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SUMMARY
Here, we define the landscape and dynamics of active regulatory DNA in cutaneous T cell lymphoma (CTCL)
by ATAC-seq. Analysis of 111 human CTCL and control samples revealed extensive chromatin signatures
that distinguished leukemic, host, and normal CD4+ T cells. We identify three dominant patterns of transcrip-
tion factor (TF) activation that drive leukemia regulomes, as well as TF deactivations that alter host T cells in
CTCL patients. Clinical response to histone deacetylase inhibitors (HDACi) is strongly associated with a con-
current gain in chromatin accessibility. HDACi causes distinct chromatin responses in leukemic and host
CD4+ T cells, reprogramming host T cells toward normalcy. These results provide a foundational framework
to study personal regulomes in human cancer and epigenetic therapy.
INTRODUCTION

Cutaneous T cell lymphoma (CTCL) is a heterogeneous group of

T cell neoplasms with primary involvement of the skin. Mycosis

fungoides (MF) and Sézary syndrome (SS) constitute themajority

of CTCLs and are believed to originate from skin-tropic mature

CD4+ T cells (Willemze et al., 2005). In the early stages, patients

often have skin-restricted disease and, in advanced stages of

MF, the malignant T cells can involve the lymph node, viscera,

and/or blood compartments. SS is the leukemic subtype of
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in vivo and its response to therapy are not known. Moreover, it is

appreciated that CTCL comprises a complex interplay between

malignant T cells and the host immune system. The way in which

CTCL reprograms host immunity and potential dynamic

response of these interacting systems to therapy are unclear.

Systematic analysis of the epigenomic landscape from primary

clinical samples is needed to address these issues.

Assay of transposase-accessible chromatin with sequencing

(ATAC-seq) is a recently introduced and sensitive method to

map open chromatin sites, predict transcription factor (TF) bind-

ing, and determine nucleosome position from as few as 500 cells

(Buenrostro et al., 2013; Lara-Astiaso et al., 2014; Lavin et al.,

2014), or even in single cells (Buenrostro et al., 2015; Cusanovich

et al., 2015). This technology enables clinicians to track the epi-

genomic state of patient-derived samples in real time and affords

a ‘‘personal regulome’’; a summary of gene-regulatory events in

a snapshot of time within a single individual (Qu et al., 2015). In

this study, we developed a systematic approach to characterize

chromatin dynamics in CTCL using ATAC-seq, and addressed

the regulatory dynamics in leukemic epigenomes from CTCL pa-

tients treated with HDACi.

RESULTS

Landscape of DNA Accessibility in Normal CD4+, CTCL
Leukemia, and Host T Cells
We generated and analyzed 111 high-resolution personal regu-

lomes, 81 from 14 patients with CTCL and 30 from 10 healthy do-

nors, of a single cell type (human CD4+ T cells) that comprised

over 6 billion measurements (Figure 1A; Table S1). We interro-

gated the landscapes of chromatin accessibility in these sam-

ples and developed methods to integrate diverse sources of

genomic and epigenomic information to address the regulatory

dynamics in leukemic epigenomes from CTCL patients treated

with HDACi (Figure 1A). Thirteen of 14 patients had S (stage IV,

significant leukemic T cells); 1 patient had stage III MF, where

the disease was not blood predominant (Table S2). Because

MF/SS are typically characterized by a dominant CD4+ T cell

clone bearing a unique T cell receptor, we purified leukemic

T cells from patients (defined by CD4+, CD26�, and T cell recep-

tor V-beta clone+) versus non-leukemic host CD4+ T cell (defined

by CD4+, V-beta clone�) from the same patients by fluores-

cence-activated cell sorting (FACS) (Figure 1B). Thereafter, we

refer to the non-malignant CD4+ T cells from CTCL patients as

‘‘host T cells.’’ Bulk CD4+ T cells were also obtained using

RosetteSep Human CD4+ T Cell Enrichment Cocktail. Leukemic,

host and bulk T cells were obtained from 9 out of 14 patients who

had detectable V-beta clone, and only bulk T cells were obtained

for the remaining 5 patients without detectable V-beta clone.

Although number and proportion of leukemic and host T cells

varies depending on the stage and drug response of each indi-

vidual, we were able to obtain at least 50,000 CD4+ T cells per

sample (Figure 1B). To provide additional comparative frame-

work, we also analyzed 30 longitudinally collected ATAC-seq

profiles of CD4+ T cells obtained from 10 healthy donors (Qu

et al., 2015).

We performed ATAC-seq tomap the location and accessibility

of regulatory elements genome wide. Each library was

sequenced to obtain, on average, more than 55 million paired-
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end reads (Table S1). With this dataset we identified a total of

71,464 peaks of DNA accessibility; visual inspection and quanti-

tative analysis indicate that these data are of high quality with a

strong signal to background ratio (Figure 1C). ATAC-seq signal in

multiple patients aligned very well with the active enhancer mark

histone H3K27ac (Spearman correlation = 0.68–0.77, p < 10�10)

(Limbach et al., 2016), indicating that detected regions of DNA

are open and accessible. Correlation and clustering analysis of

all the accessible sites recapitulate the group classification of

the clinical samples, separating healthy donors, CTCL bulk,

and leukemic and host cells (Figure S1). Interestingly, samples

from the one patient with stage III MF clustered together with

those from normal donors, in agreement with the clinical stage

classification where malignant T cells in stage III MF are located

predominantly in the skin or lymph node, but not in the peripheral

blood. Non-leukemic host CD4+ T cell samples also clustered

together adjacent to normal T cell samples from healthy donors.

These results demonstrate the feasibility of obtaining high-qual-

ity epigenomic data from primary cancer samples using stan-

dard clinical infrastructure.

Epigenomic Signatures of CTCL Leukemic and Non-
leukemic Host Cells
To identify differences in regulatory DNA activity among

leukemic, host, bulk, and normal cells, we applied pairwise com-

parison of the corresponding samples using DESeq. We discov-

ered 7,498 elements of differential DNA accessibility across the

genome (Figure 2A). Known sites related to inter-individual vari-

ability among healthy donors (Qu et al., 2015) were removed from

further consideration. Unsupervised hierarchical clustering of the

differential peaks reveals three distinct clusters of regulatory

elements, suggesting potential normal and leukemic epigenetic

signatures that distinguish healthy, leukemic, and host T cells

in CTCL patients.

We used GREAT to assess the genomic features that are en-

riched in each cluster of peaks (Figure S2). Cluster I is comprised

of 1,995 elements that are more accessible in normal and host

CD4+ cells compared with bulk and purified CTCL leukemic

cells; these elements may reflect the normal epigenomic signa-

ture of T cell homeostasis that is lost in the malignant T cells.

