasing accessibility. Assay ranges are as follows: ATAC-seq, 0-100; H3K27ac, 0-200; H3K4me]1, 0-100 (units, -log,, P value). NN,

neural network. d, Schematic for identification of predictive motif instances by scanning sequence weighted by contribution scores with known motifs. e,

Dynamics of predictive contribution-weighted match scores of motifs across the timecourse averaged over all dynamic CREs. f, Comparison of correlation
of TF expression across the timecourse to average contribution-weighted motif match scores of all predictive instances of 59 predictive motifs (y axis)
versus correlation of TF expression to average ATAC-seq signal of CREs overlapping motif instances of the same 59 motifs identified solely on the basis of
motif sequence match scores (x axis). g, Predictive motif instances of TP63 and ZNF750 motifs exhibit higher ChIP-seq signal than predicted inactive motif
instances in CREs. h, ATAC-seq footprints are stronger at predictive motif instances of HOXA1 and CEBPD motifs relative to footprints at predicted inactive
motif instances. i, Expression patterns of TFs with correlated dynamics of matched predictive motifs across the differentiation timecourse.
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TFs in different syntactic configurations with variable motif den-  motif syntax on chromatin accessibility of CREs across epidermal
sity and affinity. However, the regulatory role of motif syntax has  differentiation through the lens of our predictive models. First, we
been difficult to resolve. Hence, we decided to infer the influence of  used the neural network models to predict the quantitative effect of
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Fig. 4 | Combinatorial in silico perturbation analysis to infer heterotypic cis-regulatory logic. a, Schematic for combinatorial in silico perturbation analysis.
All genomic instances of CREs containing significantly co-occurring motif pairs were evaluated. Motif pairs were also embedded in synthetic background
sequences for orthogonal evaluation. For each candidate sequence containing a motif pair, the NN is used to predict changes in chromatin accessibility due to
marginal perturbation of each motif and joint perturbation of both motifs. The joint effects are compared with the sum of the marginal effects (log additivity)
to test for supermultiplicative, multiplicative (log-additive) or submultiplicative joint effects. b, Example locus (chr15:101080467-101108623) where a

CRE that loops to the CERS3 promoter contains active instances of CEBPA and GRHL2 motifs. Assay ranges are as follows: ATAC-seq, 0-600; H3K27ac,
0-50; H3K4me1, 0-50 (units, -log,, P value). The contribution score tracks from top to bottom are the wild-type (genomic) sequence, the sequence with
the GRHL motif scrambled, the sequence with the CEBPA motif scrambled and the sequence with both motifs scrambled (double scramble). The right

plot shows the predicted accessibility for the wild-type sequence, sequences with marginal perturbations of individual motifs and the sequence with joint
perturbations (as the baseline). The motifs exhibit a multiplicative (log-additive) joint effect. FC, fold change; scr, scramble. ¢, Number of CREs supporting
significantly co-occurring predictive pairs of motifs. d, Scatter plot comparing the difference between the joint effect on predicted accessibility and the sum
of the predicted marginal effects (y axis: NN-predicted joint effect minus the sum of the marginal effects) to the sum of the marginal effects (x axis) of motif
perturbations for all significantly co-occurring motif pairs using genomic sequences. Supermultiplicative pairs (pink) fall above the dashed line, multiplicative
pairs (yellow) fall near and on the dashed line, and submultiplicative pairs (green) fall below the dashed line. e, Scatter plot comparing the difference
between the joint effect on predicted accessibility and the sum of the predicted marginal effects (y axis) to the sum of the marginal effects (x axis) of motif
perturbations for all significantly co-occurring motif pairs using synthetic sequences. f, Comparison of interaction effects of all significantly co-occurring
motif pairs that exhibit skin-related functional enrichments using genomic sequences (below diagonal) and synthetic sequences (above diagonal).
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homotypic motif density on chromatin accessibility using synthetic
DNA sequence inputs composed of a systematically varying num-
ber of motif instances of each of the 59 predictive motifs. While
most TFs (for example, CEBPD) showed monotonic increases in
accessibility with increasing homotypic motif density, some TFs
(for example, FOSB) showed saturation effects indicating nonlinear
cooperative homotypic interactions (Extended Data Fig. 5a).

Next, we analyzed the relationship between the density and
affinity (log odds of motif sequence match scores) of predic-
tive motif instances of each motif across all CRE sequences in the
genome (Extended Data Fig. 5b). For several key epidermal TFs (for
example, CEBPD and GRHL2), we observed a systematic decrease
in the upper limit of motif affinity as a function of increasing motif
density. This striking tradeoff between motif density and affinity is
supported by previous studies that have highlighted the critical role
of suboptimal low-affinity motifs in preventing ectopic or ubiqui-
tous regulatory activity of dynamic CREs, thereby allowing more
fine-grained context-specific modulation by varying TF concentra-
tion">*’. We also analyzed the relationship between motif affinity
and motif position relative to the local maxima of ATAC-seq signal
in CREs. Higher-affinity sites were preferentially positioned closer
to the maxima (Extended Data Fig. 5c). Altogether, our models
show key principles of homotypic motif syntax encoded in dynamic
CREs in epidermal differentiation (Extended Data Fig. 5d).

We then used two complementary in silico motif perturbation
analysis methods to quantify the influence of heterotypic pairs of
co-occurring motifs on chromatin accessibility dynamics. The first
approach quantifies the impact of in silico disruption of one instance
of a predictive motif on the contribution scores of a co-occurring
predictive instance of a different motif**. The second approach
compares the sum of the marginal effects of in silico disruption of
each motif instance to the effect size of jointly disrupting both motif
instances on predicted chromatin accessibility (Fig. 4a). The mod-
els predict chromatin accessibility signal as the depth of normalized
read coverage on a log scale. Hence, additive effects on the log scale
represent multiplicative effects on normalized read coverage. Motif
pairs with joint effects larger than the sum of their marginal effects
represent supermultiplicative interactions. Motif pairs whose joint
effects are smaller than the sum of their marginal effects represent
submultiplicative motif combinations that potentially act through
independent, additive effects (Fig. 4b and Extended Data Fig. 6a).
We restricted heterotypic motif interaction analysis to motif pairs
with enriched co-occurrence of predictive motif instances in the
dynamic CREs (Fig. 4c). Co-occurrence statistics using only pre-
dictive motif instances instead of all motif instances showed more
specific and less promiscuous motif pairs (Extended Data Fig. 6b,c).
For each heterotypic pair of motifs, we estimated in silico interac-
tion effects for all dynamic CRE sequences containing predictive

instances of both motifs. Most of the enriched co-occurring motif
pairs exhibited multiplicative (log-additive) and supermultiplica-
tive effects (Fig. 4d), indicating extensive cooperativity between
co-binding TFs through heterotypic motif syntax.

We also computed in silico interaction effects for motif pairs after
embedding them in synthetic scrambled background sequences to
avoid cryptic cooperative effects induced by other predictive motifs
in the endogenous context (Fig. 4e). We observed more submulti-
plicative motif interactions in these synthetic backgrounds as com-
pared to endogenous sequence context. These differences indicate
that the native genomic context probably encodes higher-order
cooperative interactions between the tested motif pairs and fur-
ther motif partners. To winnow down the motif pairs to those with
probable functional roles, we computed enrichments of functional
terms using proximal gene sets associated with all CREs harboring
predictive instances of each motif pair (Extended Data Fig. 7) and
restricted to those that were enriched for skin-related functional
terms (Fig. 4f). We thus obtained a core lexicon comprising 80 het-
erotypic pairs of significantly co-occurring TF motifs linked to dis-
tinct processes at different stages of epidermal differentiation.

This combinatorial lexicon implicates known and new coopera-
tive partners (Extended Data Fig. 7). The ZNF750 motif was found
to interact strongly with motifs for the CEBP family members
CEBPA and CEBPD, both of which are known to be important in
KRT10 regulation®'. The ATF1 motif is present in stem cell mainte-
nance rules, such as ATF1 with GLI1, as well as late differentiation
rules, such as ATF1 with TP63. Notably, of the TFs that can bind to
the ATF1 motif, CREBI is most expressed at the beginning and end
of differentiation while ATF1 increases in expression. NFKB/REL
motifs are present only in stem cell maintenance rules, support-
ing a role for NFKB/REL motifs in progenitor state maintenance™.
Notably, of the TFs that bind to the NFKB/REL motifs, RELB and
NFKB2 decrease in expression while REL and RELA increase in
expression. These rules, in conjunction with matched TF expression
dynamics, demonstrate that precise targeting of gene modules and
coordination of activation and deactivation relies on combinatorial
motif syntax and expression of specific TF family members.

Regulatory activity in the combinatorial motif lexicon. Next, we
validated the temporal dynamics and the quantitative effects of the
combinatorial motif lexicon on intrinsic regulatory potential using
MPRA experiments at several timepoints of in vitro differentiation.
We used the predictive motif annotations of all dynamic CREs to
design libraries for the MPRA experiments. We designed 160-bp
constructs for 19 randomly selected native human genomic CRE
sequence examples from each of the 80 heterotypic motif pairs,
mutants with combinatorially scrambled motif instances (indi-
vidually and jointly) as well as corresponding positive and negative

>
>

Fig. 5 | Validation of combinatorial motif pairs using MPRAs. a, MPRA design. For each of the derived combinatorial rules, genomic instances of each

rule were selected randomly and the motif pair in the instance was scrambled combinatorially. All combinatorial versions of the sequence were added to
the MPRA library, which was inserted lentivirally into primary keratinocytes. These cells were induced to differentiate, and reporter RNA was collected at
days 0, 3 and 6. b, Examples of three combinatorial rules: the HOXA1-ETV5 motif pair (progenitors), the ZFX-CEBPD motif pair (early differentiation) and
the FOXO1-CEBPA motif pair (late differentiation). Left column, plots showing observed expression across time for the wild-type (genomic) sequences
as well as the sequences with both motifs mutated (double scramble), normalized to day O. Right column, combinatorial dynamics of genomic instances
of each rule, relative to joint motif-scrambled mutants. Box-and-whisker plots show all points, minimum to maximum, with 25th to 75th interquartile
range. ¢, Summary of the combinatorial interaction effects of all temporally valid motif pairs. The scatter plot compares the joint effect (log fold change
of reporter expression) of each motif pair (y axis) relative to the sum (log additivity) of the marginal effects of each motif (x axis). d, Luciferase reporter
expression on combinatorial rule instances taken from the genome. R4 and R5 are instances of the CEBPD-ZNF750 rule, and R11 and R12 are instances of
the KLF4-ZNF750 rule. Data shown summarize three independent experiments and are represented as mean =+ s.e.m. RLU, relative luminescence units.
e, ChIP-ReChlIP experiments show TF occupancy on representative instances of combinatorial rules. Left, an instance of the CREB1-ETV5 rule on day O.
Right, an instance of the CEBPD-ZNF750 rule on day 6. Data shown summarize two independent experiments per reporter and are represented as mean
+ s.e.m. f, GFP reporter expression (green) in representative human skin organoids with reporter expression engineered to be driven by R4 and R5 native
genomic instances of the CEBPD-ZNF750 rule; note GFP reporter in outer epidermal layers that correspond to late differentiation. DAPI, 4',6-diamidino-
2-phenylindole. Scale bar, 20 um. This experiment was repeated three times with similar results.
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controls for the MPRA library—a total of 77,090 sequences (Fig. 5a,  then cells were induced to differentiate and harvested at appropri-
Extended Data Fig. 8a,b and Supplementary Table 12). The MPRA  ate timepoints. MPRA readouts for the entire library were obtained
library was integrated with lentivirus into progenitor keratinocytes, on days0 (progenitor state), 3 (early differentiation) and 6 (late
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differentiation) of the differentiation timecourse (Extended Data
Fig. 8c-e). Sample clustering and PCA demonstrated high repro-
ducibility and clear separation between the progenitor state at day0
and the differentiated state at days 3 and 6 (Extended Data Fig. 8f).

First, we compared the MPRA-measured expression for the
wild-type genomic regulatory sequences in our library to their
corresponding measured and predicted ATAC-seq signal as well
as H3K27ac signal in matched timepoints. We observed low cor-
relation between MPRA expression and observed ATAC-seq signal
(Pearson p=0.097), predicted ATAC-seq signal (Pearson p =0.088)
and observed H3K27ac signal (Pearson p=0.061) (Extended
Data Fig. 8g), indicating fundamental differences between the
MPRA-derived intrinsic measures of regulatory potential and
endogenous chromatin state of regulatory sequences. However, we
found that simple linear models that used the nonlinear sequence
representation encoded in the final layer of the ATAC-seq CNN
models as inputs were able to fit the MPRA expression levels with
improved correlation (Pearson p=0.344). These results indicate
that the combinatorial sequence features that are predictive of
ATAC-seq signal are also predictive of MPRA activity after a simple
linear transformation. Hence, we postulated that the MPRAs could
be used to validate the different combinatorial rules of cis-regulatory
motif logic inferred from the models trained on the ATAC-seq data.

Since we observed concordance between chromatin dynam-
ics and expression dynamics of associated putative target genes,
we considered a heterotypic pair temporally valid if it produced a
concordant effect in reporter expression compared with the mea-
sured and predicted chromatin accessibility dynamics of the CREs
containing the pair. For example, for tested sequences containing
the HOXAI1-ETV5 motif pair, reporter activity decreased during
differentiation, synchronous with the accessibility dynamics of the
CREs containing this pair (Fig. 5b and Extended Data Fig. 8h).
Using this criterion, 55 of the 80 heterotypic motif pairs (68%) were
validated for temporal dynamics. Of these, 43 of the pairs (78%)
showed significant differential activity relative to the mutated con-
structs in which both motifs were scrambled, indicating that these
motif pairs are key drivers of regulatory potential for these CREs.
Next, we used the combinatorially scrambled mutant sequences
to determine whether the heterotypic motif pairs had multiplica-
tive, supermultiplicative or submultiplicative effects on reporter
expression. Of the 55 temporally valid motif pairs, we found that
18 pairs had supermultiplicative effects, 37 rules had multiplicative
(log-additive effects) and none of the rules exhibited submultipli-
cative effects on reporter expression (Figs. 5¢c and 6a). Hence, the
MPRA experiments support the multiplicative and supermultiplica-
tive cooperative effects of motif pairs on chromatin accessibility as
predicted by the model.