GREAT analysis revealed that elements in this cluster are highly

enriched in immune-related gene ontology functions, immune

system morphology, and hematopoietic system diseases (Fig-

ure S2) (false discovery rate [FDR] < 0.05 for each), suggesting

that they are critical for proper function of human T cells. Several

signaling pathways are enriched in cluster I peaks such as inter-

leukin-23 (IL-23)-mediated (p = 6.1 3 10�12), nuclear factor of

activated T cell-dependent (p = 5.0E-10) and platelet-derived

growth factor (p = 6.1E-10) pathways, which have been reported

to driving hematopoietic cancers including CTCL (da Silva Al-

meida et al., 2015). In addition, IL-2 signaling pathway events

mediated by phosphatidylinositol 3-kinase (PI3K) (p = 2.3 3

10�8) were also found to be significant, consistent with prior

transcriptome analysis of SS, which identified PI3K/AKT as the

top dysregulated signaling pathway (Lee et al., 2012). Two intra-

genic elements in PIK3R1, encoding the regulatory subunit of

PI3K, are upregulated in healthy donor and non-leukemic host

cells, and repressed in CTCL bulk and leukemic samples, exem-

plifying elements in cluster I (Figure 2B).
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Figure 1. Landscape of DNA Accessibility in Normal CD4+, CTCL, Leukemic, and Host Cells

(A) Schematic outline of the study design shows 30 samples from 10 healthy donors and 81 samples from 14 CTCL patients under HDACi therapy (top), with a

bioinformatics pipeline for data analysis (bottom). Host and leukemic cells were isolated from FACS based on CD3+CD4+Vb� and CD3+CD4+Vb+, respectively.

ATAC-seq was then performed on normal CD4+, CTCL, leukemic, and host cells.

(B) CD3+, CD4+, leukemic (Vb+), and non-leukemic host (Vb�) T cells sorted from FACS.

(C) Normalized ATAC-seq profiles at a locus in normal, host, stage III, bulk CTCL, and leukemic samples and bulk cells from individual patients, together with

normalized H2K27ac chromatin immunoprecipitation sequencing profile. See also Figure S1; Tables S1 and S2.
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Figure 2. Epigenomic Signatures of CTCL Leukemic and Host Cells
(A) Heatmap of 7,498 regulatory elements with differential activity. Each column is a sample; each row is an element. Samples and elements are organized by 2D

unsupervised hierarchical clustering. The color scale shows relative ATAC-seq signals as indicated. Top: samples were categorized into five groups, normal,

stage III patient, host cells, bulk cells, and leukemic cells from CTCL patients. Samples from the same group are labeled with the same color.

(B–D) Normalized ATAC-seq profiles at the PIK3R1 (B), TLR4 (C), and HDAC9 (D) locus in normal, host, bulk CTCL, and leukemic cells. Shaded regions are

representative peaks in clusters I (B), II (C), and III (D), respectively.

(E) Distribution of genomic features of all, differential, cluster I, II, and III regulatory elements. Five genomic features were studied, promoter, transcription, active

enhancer, weak enhancer, and heterochromatin. See also Figures S2 and S3.
Cluster II is comprised of 1,696 elements that are highly acces-

sible in CD4+ T cells from healthy donors, but are less accessible

in both the leukemic and host non-leukemic cells. This behavior

suggests that these elements have a disease-specific signature,

and identifies elements that are reprogrammed in host immune

cells in leukemic patients. Prime examples of elements in cluster

II include the promoter and several distal elements of gene TLR4

(Figure 2C). The protein encoded by this gene is a member of the
30 Cancer Cell 32, 27–41, July 10, 2017
Toll-like receptor (TLR) family, which plays a fundamental role in

pathogen recognition and activation of innate immunity. Consis-

tently, TLR4mRNA is strongly expressed in normal CD4+ T cells

and significantly downregulated in host cells and leukemic cells

from CTCL patients (Figure S3A) (Lee et al., 2012; Quinn et al.,

2015). Compared with cluster I-enriched features, cluster II ele-

ments are enriched for more general immune functions that

are not specific to lymphocytes or leukocytes (Figure S2),



suggesting that the loss of accessibilities of peaks in cluster II

may cause general immunodeficiency diseases, but not neces-

sarily leukemia, whichwas regulated primarily by peaks in cluster

I. Mouse phenotype and disease ontology analysis show that

cluster II peaks are enriched in immune-related diseases, but

none of which is specific to leukemic cells in SS (Figure S2).

These results further indicate the generalized disease-relevant

function of cluster II elements; however, peaks in cluster I maybe

the drivers for CTCL specifically.

Cluster III consists of 3,807 elements, which are highly acces-

sible in bulk CTCL and leukemic cells, but not in host CD4+ T cells

and normal cells from healthy donors. Cluster III may thus repre-

sent a leukemic signature associated with abnormal growth or

differentiation. Gene ontology terms show that peaks in cluster

III are highly enriched terms related to cell development and dif-

ferentiation (Figure S2). Examples of cluster III include multiple

elements in the HDAC9 locus, encoding a histone deacetylase

homolog that is a component of co-repressor complexes, which

become strongly accessible in bulk and purified CTCL leukemia

cells (Figure 2D), suggesting a signature of malignant T cells.

HDACs regulate chromatin remodeling and gene expression,

aswell as the functions ofmore than 50 TFs and non-histone pro-

teins. Transcriptome analysis shows that, among all the HDACs,

HDAC9 is the only gene with significant differential expression

between host and leukemic cells (Figure S3B) (Lee et al., 2012).

It has also been reported that HDAC9 proved particularly impor-

tant in regulating Foxp3-dependent suppression in T regulatory

(Treg) cells, and HDACi therapy in vivo enhanced Treg-mediated

suppression of homeostatic proliferation, and decreased inflam-

matory bowel disease through Treg-dependent effects (Tao

et al., 2007). These results suggest the chromatin-accessible el-

ements on HDAC9 may play a significant role in driving disease

progression in this T cell malignancy.

We next checked the genomic distribution of all differential

and cluster peaks by overlapping each peak list with regions of

features in T cells defined in the Epignomic Roadmap. Promoter

and active enhancers are highly enriched in cluster I peaks, sug-

gesting that these peaks may have a greater influence on gene

expression (Figure 2E).

Change in DNA Accessibility Is Correlated with
Differential Messenger RNA Expression in CTCL
We next examined whether the normal and leukemic chromatin

signatures in DNA accessibility correlate with that of gene

expression. We purified host and leukemic cells from bulk

T cells obtained from the CTCL patients using FACS, and per-

formed chromatin accessibility analysis by ATAC-seq, and

compared the results with whole-transcriptome analysis by

RNA sequencing (RNA-seq) for both cells. Accessible sites that

are (1) differential between total CD4+ cells of healthy donor

andCTCL patients, and (2) also coordinately differential between

leukemic and host CD4+ T cells purified from CTCL patients,

were defined as the ‘‘CTCL signature.’’ This analysis identified

1,989 elements that represent the epigenomic signature of

CTCL (Figures 3A and S3C); 1,557 elements aremore accessible

in normal and host cells; 432 elements more accessible in bulk

CTCL and leukemic cells (Figure 3B). A quantitative comparison

of each pair suggests that the fold changes between normal and

leukemic epigenomic signature are highly consistent.
The IFNG locus emerged as a prime example of the intersec-

tion of predicted regulatory divergence in normal and leukemic

cells (Figure 3C). IFNG encodes interferon gamma (IFN-g), a sol-

uble cytokine that is secreted by cells of both the innate and

adaptive immune systems, and is a key regulator of immune

response and T helper 1 (Th1) cell differentiation (Platanias,

2005). IFN-g is currently being used in combination therapy to

treat CTCL patients (Jawed et al., 2014). We then asked whether

the epigenomic profiling is generally correlated with gene

expression. By comparing the genome-wide RNA-seq data in

host versus leukemic cells obtained from an independent study

(Lee et al., 2012), we found that, on average, gene loci that gain

ATAC-seq signal showed a significant increase of gene

expression level (p < 0.008, Student’s t test); gene loci that

lose ATAC-seq signal also had decreased expression

(p < 0.0001, Student’s t test) (Figure 3D), indicating a high corre-

lation of epigenetic and RNA profiling.

Transcription Factor Occupancy Networks in CTCL
One of themain advantages of the ATAC-seq is that this technol-

ogy can potentially inform the transcriptional regulatory network

in the disease. Because TF binding to their cognate DNA se-

quences, termed motifs, often obligates nucleosome eviction

and creation of an accessible DNA site, integration of known

TF motifs with DNA accessibility data from ATAC-seq can pre-

dict a genome-wide regulatory network in any state of interest

(Qu et al., 2015). We applied this analytical technique to identify

CTCL-specific differences in the gene-regulatory network from

ATAC-seq data. We first obtained a total of 242 vertebrate TF

motifs from the Jasper database (Mathelier et al., 2016), identi-

fied their genome-wide distribution using HOMER, and overlaid

these sites with the differential ATAC-seq peaks shown in Fig-

ure 2A. We then used Genomica to select statistically significant

motifs that are enriched or depleted in each sample, producing a

patient-specific regulatory network (Figure 4A).

Our analysis revealed distinct patterns of TF access of DNA in

CTCL and host cells (Figures 4A and 4B). In bulk CTCL and pu-

rified leukemia samples, we observed nearly uniform activation

of nuclear factor kB (NF-kB), together with activation of one of

three TF motif patterns: (1) Jun-AP1, (2) CTCF, or (3) a motif

set that includes EGR, SMAD, MYC, and KLF. Each CTCL sam-

ple showed NF-kB activation, but the three companion TFmotifs

are coordinately enriched in only a subset of CTCL samples and

appeared mutually exclusive, indicating that the transcriptional

logic of CTCL can be patient specific. These results may high-

light the core transcriptional circuitry in CTCL. The broad activa-

tion of NF-kB is consistent with the recent discovery in CTCL of

activating somatic mutations in TNF receptor 2, downstream

signaling components, and NFKB2 itself, which activates

NF-kB activity (Choi et al., 2015; Ungewickell et al., 2015).

NF-kB and c-Jun are onco-proteins that regulate many types

of cancers including CTCL (Woollard et al., 2016), suggesting

that our unbiased results are consistent with previous discov-

eries. In contrast, the primary role of CTCF is thought to be in

regulating the 3D structure of chromatin (Phillips and Corces,

2009); dysregulation of chromosome neighborhoods can also

cause cancer through altered gene expression (Flavahan et al.,

2016). Regulators with a CTCF-like motif have been reported in

regulating leukemia and other cancers (Dolnik et al., 2012;
Cancer Cell 32, 27–41, July 10, 2017 31



fdc Normal Vs CTCL Bulk

fd
c 

H
os

t V
s 

Le
uk

em
icR=0.93

p<0.0001

Normal Vs CTCL Host Vs Leukemic

p<10-300

G
en

e 
ex

pr
es

si
on

 (l
og

2R
PK

M
)

Fisher’s Exact Test

4657 1925
1989

epigenomic
signature
of CTCL 

Normal
0

15

IFNG

chr12:68,545,000-68,580,000

0

15

0

15

0

15

0

12

0

12

0

12

0

12

Host

CTCL Bulk

Leukemic

Host_P1

Host_P2

Leukemic_P1

Leukemic_P2

AT
AC

-s
eq

RN
A

-s
eq

-4 -2 2 4

-4

-2

2

4

Host_
P1

Leuk_P1

Host_
P2

Leuk_P2
-3

0

3

6

9

12

15

18

-3

0

3

6

9

12

15

18

Genes more accessiblile in Leukemic cells

Host_
P1

Leuk_P1

Host_
P2

Leuk_P2

Genes more accessiblile in host cells

G
en

e 
ex

pr
es

si
on

 (l
og

2R
PK

M
)

p=0.004
p=0.008 p<0.0001 p<0.0001

A C

B D

n=30

n=16

n=36

n=25

Figure 3. Change in DNA Accessibility Is Correlated with Differential mRNA Expression in CTCL

(A) Overlap of differential peaks in normal versus bulk CTCL samples, and differential peaks in host versus leukemic samples define a leukemic signature.

(B) Scatterplot of the average fold change of the leukemic signature peaks in host versus leukemic cells versus that of normal versus CTCL bulk cells. Orange

indicates peaks that are more accessible in normal and host samples, and blue indicates those that are more accessible in CTCL and leukemic cells. Four outlier

dots indicate peaks that are more accessible in host cells and CTCL bulk cells.

(C) Normalized ATAC-seq profiles at the IFNG locus in normal, host, bulk CTCL, and leukemic cells, and normalized RNA-seq profiles in host and leukemic cells

from two individual patients at the same locus.

(D) Boxplots (the line in the box shows the median, the upper and lower borders of the box indicate the upper and lower quartile, lines below and above the box

indicate the 5th and 95th percentiles, data points beyond the limit of lines mean aminimum to the 5th and amaximum to the 95th percentile) of mRNA expression
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Yoshida et al., 2013), and CTCF mutations were noted in a sub-

set of CTCLs (Choi et al., 2015). Finally, one of the most inter-

esting discoveries is that motif patterns could be associated

with patients’ drug responses. We noticed 89.5% of samples

(17 out of 19) enriched with CTCF were from patients subse-

quently responsive to the HDACi romidepsin, and 88.2% of sam-

ples (15 out of 17) enriched with Jun-AP1 were from patients

resistant to HDACi drugs. While our sample set is not sufficiently

powered to address this question, this initial observation sug-

gests patient-specific regulome may inform drug response.

Conversely, DNA access at TF motifs for ETS, RUNX, GATA,

and STAT are strongly enriched in normal CD4+ T cells, but are

lost in both leukemic and host non-leukemic CD4+ T cells. These

TFs are involved in a wide variety of functions including the regu-

lation of cellular differentiation, cell-cycle control, cell migration,

cell proliferation, apoptosis, and angiogenesis (Sharrocks,
32 Cancer Cell 32, 27–41, July 10, 2017
2001). For example, the STAT TF family is well known in medi-

ating many aspects of cancer inflammation and immunity (Yu

et al., 2009). STAT3 activation restrains anti-tumor immune re-

sponses by antagonizing NF-kB and STAT1-mediated expres-

sion of anti-tumor Th1 cytokines such as IL-12 and IFN-g, which

are necessary for both innate and T cell-mediated anti-tumor im-

munity (Yu et al., 2009). It is notable that the depletion of ETS/

RUNX/GATA/STAT activity occurred in both purified leukemic

cells and host CD4+ cells from CTCL patients (Figure 4A). This

result suggests that there is broad reprogramming of T cell ho-

meostasis in CTCL patients that is shared in the leukemic

compartment and host immune response. Quantitative ranking

of TF motif enrichments between normal and disease samples

largely recapitulated the dominant regulators identified above

(Figure 4B). We found that ETS, CEBP, RUNX, GATA, and

STAT are the top motifs enriched specifically in normal T cells
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Figure 4. Transcription Factor Occupancy Networks in CTCL

(A) Enrichment of known transcription factor motifs in differential accessible elements for all samples. Each row is a motif and each column is a sample. Values in

the matrix indicate the significance, in terms of –log(p value), of the enrichment estimated from Genomica. Top ranked motifs were annotated on the right.