We performed further complementary experiments character-
izing a few genomic instances of specific combinatorial motif rules
validated by the MPRA experiments. First, we measured luciferase
and green fluorescent protein (GFP) reporter expression for the
genomic sequences of two CREs encoding the CEBPD-ZNF750
rule and two CREs encoding the ZNF750-KLF4 rule across three
timepoints (Fig. 5d, Extended Data Fig. 9a,b and Supplementary

Table 13), which demonstrated the predicted dynamic expression
patterns. To determine whether these rules demonstrate expected
TF occupancy, we analyzed representative genomic examples of
the CREB1-ETV5 rule and the CEBPD-ZNF750 rule, which dem-
onstrated co-occupancy of the expected TFs by sequential ChIP
(ChIP-ReChIP) experiments (Fig. 5e and Supplementary Tables 13
and 14). To determine whether this occupancy was the driver of
dynamic expression, we performed ZNF750 knockout followed by
reporter luciferase assay on examples from two combinatorial rules
containing ZNF750 (Extended Data Fig. 9c), which demonstrated
the predicted decrease in expression due to ZNF750 loss. To deter-
mine whether these rules were also functional in intact, normally
differentiating human epidermis, two examples of the CEBPD-
ZNF750 rule were engineered into regenerated human epidermal
organoid tissue. GFP reporter expression driven by this rule was
observed in the outer epidermal layers, consistent with predicted
action of this rule in late-stage differentiation (Fig. 5f). These analy-
ses thus validate a combinatorial interaction between CEBPD and
ZNF750 in keratinocyte differentiation. In summary, we find that
these combinatorial rules are bound by TFs that modulate down-
stream activity and act with fidelity and stage specificity in human
tissue models.

Disease-associated genetic variation in the motif lexicon. Using
imputed genome-wide association study (GWAS) data from the
UK Biobank database (http://www.nealelab.is/uk-biobank/), we
observed that 493 genome-wide significant variants for a curated
set of skin phenotypes were found in 295 CREs (from 2,092 total
genome-wide significant variants across the phenotypes). These
phenotypes included a variety of human skin diseases character-
ized by dysregulated epidermal differentiation, such as prema-
lignant actinic keratosis, dermatitis, psoriasis, rosacea and acne
vulgaris. To test whether the combinatorial motif lexicon was
enriched for noncoding variants associated with these complex
skin phenotypes, we used linkage disequilibrium (LD)-score
regression®* in conjunction with the curated UK Biobank pheno-
types and GWAS studies with summary statistics’>*°. Genetic vari-
ants associated with skin-related diseases and traits were enriched
in CREs containing specific motif rules with distinct temporal
activity (Extended Data Fig. 10a), indicating that disruption of
cooperative TF interactions that regulate epidermal differentiation
may mediate disease risk in a manner consistent with pathologi-
cal features of the corresponding skin disease. For example, motif
pairs that influence the late stages of differentiation were enriched
for heritability associated with acne, which is linked pathologically
to abnormal terminal follicular keratinization. We further iden-
tified disease-specific networks of dysregulated TF lexicons by
integrating all motif pairs enriched for disease-associated varia-
tion (Extended Data Fig. 10b). For example, the gene AHR has a
known role in psoriasis as an immunomodulatory TF in keratino-
cytes’” and is highlighted in our analysis as a potential hub TE In
dermatitis, our analysis highlights the known prodifferentiation
TFs ZNF750 and VDR**** and indicates roles for RUNX1, CREBI
and ATF1. Our results indicate that common noncoding genetic

>
>

Fig. 6 | A combinatorial motif lexicon in keratinocyte differentiation. a, Summary of the validated combinatorial lexicon of motif pairs. Left to right,
heatmap of ATAC-seq dynamics averaged over all CREs containing predictive motif instances of each motif pair; motif pairs (each row is a distinct motif
pair); average expression dynamics over all putative downstream target genes associated with CREs containing predictive motif instances of each motif
pair; type of interaction (pink, supermultiplicative; yellow, multiplicative), expected sum of marginal effects compared with joint effects in the MPRA;

and enriched functional terms for downstream target gene sets associated with CREs containing predictive instances of each motif pair. b, Predicted
cooperative TF interactions mediated by predictive motif pairs across the epidermal differentiation timecourse. Each node is a TF (or several TFs) matched
to predictive motifs. The color of the node represents the timepoint at which the TF shows the highest expression across the timecourse. Each edge is

a predicted cooperative interaction between a pair of TF motifs validated by MPRA experiments. Each edge is colored by the timepoint at which CREs
containing predictive motif instances of the motif pair have the highest average accessibility. The thickness of the edges represents the type of cooperative
logic for the motif pair: supermultiplicative (thick), multiplicative (thin) or submultiplicative (dashed).
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variants disrupting combinatorial cis-regulatory motif lexicons Discussion
may pathologically dysregulate epidermal differentiation in poly- Here, we present a resource for deciphering the cis-regulatory

genic skin disorders. code of epidermal differentiation. Dense longitudinal profiling of
a Combinatorial motif lexicon
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the transcriptome and epigenome throughout the differentiation
process enabled the identification of distinct dynamic trajectories
of 40,103 dynamic CREs driving synchronous changes in gene
expression of linked target genes. The depth and breadth of the data
allowed training of deep-learning models to infer the combinato-
rial lexicon of cooperative TF binding sites encoded in the dynamic
CREs at single-base resolution. MPRA experiments validated pre-
dicted temporal dynamics and cis-regulatory logic involving coop-
erative TF interactions explaining regulation of 9,726 dynamic
CREs (24.2% of all dynamic CREs) linked to 1,004 dynamic tran-
scripts (32.7% of the dynamic transcriptome) across the differen-
tiation timecourse. The homotypic motif clusters explain another
5,426 more dynamic CREs (13.5% of all dynamic CREs) and 515
more dynamic transcripts (14.2% of the dynamic transcriptome).

This integrative resource serves as a repository of hypotheses
about combinatorial cis-regulatory control of several key processes
in epidermal differentiation (Fig. 6b). We find a progenitor mainte-
nance lexicon including RELB, NFKB2, ETS1, SMAD3 and RUNX1
motifs that jointly orchestrate deactivation and disassembly of
hemidesmosomes, which are structural proteins that anchor kerati-
nocytes to the basement membrane. The associated TFs decrease in
expression quickly, within the first 12h of initiating differentiation.
We also identified intricate interplay of motifs in an early differen-
tiation lexicon involving ATF4, ATF6, GRHL2, MTF1 and NR2Cl
motifs that associates with induction of early differentiation genes.
In late differentiation, we discovered a lexicon comprising HSF2,
CEBPD, ZFX, CEBPA and ZNF750 motifs that regulate a module
of genes involved in fatty acid metabolism, an essential process for
cornification and maintenance of skin barrier function. ZNF750 is
one of the last TFs to sharply increase in expression around day5.5,
consistent with the observed essential role of ZNF750 in orches-
trating terminal skin barrier formation'®**. We also found repres-
sive motifs of CEPBPA and KLF4 in CREs marked by decreasing
chromatin accessibility, indicating a role in decommissioning the
progenitor maintenance program. Finally, the enrichment of skin
disease-associated variants in specific rules of the cis-regulatory lex-
icon indicates that this approach could prove useful in future efforts
aimed at fine mapping causal variants and genes as well as provid-
ing mechanistic insights into how these variants might disrupt key
pathways in skin differentiation.

The cis-regulatory code is more than the sum of its parts. The
interpretable, deep-learning framework presented here (https://
github.com/kundajelab/tronn) provides a generalizable approach to
move beyond static catalogs of cis-regulatory ‘parts lists’ (refs. ©*%-
) to predictive, quantitative models of higher-order cis-regulatory
logic. Previous advances in deep-learning model interpretation
methods have focused largely on discovering motif representations,
active motif instances and their co-occurrence patterns®>>¥"°, The
current in silico combinatorial perturbation framework extends this
to enable discovery of quantitative rules of homotypic and hetero-
typic cis-regulatory logic such as the multiplicative and supermul-
tiplicative effects of frequently co-occurring motif combinations on
chromatin accessibility. Unlike previous studies that have investi-
gated the critical regulatory role of cooperative TF binding in lim-
ited contexts, this approach allows comprehensive, genome-wide
explanation of these effects, at the resolution of individual CREs, in
dynamic processes such as cellular differentiation.

The present analyses also reconcile the influence of cis-regulatory
logic on endogenous chromatin state and intrinsic regulatory
potential. MPRAs offer a powerful experimental platform to test
the effects of motif combinations on reporter gene expression
activity’>”2. However, interpretation of MPRAs designed to test
endogenous properties of regulatory DNA is challenging since
the sequences are tested outside their native genomic context.
We found that chromatin accessibility and histone modification
levels are poor predictors of absolute regulatory potential at each

timepoint across CREs encoding different combinatorial rules.
However, relative changes of these measures of chromatin state of
CREs encoding specific combinatorial rules are highly consistent
with relative changes in their regulatory potential across timepoints.
The sequence features learned by the deep-learning models of chro-
matin accessibility are also predictive of MPRA activity, indicating
a shared cis-regulatory sequence code underlying intrinsic regula-
tory potential and chromatin state. Consistent with this hypothesis,
the cooperative cis-regulatory logic of combinatorial motif rules
inferred from chromatin accessibility was strongly validated by the
MPRA experiments. These observations indicate that the intrinsic
regulatory potential and chromatin state of CRE sequences are both
determined by the same underlying cis-regulatory motif syntax
mediating cooperative TF binding despite the significant differ-
ences in transformations of different syntactical rules into quantita-
tive readouts of regulatory activity measured by the different assays.
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Methods

Experiments and data processing. Primary human keratinocytes were

isolated from fresh surgically discarded neonatal foreskin and cultured in
Keratinocyte-SFM (Life Technologies, catalog no. 17005-142) and Medium

154 (Life Technologies, catalog no. M-154-500). Keratinocytes were induced to
differentiate by addition of 1.2 mM calcium (added 12h after seeding at confluence)
for 6 days in full confluence. Cells were harvested every 12h for a total of 13
timepoints and banked into cell pellets, viable batches (10% dimethylsulfoxide in
media), or cross-linked with 1% formaldehyde and frozen at -80 °C. We performed
ATAC-seq on all timepoints. We performed ChIP-seq for H3K27ac, H3K4mel
and H3K27me3 on three timepoints (days0, 3 and 6). We performed PAS-seq

on all timepoints. We performed HiChIP on three timepoints (days0, 3 and 6).
Further experimental details and data processing details can be found in the
Supplementary Methods.

Epigenomic and transcriptomic landscapes. To determine the landscape of
accessible regulatory elements across keratinocyte differentiation, we took the
union set of the ATAC-seq peaks across all timepoints to determine an atlas of
CREs. We generated a signal coverage matrix using counts of corrected transposase
cut sites in the sequencing reads, and we used DESeq2 on all pairs of timepoints to
get all CREs that have differential signal between any pair of timepoints, using an
FDR of 0.0005 to give us a postanalysis Bonferroni-corrected FDR of 0.05 across
all tests. To group the dynamically accessible CREs into defined trajectories across
time, we used Dirichlet process-Gaussian process (DP-GP) timeseries clustering
with replicate reproducibility. This analysis framework extends DP-GP time series
clustering™ to consider replicates and to determine which clusters are reproducible
across replicates (Supplementary Methods).

To determine the landscape of transcripts across keratinocyte differentiation,
we first determined the set of expressed genes at each timepoint. We did this by
first normalizing the full matrix of protein-coding transcripts across timepoints
using the rlog function from DESeq2 (ref. ), and then setting an empirical
threshold on the basis of the best separation of a Gaussian mixture model on the
rlog normalized values (threshold =4.0). We then took the union of all expressed
genes across timepoints to determine the transcriptomic atlas. We then used
DESeq2 on all pairs of timepoints to get all genes that have differential signal
between any pair of timepoints, using an FDR of 0.0005 to give us a postanalysis
Bonferroni-corrected FDR of 0.05 across all tests. To group the dynamic genes into
defined trajectories across time, the same framework used for the dynamic CREs
was also used for the dynamic genes.

Deep learning. Convolutional neural networks. We trained multitask CNNs to
map 1-kb DNA sequence regions accurately across the genome to quantitative
read outs of chromatin accessibility and several histone marks in each timepoint
of keratinocyte differentiation. CNNs can learn complex sequence patterns that
are predictive of genome-wide chromatin accessibility and histone mark profiles.
We use a multistage, transfer learning training regimen to maximize prediction
performance and model stability by leveraging large compendia of chromatin
accessibility data across 100s of diverse tissues.

Architecture, training and evaluation. We used the previously optimized multitask
Basset CNN architecture for predicting genome-wide chromatin accessibility
from DNA sequence across several samples®. Full architecture parameters can be
found in the Supplementary Methods. The inputs to the model are 1-kb long DNA
sequences that are one-hot encoded. The final layer mapped to several outputs
(multitask output) spanning the timepoints and each of the different types of
molecular read out (chromatin accessibility or histone marks). We use binary or
continuous output labels and associated loss functions in the multistage training.
When training on binary labels, we use the binary cross-entropy loss function
with logistic outputs. When training on continuous, quantitative measures of
accessibility or histone marks, we use the mean squared error loss function with
linear outputs. The multitask loss is the sum of the loss over all tasks.

We binned the genome into 1-kb windows with a stride of 50 bp. Each bin
can serve as an example in a training, validation/tuning or test set. We divide
chromosomes into ten folds. We use a cross-validation set up where we use eight
folds for training, one for validation/tuning and one for testing. Further details on
training, evaluation and calibration can be found in the Supplementary Methods.

Inference of predictive motif instances. Overview. The multitask CNNs map
every candidate regulatory DNA sequence to quantitative measures of chromatin
accessibility at each timepoint in the differentiation timecourse. We developed an
interpretation framework to interrogate the model and decipher motif instances
in each candidate element that are predictive of chromatin accessibility at each
timepoint. First, we used gradient-based feature attribution methods to decompose
the predicted output (at each timepoint) for an input sequence in terms of
contribution scores of each nucleotide in the sequence. We developed methods to
stabilize and normalize the scores. We developed stringent null models to identify
statistically significant contribution scores. We then used a large compendium of
precompiled TF motifs to scan and score the sequences as well as the contribution
score profiles. We developed stringent null models to infer predictive motif

instances that have statistically significant contribution scores and sequence match
scores. Full details can be found in the Supplementary Methods, and key methods
are briefly described here.

Contribution scores. For each input sequence, we computed input-gated gradient
score profiles from dinucleotide shuffled versions of the sequence. We used these
scores to construct an empirical null distribution of contribution scores for that
sequence. We used that empirical null distribution to derive empirical statistical
significance of the observed contribution scores. We used a threshold of P <0.01 to
call statistically significant scores. The scores of all positions that did not pass the
significance threshold were set to 0.