Unsupervised hierarchical clustering was performed. Top: the first color bar indicates whether a sample was drug responsive or resistant; the second color bar

indicates the category of each sample: normal, host, stage III, bulk CTCL, or leukemic cells.

(B) Ranking of the most differential motifs between normal versus disease samples. The top ones were the most enriched motifs in normal samples and the

bottom ones most enriched in disease samples.

(C) Visualization of ATAC-seq footprint for motifs ETS1, RUNX, GATA, STAT, JUN, and CTCF, in normal, host, bulk CTCL, and leukemic cells. The ATAC-seq

signal across all the motif binding sites in the genome were aligned on the motif and averaged.
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Figure 5. Personal Chromatin Dynamics with HDACi Treatment

(A and B) Percentage of CTCL counts (top) and chromatin states indicated by ATAC-seq signal (bottom) of patients during vorinostat (A) or romidepsin (B)

treatment from 0 to 5 weeks. Boxplot: the line in the box shows the median, the upper and lower borders of the box indicate the upper and lower quartiles, lines

below and above the box indicate the 10th and 90th percentiles. Clinical responders were colored in pink, and non-responders were colored in dark blue. The

p values were estimated from Student’s t test. Delta means the average reads per kilobase of transcript per million mapped reads (RPKM) fold change between a

treated versus an untreated state (day 0).

(legend continued on next page)
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but not CTCL, while CTCF, Jun-AP1, NF-kB, and BATF are the

top motifs specifically activated in CTCL.

Analysis of our ATAC-seq revealed the ‘‘TF footprint’’ on

genomic DNA directly from clinical CTCL samples and primary

human T cells (Figure 4C). DNA sequences that are directly

occupied by DNA-binding proteins are protected from transpo-

sition, analogous to DNase digestion footprints. For themost dif-

ferential motifs in normal versus disease comparisons, we

observed their footprints under all conditions (Figure 4C). We

found that TFs enriched in normal T cells, such as ETS1,

RUNX, GATA, and STAT, show deeper ‘‘footprints’’ and higher

DNA accessibility, flanking their motifs in normal cells compared

with leukemic cells. In contrast, the ‘‘footprints’’ of the TFs en-

riched in leukemic cells, such as JUN and CTCF, show the oppo-

site trend. The degree of TF footprint loss is greater than that of

the footprint gain of the respective TFs. Collectively, the results

from the orthogonal footprint analysis are consistent with the

motif-enrichment analysis using Genomica.

Personal Chromatin Dynamics with HDACi Treatment
HDACi (here vorinostat and romidepsin) are thought to induce

therapeutic effects in cancer by modulation of gene expression

(particularly induction of tumor suppressor genes) by increasing

histone acetylation and DNA accessibility. However, only a sub-

set, �43% (6 out of 14 included in this study) of CTCL patients

demonstrates clinical response to HDACi, while other patients

with similar disease by stage and existing molecular criteria are

resistant. The basis for this therapeutic heterogeneity is not

known. HDACi treatment is currently given without any ability

to visualize its impact on the CTCL epigenome or on gene tran-

scription. We profiled personal regulomes of HDACi treatment in

real time, in order to evaluate ahead of time the potentially

optimal therapeutic approach, before major changes in cell

composition. We focused our analysis on patients who showed

eventual clinical response to HDACi rather than on those who

did not (‘‘non-responders’’ thereafter); the latter may have stable

disease versus progressive disease, which we do not have suf-

ficient power to distinguish on a molecular level at present.

We found that clinical response to HDACi is correlated with a

dynamic change in CTCLDNA accessibility. Patients with clinical

response in the blood compartment showed global increase of

DNA accessibility during HDACi treatment, while patients resis-

tant to HDACi did not (Figure S4A).We found 62%, 5%, and 33%

of cluster I, II, and III peaks (defined in Figure 2A), respectively,

were responsive to romidepsin in CTCL patients (Figure S4B).

The romidepsin-responsive peaks in cluster I are enriched in im-

mune-relevant gene ontology terms (Figure S4C), suggesting

that T cells were activated during drug treatment and turned

leukemic cells toward normalcy.

We plotted the CTCL leukemic count versus the DNA acces-

sibility (defined as the reads per kilobase of transcript per

million mapped reads normalized ATAC-seq reads count of

all peaks) of their bulk CD4+ T cell, before and during HDACi
(C) Dot plot of delta percentage of CTCL counts versus delta ATAC-seq signal in th

correlation R were estimated from Pearson correlation analysis.

(D) Normalized ATAC-seq profiles at the FOXP3 locus of patients P11, P1461, P2

peaks identified gradually opened up during the HDACi treatment for responsiv

resistant patients (P20 and P5). See also Figures S4–S6.
therapy for all available patients. We separated patients into

two groups, those treated with either vorinostat or romidepsin.

Patients who did not respond to HDACi, such as P11 on vorino-

stat or P1409 on romidepsin, showed negligible changes in

DNA accessibility (Figures 5A and 5B). The CTCL counts of pa-

tients P20 and P5 actually increased while on vorinostat treat-

ment over 4 weeks, and the chromatin accessibility significantly

decreased (Figure 5A). In contrast, when patient P11 was sub-

sequently treated with romidepsin, and had a CTCL count

reduction of almost 30%, the ATAC-seq profile showed a sig-

nificant increase in DNA accessibility. Similar results were

also observed in patient P1461 (Figure 5B). These results sug-

gest that the dynamics of chromatin accessibility during HDACi

treatment can be patient specific and may predict clinical

outcome. Summarizing our entire set of patients, we found

that the decrease in CTCL count in response to HDACi is

strongly correlated with the quantitative gain of in DNA acces-

sibility as measured by ATAC-seq (Figure 5C). These results

suggest that CTCL patients’ clinical responses to HDACi are

associated with a specific and dynamic pattern of chromatin

decompaction.

Several notable genes demonstrate HDACi responsiveness in

CTCL patients. FOXP3 is a master regulator of the regulatory

pathway in the development and function of Treg cells (Fontenot

et al., 2003, 2005; Hori et al., 2003). For responsive patients P11

and P1461, two FOXP3 enhancers were gradually opened up

during the drug treatment, while that of the other two drug-resis-

tant patients, P20 and P5, remained unchanged or even became

closed, suggesting that FOXP3 might be a critical regulator in

drug response (Figure 5D). As another example, IFIT3 is an inter-

feron-induced protein that is upregulated in pancreatic and

hypopharynx cancers (Niess et al., 2015; Xu et al., 2013). Fig-

ure S4D shows how the enhancer became accessible during

drug treatment in clinical responders but remained unchanged

or even compacted in clinical non-responders.