Dynamic predictive motif instances. We identified dynamic predictive motif
instances in each input sequence across timepoints, for each of the known motifs
in the motif compendium, by scanning and scoring the sequence as well as the
dynamic the contribution score profiles derived from the model. Full details can be
found in Supplementary Methods. First, for each position weight matrix (PWM)
motif, we computed sequence match scores at every position in each sequence. The
scanning and scoring can be implemented as a convolution operation. Hence, we
used the deep-learning framework to implement a single convolutional layer with
filters corresponding to each of the PWM:s in the deep-learning framework. We
used the convolutional layer to scan and score all PWMs across the forward and
reverse complement of each one-hot encoded sequence. We also used the same
operation to scan and score dinucleotide shuffled versions of each of the genomic
sequences. We thus obtained an empirical null distribution of match scores for
each PWM for each sequence. We identified positions with significant sequence
match scores as those that pass P<0.05 on the basis of the empirical distributions.
For any sequence, the significant positions on the basis of sequence match scores
will be identical across all timepoints. Next, we used the PWMs to scan and score
the dynamic contribution score profiles for each sequence in each timepoint.
Essentially, we repeated the same convolution operation using PWM filters but
using the contribution score profiles to weight the one-hot encoded sequences.
Hence, we obtained contribution-weighted match scores to the PWMs. Our final
set of predictive motif instances for each sequence in each timepoint corresponded
to positions that have significant sequence match scores and significant
contribution-weighted match scores. Since the contribution score profiles for

each sequence can change across timepoints, the predictive motif instances were
dynamic across timepoints.

Motif pair interactions. Co-occurring pairs of predictive motifs in a regulatory
sequence can have different types of quantitative joint effect on chromatin
accessibility (depth-normalized ATAC-seq read coverage). We explore three types
of joint effect. Lack of motif interactions would manifest as independent, additive
effects on coverage. Interactions between motifs learned by the model would
manifest as multiplicative (additive in log space) or supermultiplicative effects
(multiplicative in log space) on coverage. For all pairs of functionally enriched
pairs of co-occurring motifs, we identified all the sequences containing predictive
instances of the pair. We then used two complementary approaches to test each
instance of a pair of motifs for epistatic interactions.

First, we used the Deep Feature Interaction Map method* to score epistatic
interactions between pairs of candidate predictive motif instances (say A and
B) in a sequence. Briefly, we inferred the positions in the sequence that exhibit
statistically significant delta contribution scores due to in silico mutations to motif
A. If motif instance B overlaps any positions with significant delta contribution
scores then it is estimated to have an interaction effect with motif A on ATAC-seq
read coverage.

Next, we corroborated the Deep Feature Interaction Map scores, with an
explicit combinatorial in silico motif mutagenesis approach using both the
‘scramble’ and ‘point mutation’ approach (Supplementary Methods). Assume
we have two motif instances A and B in a sequence that we would like to test for
epistatic interactions using the model. We record the model’s output with both
motif instances intact in the sequence = 0. We record the output after ‘mutating’
only motif A, which is the sequence that contains only an intact motif B=b. We
record the output after mutating only motif B, which is the sequence that contains
an intact motif A =a. Finally, we record the output after mutating both motifs A
and B, which is a baseline = n. We computed the marginal effect size of adding
motif A relative to a null sequence that does not contain either of the motifs=(a
- n). We computed the marginal effect size of adding motif B relative to a null
sequence that does not contain either of the motifs= (b - n). We computed the
joint effect of adding motif A and B relative to the sequence that does not contain
either of the motifs= (0 - n).

We then compared the joint effect size (0 — ) to the sum of the marginal effect
sizes (a - n) + (b - n) = (a+b - 2n). We ran a Wilcoxon signed rank test on the
paired values (joint versus sum of marginals) across all instances of a motif pair
to determine whether the joint effects on the motif pair instances is significantly
greater or less than the sum of the marginal effects.

Since the output predictions are in units of log depth-normalized coverage,
additivity in log units translates to multiplicative effects in units of coverage. If the
joint effect is significantly larger than the sum of the marginal effects, motifs A
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and B have supermultiplicative effect on coverage. If the joint effect is significantly
lower than the sum of the joint effects, motifs A and B exhibit a submultiplicative
effect on coverage. A nonsignificant difference between the joint and sum of
marginals indicates a multiplicative effect of motif A and B on coverage.

MPRA design. We designed MPRA constructs guided by the combinatorial motif
sets that have positive motif interaction scores using the motif perturbations.

For each rule of interacting motif pairs, we randomly selected 19 genomic
subsequences of length 160 bp within accessible peaks, containing predictive
instances of both motifs in the rule and exhibiting positive interaction scores. We
tested the wild-type (genomic) sequence and all versions of the sequences in which
the motifs are mutated combinatorially.

This sampling design allow us to test the following hypotheses. (1) Trajectory:
does the motif combination produce a reporter activation pattern across timepoints
(days0, 3 and 6 in the in vitro model) that was predicted by the trajectory it
was derived from? (2) Interactions: do the motif pairs exhibit multiplicative or
supermultiplicative interaction effects on intrinsic reporter activity?

We included the following positive and negative controls. As positive controls,
we used 316 TSSs of the highest expressed genes. As negative controls, we generated
dinucleotide shuffled versions of 50 randomly selected genomic test sequences
selected above. We also selected 50 negative controls from the genome that are not
found in the master list of accessible regions across keratinocyte differentiation.

Library cloning, cell culture and sequencing. The MPRA oligonucleotide library
was synthesized using Agilent’s oligonucleotide library synthesis platform. Full
details can be found in Supplementary Methods. Briefly, the oligonucleotide
library was cloned into plasmids containing pGreenFirel lentivector backbone and
amplified by transformation in Takara Stellar competent cells. The final plasmid
library pool was sequenced on an Illumina MiSeq to ensure an oligonucleotide
library coverage greater than 90%.

Lentivirus was made with the plasmid library pool and transduced into
keratinocytes (Supplementary Methods), which were seeded for days0, 3 and 6
timepoints of differentiation. At each timepoint, total RNA was isolated using an
RNeasy Plus kit (Qiagen, catalog no. 74134) and then used to generate MPRA
sequencing libraries (Supplementary Methods). We performed deep sequencing on
an [llumina NovaSeq 6000.

MPRA analysis. The DNA plasmid library was sequenced to capture the baseline
fractions of each sequence in the library. The MPRA library reads were sequenced
and analyzed in the same fashion as the DNA plasmid library. The counts were
then renormalized using the plasmid fractions by multiplying the MPRA counts by
the plasmid fractions, converting to fractions, and multiplying by the total count
across the MPRA library. These counts were then run through regularized log
transform from DESeq?2 to get a normalized signal matrix. This normalized matrix
was then used in downstream analyses.

To test trajectory patterns, the normalized MPRA signal for all sequences
belonging to the pattern were collected for days0, 3 and 6. Day 3 and 6 readouts
were then compared with day 0 by a Wilcoxon signed rank test (P <0.05) to
determine differential signal between timepoints. If the measurements show
differential signal for either of these days, the trajectory is considered to have
dynamic activity across the timecourse. Thee mean (across all sequences)
pattern of the MPRA signal across the three timepoints was then compared with
the corresponding average ATAC trajectory to determine a correlative match
(Spearman rank correlation P<0.05) in terms of the dynamics.