We also investigated whether HDACi-induced DNA accessi-

bility around tumor suppressor genes anticipated a HDACi ther-

apeutic effect. In HDACi responders (e.g., P11 and P1461 on

romidepsin), many elements flanking tumor suppressor genes

became accessible during drug treatment, while in non-re-

sponders DNA accessibility of tumor suppressors actually

decreased (Figure S5A). The promoter of TP53, a well-known

tumor suppressor gene, illustrates this dynamic selectively in

HDACi responders (Figure S5B).

Furthermore, we adapted a previously described hidden Mar-

kov model analysis tool ChromHMM (Ernst and Kellis, 2012) to

check which chromatin states in primary T cells were enriched

in the top 5,000 altered sites under vorinostat and romidepsin

therapy. This analysis revealed that peaks mostly altered under

romidepsin treatment were highly enriched in promoters and

active enhancers compared with vorinostat (Figure S6), suggest-

ing that peaks altered by romidepsin may have greater influence

on gene expression.
e form of RPKM. The solid line was fit from liner regression, and the p value and

0, and P5 at different time points during HDACi treatment. Shaded regions are

e patients (P11 and P1461), and remained unchanged or even closed up for
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Figure 6. Enhancer Cytometry and Cell-Type-Specific Response to HDACi Therapy

(A) Schematic outline of study design of cell-type-specific response to HDACi therapy.

(B) Enhancer cytometry analysis from CIBERSORT using T subtype cell ATAC-seq signatures as eigenvectors to evaluate the T subtype cell composition in a

mixture of normal, host, CTCL, and leukemic cells. Error bars represents SEM from all samples in each category. Each T subtype cell was colored differently.

(C) Left: heatmap of relative fold changes of treated states versus their corresponding untreated states (day 0) of the top 5,000 altered peaks in patient P11 treated

with vorinostat or romidepsin as indicated. Middle: average fold change of the corresponding peaks in normal versus CTCL samples. Right: whether a corre-

sponding peak belongs to cluster I, II, or III as defined in Figure 2A. Time points at the bottom indicate when samples were subject to ATAC-seq: +, clinical

responsive; –, resistant.

(D) Boxplots (the line in the box shows the median, the upper and lower borders of the box indicate the upper and lower quartiles, lines below and above the box

indicate the 10th and 90th percentiles) of host signature peaks (left) and leukemic signature peaks (right) in leukemic (dark red) and host (dark green) cells of

patient P11 under treatment with romidepsin. See also Figure S7.
Enhancer Cytometry and Cell-Type-Specific Response
to HDACi Therapy
CD4+ T cells are heterogeneous, and consist of multiple

subtypes, including naive and memory T cell populations. Mem-

ory CD4+ T cells can be further divided based on their differenti-

ation into cytokine-polarized Th1, Th2, Th17, and Treg cells. We
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recently developed ‘‘enhancer cytometry’’ wherein we can accu-

rately enumerate the frequency of cell types in complex cellular

mixtures based on DNA accessibility data (Corces et al., 2016),

and we applied this method to deconvolve the composition of

subtypes of T cells in normal and CTCL samples, including puri-

fied leukemic and host cells from CTCL patients (Figure 6A).
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Orange boxes indicate copy-number gain, blue boxes copy-number loss, and white boxes no significant change. Patients with black boxes are HDACi drug

responders.

(legend continued on next page)
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We first isolated human blood-naive and memory Th1, Th2,

Th17, and Treg cells using FACS, and performed ATAC-seq to

determine the landscape of chromatin accessibility of each cell

type in healthy subjects. We then computed the contribution of

each signature to aggregate leukemic cell profiles. Interestingly,

bulk CTCL and leukemic samples demonstrated a significantly

lower percentage of naive T cells and a concomitant increase

in memory T cells compared with normal or host cells, indicating

that CTCL cells are highly similar to memory T cells at the epige-

nomic level (Figure 6B). Further fractionation of memory T cell

profiles showed that CTCL cells demonstrate an increase in

Th2 and Treg profiles relative to normal cells. An excess of

Treg cells in cancer patients can prevent the immune system

from destroying cancer cells (Josefowicz et al., 2012), and the

adoption of a Treg-like regulome in CTCL cells may facilitate

evasion of anti-tumor immunity. In host T cells of CTCL patients,

Th1 frequency is reduced and Th2 frequency is increased (Fig-

ure 6B). This result suggests that the balance of T cell homeosta-

sis is disrupted in CTCL patients, either directly or indirectly, with

the repression of the Th1 cell signature and enrichment of the

Th2 signature. This observation is also consistent with the down-

regulation of IFNG (Figure 3C), which is a key effector in Th1 cell

differentiation and anti-tumor immunity (Platanias, 2005).

We next sought to deconvolve the composition of host and

leukemic cells in bulk CTCL samples. As a positive control,

enhancer cytometry reported that host cells were predominant

in purified host samples, and that leukemic cells were dominant

in purified leukemic samples, as expected (Figure S7). Enhancer

cytometry of bulk CD4+ T cells from patients P11 and P1424 was

also consistent with their clinical course (Figures 5A and 5B),

independently confirming the findings from flow cytometry

based on a small number of cell surface markers (Figure S7).

An important question in epigenetic therapy of cancer is the

target cell identity. Is it the leukemic cells, the non-malignant

host CD4+ cells, or both, that are altered in response to HDACi?

Patient P11 provides a case study. P11 was treated with vorino-

stat with no clinical response, and then treated with romidepsin

with positive response. We were able to obtain ATAC-seq pro-

files from bulk CD4+ cells during vorinostat treatment, and

bulk, purified leukemic, and host CD4+ cells during romidepsin

treatment. Visualizing the top 5,000 most differentially altered

elements in DNA accessibility illustrated three key points (Fig-

ure 6C). First, the chromatin accessibility landscape of P11 re-

sponded differently to vorinostat versus romidepsin, indicating

drug-specific molecular effects. Second, romidepsin induced

distinct patterns of DNA accessibility in leukemic versus host

CD4+ T cells (Figure 6C). Intriguingly, the HDACi-induced change

in host CD4+ T cells was much more correlated with the chro-

matin signature that distinguishes normal versus CTCL cells

(Pearson correlation 0.36 for host cells and �0.04 for leukemic

cells), suggesting that the host CD4+ cells may be more relevant
(C) Association of CTCL regulome pattern discovered in Figure 4A and HDACi res

enrichment of each regulome pattern. Right: association of CTCL regulome patte

the FDR from Bonferroni correction.

(D) Normalized ATAC-seq profiles at the FAS locus of patients P11 (green), P14

treatment. Shaded regions are peaks identified as gradually opening up during

unchanged or even closed up for resistant patients (P20 and P5). Normalized RN

also shown.
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in HDACi’s ability to normalize the chromatin state in CTCL pa-

tients (Figure 6C, dotted box). Third, and most importantly, we

observed that a baseline state of DNA accessibility appears to

predict the elements that respond to HDACi. When we

compared the romidepsin response with the three clusters of

DNA elements that distinguished normal, host CD4+, and

CTCL cells (defined in Figure 2A), we observed that, in CTCL

cells, romidepsin increased DNA accessibility in cluster III ele-

ments, which are more accessible in CTCL than normal or host

cells. Similarly, in host CD4+ cells, romidepsin increased acces-

sibility more in cluster I elements, which are accessible in normal

and host CD4+ cells but lost in CTCL. This same point is rein-

forced by quantitative analysis of DNA elements that are differ-

entially accessible in leukemic cells or host cells (Figure 6D).