To estimate interaction scores for motif pairs tested in the MPRAs, we
compared the distribution of normalized MPRA signal (log scale) of wild-type
sequences containing both motifs to the expected log-additive effect of each
individual motif. When motif a is scrambled, we noted the MPRA signal = a.
When motif b is scrambled, we noted the MPRA signal = b. When both motifs
a and b are scrambled, we noted the MPRA signal = n. Then, the expected
log-additive signal for the wild-type sequence containing both motifs =(a - n)

+ (b - n). We then used the Wilcoxon signed rank test (P <0.10) to determine
whether there is a significant difference between the observed wild-type signal
and the log-additive expected signal. A significantly positive score indicates a
supermultiplicative effect of the motif pair. A nonsignificant score indicates a
multiplicative (log-additive) effect of the motif pair. A significant negative score
indicates a submultiplicative effect of the motif pair.

Biochemical characterization of combinatorial rules. To confirm MPRA reporter
activity on an individual basis, a lentiviral reporter construct was designed that
contains a minimal promoter driving the expression of destabilized copGFP
(GFP 2 from the copepod Pontellina plumata) and luciferase separated by a T2A
(self-cleaving peptide from thosea asigna virus 2A) sequence. Genomic sequences
synthesized by IDT were inserted upstream of the minimal promoter. Lentivirus
was made and transduced into primary keratinocytes, and cells were then seeded
for days0, 3 and 6. Luciferase assays were performed using a Tecan Infinite M1000
plate reader. Further details can be found in Supplementary Methods.

For ChIP, human keratinocytes were cross-linked with 1% formaldehyde and
chromatin was sonicated to an average fragment length of 150-500 bp. Chromatin
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was immunoprecipitated overnight at 4 °C. Following cross-link reversal, samples
were treated with RNase A and the DNA was purified using a ChIP DNA
Purification Kit (Zymo Research, catalog no. D5205). The following antibodies
were used: CREBI (Millipore, catalog no. 06-863, 2 ug per 40 ug chromatin), ETV5
(Proteintech, catalog no. 13011-1-AP, 1 ug), KLF4 (Sigma, catalog no. SAB2701975,
2ug per 40 ug chromatin), ZNF750 (Sigma HPA023012, 1 pg), CEBPD (Thermo
Fisher PA5-30262, 2 ug per 40 ug chromatin). For ReChIP, samples were eluted in
ChIP elution buffer (1% SDS, 50 mM NaHCO;) then diluted tenfold in modified
RIPA buffer without SDS (1% NP-40, 1% sodium deoxycholate, 1 mM EDTA in
PBS) for immunoprecipitation with second antibody.

For organoid modeling, primary human keratinocytes were isolated from fresh
surgically discarded skin and cultured in Keratinocyte-SFM (Life Technologies,
catalog no. 17005-142) and Medium 154 (Life Technologies, catalog no. M-154-
500). We performed organotypic regeneration of human epidermis as previously
described”. Briefly, cells were first transduced with lentivirus containing pGreenfire
reporter constructs and selected with puromycin for 2 days posttransduction. After
selection, 500,000 cells were seeded onto devitalized dermis, cultured for 7 days
and harvested. Biologic replicates were performed in all cases.

For immunofluorescence staining, tissue sections (7 um thick) were fixed
using 4% paraformaldehyde. Primary antibodies GFP (Thermo Fisher, catalog
no. A-11122) and filaggrin (Abcam, catalog no. 81468) were incubated overnight
at 4°C and secondary antibodies (Alexa Fluor 488 or 555, Thermo Fisher) were
incubated at room temperature for 1h. Tissue samples were mounted with Duolink
In Situ mounting media with 4,6-diamidino-2-phenylindole (Sigma). Images
were taken using a Zeiss Axio Observer Z1 fluorescence microscope and Zeiss
Axiovision software.

Statistics. Unless otherwise specified or tested, data distributions were assumed to
be normal.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

ATAC-seq, ChIP-seq, PAS-seq, HiChIP and MPRA data can all be found on the
Gene Expression Omnibus: GSE181416. There are no restrictions to access of the
datasets. Training datasets for machine learning can be found at Zenodo’’* and
trained models can also be found at Zenodo”°. hg19 annotations can be found at
https://hgdownload.soe.ucsc.edu/downloads.html and GENCODE annotations can
be found at https://www.gencodegenes.org/human/release_19.html. FANTOM5
(ref. 77) transcription factors can be found at https://fantom.gsc.riken.jp/5/sstar/
Browse_Transcription_Factors_hg19. The HOCOMOCO?® database can be found
at https://hocomocoll.autosome.ru/.

Code availability

Integrative analysis code and scripts” can be found at https://github.com/vervacity/
ggr-project and the deep-learning code” can be found at https://github.com/
kundajelab/tronn.
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Extended Data Fig. 1| See next page for caption.

NATURE GENETICS | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

ARTICLES NATURE GENETICS

Extended Data Fig. 1| Data quality and other characteristics of the regulatory landscape. (a) Morphology schematic of normal human epidermis.

(b) Selected biomarker gene panel from PAS-seq, demonstrating proper differentiation across time in vitro. (¢) Principal component analysis (PCA) of
other datasets (signal type used for analysis in parenthesis): PAS-seq (log2 of counts), H3K27ac ChIP-seq (log2 of counts), H3K4me1 ChIP-seq (log2

of counts), H3K27me3 ChlIP-seq (log2 of counts), HiChIP (normalized fragment counts). (d) Global statistics on ATAC-seq. Top plot shows the number
of reproducible peaks across the timepoints. Bottom plot shows the number of up and down regulated differential peaks across time, using day O as