Host signature elements have a higher accessibility in host cells

than CTCL cells at baseline (as expected), and host elements

have an increased accessibility in response to romidepsin only

in host cells but not leukemic cells. Conversely, leukemic signa-

ture elements have a higher accessibility in leukemic cells than in

host cells, and romidepsin treatment increases their accessibility

in leukemic, but not host cells (Figure 6D). In other words, HDACi

accentuate the existing pattern of DNA accessibility in each

given cell type, rather than switching on inaccessible sites in

either CTCL or host cells.

Integration of Genomic and Epigenomic Landscapes
in CTCL
Genome and exome sequencing of CTCL and SS demonstrated

chromosomal copy-number variations (CNV) in patients with the

diseases (da Silva Almeida et al., 2015; Choi et al., 2015). We

used a method to detect chromosomal CNV from ATAC-seq

background reads (Denny et al., 2016), and integrated genomic

and epigenomic analyses in CTCL. For each sample, we pin-

pointed the genomic amplifications and deletions from ATAC-

seq data, which recapitulated chromosomal CNVs such as 10q

and 17p deletion and 8q and 17q amplification, confirming dis-

coveries from exome and whole-genome DNA sequencing (da

Silva Almeida et al., 2015; Choi et al., 2015) (Figures 7A and

7B). Recurrently mutated genes in CTCL, such as FAS, MYC,

NFKB2, STAT5B, and TP53 were also discovered (Figures 7A

and 7B). In addition, we integrated the chromatin accessibility

profile and response to HDACi for each sample with genomic

CNV. We found that none of the CNVs can predict the clinical

response to HDACi (FDR > 0.05), but, in contrast, the chromatin

regulome profile significantly predicted HDACi response

(p < 0.05, FDR < 0.05, chi-square test) (Figure 7C). The presence

of the CTCF pattern and the absence of the Jun-AP1 pattern are

both predictive of HDACi response. At the level of individual

genes, FAS encodes a cell surface death receptor, the expres-

sion of which in tissue culture experiments has been proposed

to explain the efficacy of epigenetic therapy in CTCL (Wu and
ponse. Left: 2D unsupervised hierarchical clustering of patients based on their

rn and HDACi response, the p value was estimated from a chi-square test, and

61 (orange), P20 (purple), and P5 (blue) at different time points during HDACi

the HDACi treatment for responsive patients (P11 and P1461), and remaining

A-seq profiles in host and leukemic cells from patient 1 at the same locus are



Wood, 2011). However, we found that genomic deletion of the

FAS locus is not sufficient to predict HDACi clinical response

(Figure 7B), because only a subset of patients with intact FAS lo-

cus de-repressed the gene upon HDACi. We show that HDACi

can indeed increase chromatin accessibility at the FAS promoter

in CTCL from human patients, and that each patient who had

increased chromatin accessibility at FAS experienced subse-

quent clinical response to HDACi (Figure 7D). These results high-

light the unique prognostic and mechanistic insights that are

potentially gained by integration of genomic and epigenomic

analysis of CTCL.

DISCUSSION

Here, we surveyed the landscape of active regulatory DNA in

CTCL using the sensitive method of ATAC-seq. Because only

�1% of the human genome is accessible in any given cell type,

the identity and pattern of DNA accessibility is highly informative

of cell identity, activity state, and regulatory programs. In CTCL,

we found distinct patterns of DNA accessibility in both leukemic

and host CD4+ T cells that differ from CD4+ T cells in healthy in-

dividuals. These DNA elements are coordinately associated with

genes that intimately control T cell growth, immunity, and ho-

meostasis, adding to the concept that CTCL is both a neoplasm

and a systemic disease that alters host immune functions.

In CTCL, the gene-regulatory network is altered with nearly

ubiquitous activation of NF-kB, plus one of three mutually exclu-

sive sets of DNA bindings factors Jun-AP1, CTCF, and a set of

TFs that includes MYC. Because inhibitors to several of these

factors or their upstream regulators have been developed,

such as JNK inhibitors (Zhang et al., 2012), Aza-C for CTCF

(Flavahan et al., 2016), or BRD4 inhibitors for Myc deactivation

(Filippakopoulos et al., 2010), knowledge of the dominant regu-

lators in each patient sample may afford rational matching of

patients to targeted therapies. In host CD4+ T cells, we found

systemic deactivation of programs that confer immune functions

driven by STAT, GATA, ETS, and RUNX factors. The net effect of

these regulatory perturbations is an expansion of memory Treg

and Th2 regulomes in CTCL leukemic cells and host cells, at

the expense of naive T cells and Th1 subsets.

The nearly complete loss of naive regulome signatures in

leukemic cells suggests thatCTCLmay derive from foundermem-

ory T cell clones. Since memory T cells are long lived and share

self-renewal properties with hematopoietic stem cells, these

data may indicate a model of lymphoma evolution that mirrors

the process observed in myeloid leukemia (Corces-Zimmerman

et al., 2014; Jan et al., 2012). Namely, memory T cells may serve

as a reservoir for the accumulation of cancer-causing mutations,

which eventually lead to frank lymphoma. Our findings using

DNA accessibility and enhancer cytometry are consistent with

the extensive literature on the immune profile of CTCL (Dulmage

and Geskin, 2013), and are advantageous in that multiple insights

(including TF drivers not available from previous assays) can be

learned fromasingle regulomeprofile. Personal regulomeanalysis

of acute myeloid leukemia has identified prognostic features and

therapeutic targets (Corces et al., 2016; Mazumdar et al., 2015).

Our results with CTCL further demonstrate the feasibility and po-

tential insights from the application of cutting-edge epigenomic

technology on patient samples for precision medicine.
Despite the fact that CTCL is the first clinical indication that led

to the approval of HDACi for human use, the chromatin dynamics

of CTCL patients being treated with HDACi are not known. We

combined CTCL purification, based on the clonal T cell receptor

V-beta idiotype, and ATAC-seq profiling, to track CTCL patients

throughout treatment with HDACi vorinostat or romidepsin. We

were fortunate to identify a patient who had a positive clinical

response to romidepsin and whose CTCL had a V-beta clone

thatwewere able to sort andpurify.Our results held twosurprises

that ran contrary to the conventional thinking on the epigenetic

treatment of cancer. First, we found that the HDACi romidepsin

had profound effects on the DNA accessibility of CTCL and

host CD4+ T cells, and it was the change in host T cells that was

more aligned with normalizing the chromatin signature. Thus,

the host immune systemmay be equally important as the cancer

cell for epigenetic therapy. Recent studies of EZH2 and DNA

methyltransferase inhibitors have shown an important role in

de-repressing host immunity against cancer in preclinicalmodels

(Chiappinelli et al., 2015; Peng et al., 2015). Our results in CTCL

patient are consistent with this concept and suggest HDACi as

another possible agent to manipulate host immunity in cancer.

Second,we found that the clinical response toHDACi is associ-

ated with a global increase in CTCL DNA accessibility, and that

HDACi appears to accentuate the status quo pattern of DNA

accessibility rather than evoking new accessible elements. In

our patient series, clinical response differentiated vorinostat

versus romidepsin. It is unclear whether a higher dose of vorino-

stat could have induced DNA accessibility or clinical response.

Nonetheless, HDACi therapy is currently given in a set regimen

without evaluating the effect onCTCL chromatin state. Functional

feedback on the therapeutic target, as is currently practiced for

measuring blood culture for anti-microbial therapy or clotting

time fordosinganti-coagulation therapy,greatly improves thepre-

cision and likelihood of reaching the therapeutic goal.Our findings

providea rationale for potentiallymonitoring thechromatin stateof

cancer cells and host cells during epigenetic therapy of cancer.

Moreover, we found that existing accessible elements, rather

than dormant tumor suppressor genes or off-lineage regulators,

are preferentially induced by HDACi therapy in CTCL and host

cells. This finding may explain the observation that restoration of

host immunity occurs with HDACi therapy. Our results are based

on a small number of observations, and thus should be evaluated

for replication in additional patients in future studies.
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METHOD DETAILS

Patients
Following informed consent per the Declaration of Helsinki, Sézary syndrome (SS) patient samples were collected under a protocol

approved by the Institutional Review Board at Stanford University Medical Center. Patient characteristics are described in Table S2.

All samples were obtained from patients with either clinical stage III or IVMF or SS. All diagnoses were confirmed by a board-certified

dermatopathologist. Clinical staging and assessment of response to treatment are as defined by CTCL international consensus

criteria (Olsen et al., 2011).

Cell Isolation
Normal donors were recruited under a Stanford University IRB-approved protocol. Informed consent was obtained. Standard blood

draws in green-top tubewere obtained for each timepoint. 1-5mL ofwhole bloodwas enriched for CD4+ cells usingRosetteSepHuman

CD4+TCell EnrichmentCocktail (StemCell Technology) asdescribed (Buenrostroetal., 2013).PBMCswerepreparedbyFicoll-Hypaque

density-gradient centrifugation. PBMCs were stained with fluorochrome-labeled anti–humanmonoclonal antibodies (Biolegend Inc) to

CD45 (clone HI30), CD4 (clone RPA-T4), and CD3 (clone HIT3a). T-cell receptor (TCR) Vb clonality was determined with the TCR

Vb Repertoire Kit (Beckman-Coulter). Antibody-stained patient lymphocytes were sorted into CD3+CD4+Vb+ and CD3+CD4+Vb� frac-

tions with the use of an Influx flow cytometer (Becton Dickinson) (Dummer et al., 1996). At least 50,000 CD4+ T cells were enriched by

negative selection without ex vivo expansion. For CD4+ T helper cell subtypes, cells were sorted as previously described(Morita et al.,

2011). Briefly, naive cells were sorted as CD4+CD25-CD45RA+, Th1 cells as CD4+CD25-CD45RA-CXCR3+CCR6-, Th2 cells as

CD4+CD25-CD45RA-CXCR3-CCR6-, Th17 cells as CD4+CD25-CD45RA-CXCR3-CCR6+, and Treg cells as CD4+CD25+CD127lo.

>95% post-sort purities were confirmed prior to ATAC-seq.

ATAC-Seq
ATAC-seq was performed as described(Buenrostro et al., 2013), and 2x50 paired-end sequencing performed on Illumina

NextSeq500 to yield on average 55M reads/sample.

Primary Data Processing and Peak Calling
Adapter sequences trimming,mapping to Hg19 using Bowtie2(Langmead and Salzberg, 2012) (with option –very-sensitive), and PCR

duplicate removal were as described(Buenrostro et al., 2013). Mapped reads were shifted +4/-5bp depending on the strand of the

read, so that the first base of each mapped read representing the Tn5 cleavage position. All mapped reads were then extended to

50bp centered by the cleavage position. Reads mapped to repeated regions and chromosome M were removed. Peak calling was

performed usingMACS2 (Zhang et al., 2008) with options -f BED, -g hs, -q 0.01, –nomodel, –shift 0. Peaks in each sample were called

for QCpurpose. Sampleswere then grouped into 5 categories, Normal, Host, Stage3, BulkCTCL and Leukemic. Reads from the same

category were concatenated, on which peak calling was performed using the same options. Peaks in each category were further

filtered, and high quality peaks with FDR<10E-7 were obtained. Peaks for all the categories were then merged together into a unique

peak list, and number of raw reads mapped to each peak at each condition was quantified using intersectBed function in BedTools

(Quinlan and Hall, 2010). Peak raw counts were quartile normalized using DESeq(Simon Anders, 2010) package in R. Peak intensity

was defined as log2 of the normalized counts. After these steps, an N3M data matrix was obtained where N indicates the number of

merged peaks,M indicates the number of samples, and valueDi, j indicates the peak intensity of peak i (i=1 toN) in sample j (j=1 toM).

For each pairs of samples, Pearson correlation was calculated based on the log2 normalized counts of all the peaks. Unsupervised

correlation of the Pearson correlation matrix was performed using Cluster 3.0 (de Hoon et al., 2004), and visualized in Java Treeview.

Data Quality Control
ATAC-seq data quality measure was comprehensively studied in our previous work (Qu et al., 2015). The ability of using ATAC-seq to

detect accessible sites was proved by comparing ATAC-seq signal with DNaseI hypersensitivity sequencing (DHSseq), which serves

as a gold standard assay and positive control for open chromatin. We found that ATAC-seq was highly reproducible between rep-

licates. From an irreproducibility discovery rate (IDR) analysis(Landt et al., 2012), which was an ENCODE-specified method to eval-

uate data reproducibility across replicates, we found that the number of reproducible peaks plateau between 11-12millionmappable

reads, irrespective of the IDR cutoff (Qu et al., 2015). In this study, we have on average 26 million uniquely mapped reads (Table S1),

suggesting the sequencing in this study was deep enough to confidently capture themajority of the regions of interest. We then using

several metrics to evaluate the quality of each sample, including the number of raw reads, overall alignment rate, final mapped reads,

final mapped rate, percentage of reads mapped to chrM, percentage of reads mapped to repeat regions (black list), percentage of

reads filtered out by low MAPQ score, percentage of PCR duplicates, TSS enrichment score (reads that enriched at +/-2kb around

TSS versus the background), read length distribution and number of peaks (Table S1). We then end up with 111 high quality samples.
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Genomic Segmentation Analysis
Genomic location classification was defined by chromHMM in Epigenomic Roadmap Consortium (Roadmap Epigenomics et al.,

2015) on Naı̈ve T cells. A chromHMM25-state classification was then combined to 5 states, promoter, transcription, active enhancer,

weak enhancer and heterochromatin. All merged peaks, differential peaks and peaks in each cluster in Figure 2A were then overlaid

with these 5 genomic segments, e.g. if the center of a peak resides in promoter, then this peak was assigned to promoter, and same

for all the other segments.