the baseline. (e) Global statistics on PAS-seq. Top plot shows the number of expressed genes (> approximately 1TTPM) at each timepoint. Bottom plot
shows the number of up and down regulated differential genes across time, using day O as the baseline. (f) Comparison of bulk ATAC-seq in keratinocyte
differentiation to scATAC-seq. Each of the bulk ATAC-seq samples was projected into a 2D UMAP of related scATAC-seq data.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Extended analysis of the keratinocyte epigenome. (a) Analysis of regions with stable (invariant) accessibility and dynamic
chromatin modifications surrounding them (28,973 regions). The regions are clustered according to their dynamic chromatin mark patterns and marked
with enriched GO terms accordingly. (b) Analysis of regions with stable (invariant) accessibility and stable chromatin modifications (84,678 regions).
The regions are clustered according to combinatorial chromatin states and marked with enriched GO terms accordingly. (¢) Comparison of accessibility at
TSSs, separated into TSSs of dynamic genes, stable genes, and nonexpressed genes, and additionally compared to distal regions. (d) Profile heatmaps for
TSSs of dynamic genes. (e) Chromatin states around TSSs of stable genes. (f) Chromatin states around TSSs of nonexpressed genes.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Extended analysis of deep neural net models. (a) Schematic describing transfer learning. From left to right: first, models are
trained on a large compendium of DNase-seq datasets from ENCODE and Roadmap; these weights are used to initialize training for a keratinocyte specific
classification model; finally, these weights are used to initialize training for a regression model. (b) Model performance metrics. Left: area under the
precision-recall curve (AUPRC) for the ENCODE/Roadmap pre-training classification tasks across 10 folds. Right: AUPRC for accessibility in keratinocyte
timepoints across 10 folds, considering transfer learning or fresh initialization (random seeded weights). Box-and-whisker plots show all points, minimum
to maximum, with 25th to 75th interquartile range. (¢) Precision-recall curves for the classification stage. Top: Precision-recall for prediction of accessible
peaks. Bottom: Precision-recall for prediction of strong enhancer state (presence of ATAC-seq, H3K27ac ChIP-seq, and H3K4me1 ChIP-seq). (d)
Heatmaps of observed ATAC signal vs neural net predicted ATAC signal across dynamically accessible regions. (e) Validation of contribution scores by
comparing to SNPs exhibiting significant allelic imbalance of ATAC-seq signal. Top: Comparison of effect sizes of allelic imbalance of ATAC-seq signal,
between SNPs overlapping nonsignificant contribution scores and those overlapping significant contribution scores. Bottom: comparison of model-
derived allelic effect predictions (reference allele - alternate allele) on SNPs overlapping significant contribution scores, separated by whether the SNP
was considered allele-sensitive (FDR < 0.10) or not allele-sensitive. Box-and-whisker plots show all points, minimum to maximum, with 25th to 75th
interquartile range box. (f) Comparison of neural network derived predictive motifs versus enriched motifs derived by HOMER motif discovery. (g)
Predictive, active motif instances of KLF4 show higher ChIP-seq signal relative to inactive motifs in CREs. (h) Evaluation of motif instances identified by
sequence-only position weight matrix motif match scores against contribution-weighted sequence motif match scores. (i) Predictive motifs show dynamic
footprinting. DLX3 motif is shown. (j) Heatmap showing predictive motifs enriched in CREs corresponding to ATAC-seq trajectories. (k) Heatmap showing
TFs whose expression was correlated (r> 0.8) with activity of their matched predictive motifs in CREs corresponding to ATAC-seq trajectories.
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Extended Data Fig. 4 | Repressive motifs in CREs exhibiting decreasing accessibility across keratinocyte differentiation. (a) Top: dynamics of negative
contribution scores of predictive motif instances of CEPBA and KLF4 across time averaged over all CREs exhibiting decreasing accessibility across the
timecourse. Bottom: dynamic expression patterns of CEBP and KLF family TFs that exhibit strong anticorrelation with motif activity dynamics across the
timecourse. (b) A closing CRE (chr10:60192514-60203992) shows progressively increasing negative contributions of nucleotides in CEBPA motif across
the timecourse in concordance with an increasing negative effect on accessibility. Assay ranges are ATAC-seq: 0-500; H3K27ac: 0-20; H3K4mel: 0-50.
() Functional enrichments for gene sets linked to CREs containing predictive instances of CEBPA and KLF4 motifs with strong negative contribution scores.
Left: enrichments linked to closing CREs with negative CEBPA motif scores. Right: enrichments linked to closing CREs with negative KLF4 motif scores.
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Extended Data Fig. 5 | Analysis of homotypic motif clusters within the keratinocyte epigenome. (a) Analysis of motif counts on chromatin accessibility
using synthetic sequences. Synthetic scrambled background sequences were embedded with varying number of instances of each predictive motif. The
neural network was used to predict chromatin accessibility for each synthetic sequence. Left: Each curve summarizes the predicted accessibility with
increasing motif density for each motif averaged over 100 random synthetic backgrounds. Middle/right: Predicted chromatin accessibility for increasing
density of FOSB, and CEBPD motifs. Each black curve represents a specific random synthetic background sequence, while the red curve is the average
pattern across all backgrounds. (b) Relationship between motif affinity and motif density in CREs containing predictive motif instances. Motif affinity is
estimated as the average motif PWM match log-odds scores of all predictive instances in a CRE. Motif density is the number of predictive motif instances
in each CRE. We observe a striking tradeoff between motif density and the upper limit of average motif affinity. Right: CEBPD motif instances. Left:

GRHL motif instances. (€) Motif PWM match scores as a function of distance from the ATAC-seq summit. Left: motif PWM match scores from all motif
instances for CEBPD and GRHL motifs. Right: motif PWM match scores for predictive motif instances for CEBPD and GRHL motifs. (d) Proposed principles
of cell-type specific homotypic motif clusters. As number of motif instances increases or as motif affinities in a region increase, accessibility increases.
The suboptimization of motif sites, particularly when there are more motif instances within a region, acts as an upper limit to prevent ectopic accessibility.
Motif affinities are strongest near the accessibility summit.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Examples of interacting pairs of predictive motifs and motif co-occurrence statistics. (a) Example regions demonstrating
interacting motifs. Top row: putative enhancer affecting LAMC2 gene expression with an interacting NFKB2 motif and RUNX1 motif (chr1:183147408-
183170430). Assay ranges are ATAC-seq: 0-600; H3K27ac: 0-300; H3K4me1: 0-50. The highlighted region in the signal tracks (left) demonstrates
correctly predicted ATAC signal by the neural net (top middle heatmap). Base-resolution contribution score tracks are shown for the wild-type (genomic)
sequence and sequences with marginal and joint perturbation of both motifs (middle tracks). The model predicts a super-multiplicative effects of the motif
pair on chromatin accessibility (right plot). Bottom row: Analogous plots for a putative enhancer affecting MUC15 gene expression with an interacting
GRHL2 motif and ATF4 motif (chr11:26590539-26610606). Assay ranges are ATAC-seq: 0-800; H3K27ac: 0-150; H3K4me1: 0-70. (b) Co-occurrence
statistics (size of circle represents number of instances) for motif pairs based on all motif instances identified solely using sequence match scores (left)
and motif pairs based on predictive, active motif instances based on contribution-weighted sequence match scores (right). Predictive motif instances
highlight less promiscuous, more specific co-occurrence statistics. (€) Analogous co-occurrence statistics for motif pairs using all motif instances (left)
and predictive motif instances (right) after filtering for pairs that show significant GO term enrichments for associated target genes. Once again, more
specific co-occurrence patterns are observed for the predictive motif instances.
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Extended Data Fig. 7 | Mapping co-occurring motif pairs to enriched Gene Ontology terms. Map of combinatorial rules derived from in silico motif
interaction analyses. Each row across plots represents a predicted interacting motif pair. From left to right: the motif presence plot demonstrates which
motifs are part of the combinatorial rule; the ATAC heatmap demonstrates the average accessibility pattern over CREs containing each motif pair across
all time points; the RNA heatmap displays the average gene expression over genes associated with CREs containing each motif pair across the time points;
Gene Ontology terms are significantly enriched in the gene sets associated with CREs containing each motif pair.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | MPRA data quality and comparisons to epigenomic landscapes. (a) Distribution of barcodes in plasmid library, demonstrating

the skew of barcode representation. (b) Number of barcodes per fragment in plasmid library, demonstrating on average 10 barcodes per fragment tested.
(e) Number of reads per MPRA sample. (d) Number of barcodes per fragment in MPRA RNA reads, demonstrating on average 10 barcodes per fragment
tested. (e) Average MPRA signal compared to controls, showing ATAC regions on average have activity in between negative controls (genomic negatives
and shuffled sequences) and positive controls (promoter sequences). (f) MPRA replicate consistency. Left: Consistency by Pearson R across replicates and
timepoints tested. Right: Consistency of MPRA replicate signal for two example replicates in timepoint day 0. (g) Correlation of MPRA signal to various
genomic and/or modeling signals: ATAC signal, NN predictions of ATAC signal, H3K27ac, and regression predictions from linear model utilizing NN final
layer activations as model inputs (results shown on held-out test data). (h) ATAC signal across timepoints day 0,3, and 6 for sequences containing HOXAT1
motif and ETV5 motif. Box-and-whisker plots show all points, minimum to maximum, with 25th to 75th interquartile range.
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Extended Data Fig. 9 | Additional experimental validation of representative MPRA fragments. (a) GFP expression of reporters drawn from MPRA
fragments (endogenous examples of combinatorial rules) from day O to day 7. R4 and R5 are instances of CEBPD/ZNF750 rule. R11 and R12 are instances
of KLF4/ZNF750 rule. Scr is a scrambled control fragment. Yellow and black scale bars are 20um. (b) GFP expression from the experiment in (A)
quantified. (€) ZNF750 knockout followed by luciferase reporter timecourse expression, demonstrating ZNF750 influence on instances of rules involving
ZNF750. Data summarizes three independent experiments and is represented as mean + s.e.m. One-sided T test was used for comparisons, *P < 0.05,
**P<0.01, ***P<0.001.
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Extended Data Fig. 10 | See next page for caption.

NATURE GENETICS | www.nature.com/naturegenetics


http://www.nature.com/naturegenetics

NATURE GENETICS ARTICLES

Extended Data Fig. 10 | Combinatorial motif pairs are enriched for genetic variants associated with skin phenotypes. (a) LD score regression analysis
showing differential heritability enrichment of various skin-related diseases and traits in different sets of CRE. The skin phenotypes include: psoriasis,
dermatitis, acne, actinic keratosis and rosacea. The sets of CREs include: ‘Progenitor’ rules are CREs containing motif pairs that demonstrate decreasing
accessibility and activity across the epidermal differentiation timecourse. ‘Early differentiation’ rules are CREs containing motif pairs those that
demonstrate maximal accessibility and activity in the middle of the epidermal differentiation timecourse. ‘Late differentiation’ rules are CREs contained
motif pairs that demonstrate maximal accessibility and activity at the end of the epidermal differentiation timecourse. ‘Union DHS' is the union of DNase
peaks across all ENCODE DNase datasets. 'HepG2' are DNase peaks in the HepG2 liver carcinoma cell line. ‘Union ATAC' is the union of CREs across

all time points of the differentiation timecourse. ‘ATAC timepoints' are the CREs that are accessible in each time point of the epidermal differentiation
timecourse. ‘Dynamic trajectories’ are clusters of CREs that display specific concordant patterns of dynamic accessibility across the epidermal
differentiation timecourse. Plots show LDSC score enrichment coefficients with confidence intervals. (b) Predicted dysregulated TF motif lexicon networks
by phenotype. Combinatorial rules were overlaid onto the predicted TF network of combinatorial motif interactions to demonstrate dysregulated TF
subnetworks. Node size is the sum of the LD score regression coefficients for the significant combinatorial rules involving that node TF motif. Edges and
nodes in black represent significantly enriched combinatorial rules, edges and nodes in gray did not pass statistical significance. Edge thickness represents
the validated interaction effect of the rule (supermultiplicative, multiplicative, submultiplicative).
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replicates were performed. In all cases, two biological samples were considered minimally sufficient as many downstream statistical methods
(such as DESeq2) are built with the assumption of limited samples, particularly in the case of 2 independent replicates.

Data exclusions  Sample timepoints for days 3.5, 4.0, and 5.5 in the integrative dataset were excluded due to quality control checks on the integrative dataset
that determined significant cell media change bias in these timepoints.

Replication All major data produced had two replicates performed, and replicates confirmed reproducibility of the results.
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Antibodies used H3K27ac Abcam ab4729 GR244014-1; H3K4mel Abcam ab8895 GR243233-1; H3K27me3 Millipore 07-449 2653203; CREB1
Millipore 06-863; ETVS Proteintech 13011-1-AP; KLF4 Sigma SAB2701975; ZNF750 Sigma HPA023012; CEBPD ThermoFisher
PA5-30262; Filaggrin Abcam ab81468; AlexaFluor 488/555 ThermoFisher A-11094.
Validation Abcam ab4729: predicted to work in human, suitable for IHC-Fr, ICC/IF, WB, IHC-P, CHIPseq, ChIP/Chip, ChIP, PepArr, manufacturer

validation can be found at https://www.abcam.com/histone-h3-acetyl-k27-antibody-chip-grade-ab4729.html. Abcam ab8895: reacts
with human, suitable for ICC/IF, ChIP, WB, IHC-P, manufacturer validation can be found at https://www.abcam.com/histone-h3-
mono-methyl-k4-antibody-chip-grade-ab8895.html. Millipore 07-449: reacts to human, suitable for ICC, IP, WB, ChIP, manufacturer
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Antibody, MM_NF-07-449. Millpore 06-863: tested in Chromatin Immunoprecipitation (ChIP), ChIP-seq, Electrophoretic Mobility,
manufacturer validation can be found at https://www.emdmillipore.com/US/en/product/Anti-CREB-Antibody, MM_NF-06-863.
Proteintech 13011-1-AP: reacts with human, suitable for WB, IF, ChIP, manufacturer validation can be found at https://
www.ptglab.com/products/ETV5-Antibody-13011-1-AP.htm. Sigma SAB2701975: reacts with human, suitable for IP, WB, FACS,
manufacturer validation can be found at https://www.sigmaaldrich.com/US/en/product/sigma/sab2701975. Sigma HPA023012:
suitable for WB, IP, manufacturer validation can be found at https://www.sigmaaldrich.com/US/en/product/sigma/hpa023012.
ThermoFisher PA5-30262: suitable for WB, ChIP, ICC/IF, manufacturer validation can be found at https://www.thermofisher.com/
antibody/product/C-EBP-delta-Antibody-Polyclonal/PA5-30262. Abcam ab81468: reacts with human, suitable for ICC/IF,
manufacturer validation can be found at https://www.abcam.com/filaggrin-antibody-ab81468.html. ThermoFisher A-11094: reacts
with AlexaFluor, suitable for ICC/IF, manufacturer validation can be found at https://www.thermofisher.com/antibody/product/
Alexa-Fluor-488-Antibody-Polyclonal/A-11094. All antibodies also have profiles with linked references at https://antibodyregistry.org.
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) 293T (Takara #632180)
Authentication No cell lines were authenticated
Mycoplasma contamination All cell lines tested negative for mycoplasma contamination

Commonly misidentified lines  None
(See ICLAC register)

ChlP-seq

Data deposition
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Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|Z Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181416
May remain private before publication.

Files in database submission FASTQ files, replicated BED files, bigwigs, count matrices

Genome browser session http://epigenomegateway.wustl.edu/legacy/?genome=hg19&session=wIQIDkbti3&statusld=971053794
(e.g. UCSC)

Methodology
Replicates For each ChIP-seq experiment, 2 biological replicates per timepoint (days 0, 3, and 6 in differentiation).
Sequencing depth Please see supplemental table 4 for read counts for each experiment. Read length was 100bp, paired-ended.
Antibodies Please see antibodies section above

Peak calling parameters  MACS2 with params --nomodel --shift O --extsize SFRAGLEN --keep-dup all -B -SPMR (see ENCODE pipeline or our supplemental
information for more details)

Data quality Please see supplemental table 5 for peak counts above FDR 5%. Principal components analysis and replicate consistency analyses
were also run to determine data quality (see supplemental fig 1)

Software ChIP-seq read alignment, quality filtering, duplicate removal, peak calling, and signal generation were all performed through the
ENCODE ChlIP-seq pipeline (https://github.com/ENCODE-DCC/chip-seqg-pipeline2)
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