Integrative Analysis of Chromatin Accessibility (ATAC-seq) and Gene Expression (RNA-seq) Profiles
We analyzed public datasets from a transcriptome analysis of Sezary syndrome (Lee et al., 2012) to validate the positive correlation

between the ATAC-seq signals with the mRNA expressions of the genes nearby. Nearby genes were defined from GREAT (McLean

et al., 2010). RNA-seq reads were aligned to the human reference sequence NCBI (NCBI) build GRCh37/hg19 with TopHat (Trapnell

et al., 2012). A combination of RefSeq, UCSC genes, and Gencode databases were used as reference annotations. Multiple isoforms

of a same gene were collapsed so that only values of fragments per kilobase per million mapped reads of each gene were calculated

with a self-developed script (K.Q.). Boxplot of gene expression difference in Figure 3D was performed using Prism 7, and p values

were estimated from Student T-test.

Regulatory Network and TF Footprinting Analysis
Input motifs set was obtained from jaspar (http://jaspar.genereg.net/) on vertebrates. We searched for input motifs in each significant

differential peak using HOMER (Heinz et al., 2010), and generated a peak versus motif matrix, where each row is a peak and each

column is a motif. Value 1 in the matrix represents this motif is found in the peak and value 0 represents NOT. From peak significant

analysis, we had a peak by sample matrix where each row is a peak and each column is a sample, and values in the matrix represent

the peak intensity in the corresponding sample.We thenmean-centered the values in each peak to obtain the relative fold changes of

each peak across all the samples. By integrating this two matrixes into Genomica (Segal et al., 2004), using the ModuleMap algo-

rithm, we were able to ask whether and to what extend a motif was enriched in each sample, and obtain a motif by sample matrix,

where each row is a motif, each column is a sample, and the values in this matrix represent the significance of enrichment by

–log(p value). If the average fold change of a motif in a sample was positive, then this motif was defined as positive enriched in

the sample; and if that of a motif in a sample was negative, then this motif was defined as negative enriched in the sample. The

top enriched/depleted between normal and disease was defined as the –log(p value) differences between normal samples and dis-

ease samples (here CTCL Bulk and Leukemic samples). The higher this value is, the more enriched this motif is in normal samples,

and the lower this value is, the more enriched this motif is in disease samples. The genome-wide motif footprinting analysis was

performed using PIQ v1.2 (Sherwood et al., 2014). For footprinting, we adjusted the read start sites to represent the center of the

transposon’s binding event (see above). Previous descriptions of the Tn5 transposase show that the transposon binds as a dimer

and inserts two adaptors separated by 9 bp (Adey et al., 2010). Therefore, we modified the reads’ aligned file in sam format by

offsetting +4bp for all the reads aligned to the forward strand, and -5bp for all the reads aligned to the reverse strand. We then con-

verted a shifted base sam file to bam format and had the bam file sorted using samtools. We concatenated ATAC-seq reads each

category of samples (Normal, Host, CTCL Bulk and Leukemic) and randomly selected 100M reads from each group and made

merged bam files. PIQ takes a sorted bam file and a list of motif position weight matrix (PWM) file as inputs. We took default settings

and run PIQ as instructed here: https://bitbucket.org/thashim/piq-single. PIQ predicted the genomic occupation of 242 motifs with

binding affinity estimated by purity scores. We filtered the PIQ predictions using a purity score cutoff at 0.7, and overlaid these pre-

dictions with randomly selected 100M reads in each category. We then averaged the overlaid read counts of 200bp genomic region

centered by the motif sites for motif footprints.

Drug Response Analysis
To evaluate how the entire chromatin responds to HDACi anti-cancer drugs, we used an in house generated script (K.Q.) to calculate

the RPKMs of all the chromatin accessible sites, and see how they were changed during the drug treatment. The top 5000 most

altered peaks in terms of RPKM fold changes, either gain or lose accessibility, were selected and the fold changes of treated states

versus their corresponding untreated states (Day0) of the same patient were plotted (Figures 6C and S4A). Samples were ordered

according to their drug treatment time points, and unsupervised clustering was performed on the peaks using software Cluster

3.0 and visualized in Treeview. The average fold changes of the corresponding peak in normal versus CTCL samples was also

plotted, together with whether a peak belonged to cluster 1, 2, or 3 defined in Figure 2A. An entire list of tumor suppressor genes

(1217 genes) was obtained from Tumor Suppressor Gene Database(Zhao et al., 2013), and a list of 1301 peaks -5kb to 2kb around

the promoters of these genes were defined as tumor suppressor peaks. Drug response of these tumor suppressor peaks was

analyzed and plotted in a similar way (Figure S5A). The clinical response of leukemic (Sézary) cells with HDACi therapy was assessed

using flow cytometric analysis conducted as part of clinical care practice (Stanford Hospital Clinical Laboratory, Stanford, CA).

Enhancer Cytometry Analysis
CIBERSORT (Newman et al., 2015) with ‘‘CustomSignature Gene’’ option was used to deconvolve the composition of subtype T cells

in bulk CTCL samples. ATAC-seq on primary Naı̈ve, Th1, Th2, Treg and Th17 cells were performed and data was processed in a same

way as above. Reads in each cell type were concatenated and peaks were called using MACS2 as above. Only high quality peaks in
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each cell type were kept and merged to a T cell subtype peak list. Peak intensities in subtype T cells as well as Bulk CTCL and other

samples were obtained using BedTools. Peaks mapping to chromosome X and promoter/TSS regions were manually removed.

Manual removal of peaks improves the predictive capabilities of CIBERSORT (Corces et al., 2016). Peak intensity matrix in subtype

T cells was used as the reference sample file, and phenotype class file was manually generated for CIBERSORT to obtain a custom

gene signature. Peak intensity matrix in Bulk CTCL and other samples was used as the mixture file in CIBERSORT, which then

deconvolved the composition of T subtypes in each sample in the mixture file. Predicted percentages of each T subtype cells in

each sample were grouped into Normal, Host, CTCL bulk and CTCL leukemic samples, and histogram was performed in R.

Copy Number Variation Analysis
Copy number variation analysis was performed according to (Denny et al., 2016). ATAC-seq reads from the same patient or healthy

donor at each category (bulk, host or leukemic) were concatenated to address the chromosomal copy number of the patient or donor.

Each chromosome was divided into windows size of 1Mbp at sliding step of 500Kbp. Within each window, reads mapped to ATAC-

seq peaks were removed, remaining only the background reads. The average coverage for window was defined as follows:

Average coverage=
Reads mapped into window� Reads mapped into peaks

Window size� sum of peak size

We then performed 3 normalizing steps to estimate the copy number of each sliding window in each sample: (1) by sequencing

depth from each concatenated sample; (2) by the median coverage of the normal samples and calculated the Log2 ratio over that

median coverage; and (3) by the median coverage of each sample itself. We defined a copy number gain or loss by Z-score greater

than 2. Regulome patterns were defined in Figure 4A, and the enrichment of each pattern for each patient was defined as the number

of samples in each pattern divided by the total number of samples of the same patient in all the patterns.

DATA AND SOFTWARE AVAILABILITY

GEO Accession
Raw reads and called peaks for all samples are available through the Gene Expression Omnibus (GEO) via accession GSE85853.

QUANTIFICATION AND STATISTICAL ANALYSIS

Student T-tests were applied in Figures 3D, 5A, 5B, and S3A.

Chi-Square Test and Bonferroni correction were applied in Figure 7C.
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