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High-throughput single-cell chromatin accessibility
CRISPR screens enable unbiased identification of
regulatory networks in cancer
Sarah E. Pierce1,4, Jeffrey M. Granja 1,2,4 & William J. Greenleaf 1,2,3✉

Chromatin accessibility profiling can identify putative regulatory regions genome wide;

however, pooled single-cell methods for assessing the effects of regulatory perturbations on

accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq

protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method

(Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and inte-

grated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC

profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the

temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and

the associations between transcription factor binding profiles.
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Complex epigenetic regulation is a unique requirement for
all multicellular organisms, enabling diverse phenotypes
stemming from a common underlying genotype. Under-

standing how transcription factor binding dynamics drive epi-
genetic state remains one of the durable mysteries of cell biology,
underlying fundamental process such as embryogenesis, differ-
entiation, and cancer1. Perturbing the expression levels of epi-
genetic regulators and observing the subsequent effects on
chromatin accessibility provides a powerful means to dissect
transcription factor function. To this end, CRISPR/Cas9 tech-
nologies enable precise tuning of protein levels using targeted
mutation and epigenetic modulation strategies2,3. CRISPR/Cas9
perturbation methods allow knock-down of protein levels of any
gene, and when combined with technologies such as scRNA-seq,
the global transcriptional effects of these perturbations can be
assayed across thousands of cells for each perturbation4–6. In
contrast, however, current methods to profile the effects of
CRISPR/Cas9-based perturbations on single-cell epigenomes are
limited to analyzing 96 cells per run on an integrated fluidic
circuit7.

Here, we introduce the droplet-based Spear-ATAC protocol
(Single-cell perturbations with an accessibility read-out
using scATAC-seq) to quantify and map the effects of per-
turbing transcription factor levels on chromatin accessibility
in high throughput. In contrast to previous methods, Spear-
ATAC relies on reading out sgRNA spacer sequences directly
from genomic DNA rather than off of RNA transcripts. We
use Spear-ATAC to evaluate epigenetic responses to pertur-
bations across time as well as to understand the effect of
transcription factor perturbation on the accessibility of tran-
scription factor binding profiles.

Results
Single-cell CRISPR screens with a chromatin accessibility read-
out. Similar to bulk accessibility profiling using ATAC-seq8,9, the
droplet-based scATAC-seq protocol begins with nuclei isolation
and transposition of the sample of interest using a hyperactive
transposase (Tn5) that integrates into areas of open
chromatin10,11 (Fig. 1a and Supplementary Fig. 1). To first
guarantee that capture of a single-copy of an integrated sgRNA
does not depend on the local accessibility context surrounding the
sgRNA sequence, we flanked the lentiviral sgRNA spacer with
pre-integrated Nextera Read1 and Read2 adapters (Supplemen-
tary Fig. 2a–b), ensuring that the sgRNA sequence will amplify
with the same primers used to amplify ATAC-seq fragments in
the library. When testing the detection of sgRNA fragments with
bulk ATAC-seq, this design increased our ability to detect sgRNA
fragments by ~4-fold without altering sgRNA efficacy (Supple-
mentary Fig. 2c–d). Following transposition, the nuclei are loaded
into the 10x Controller for the capture of individual nuclei into
nanoliter-scale gel-beads in emulsion (GEMs). These GEMs
contain barcoded Forward oligos complementary to the Nextera
Read1 adapter to amplify all ATAC fragments, thereby tagging
each ATAC fragment from the same nucleus with the same 10x
barcode. Since this protocol uses a single barcoded primer to tag
ATAC fragments, we reasoned that we could preferentially
amplify each sgRNA fragment by also spiking in a Reverse oligo
specific to the sgRNA backbone (Fig. 1a and Supplementary
Fig. 3a–b). This modification allows for exponential amplification
of the sgRNA fragment at the same time the rest of the library is
amplified linearly, while still ensuring the sgRNA can be used as a
substrate for the second round of PCR. We also extended the
number of cycles of in-GEM linear amplification of scATAC-seq
fragments from 12 to 15, which subsequently adds three rounds
of exponential sgRNA amplification without altering scATAC-seq

quality (Supplementary Fig. 3c–d). Finally, we included a biotin-
tagged primer during targeted sgRNA amplification, which
allows for the specific enrichment of these fragments while
minimizing aberrant background signal from scATAC-seq reads
(Supplementary Fig. 3e). Overall, these changes increase our
ability to detect sgRNA fragments by ~40-fold compared to
lentiviral integration alone followed by traditional droplet-based
scATAC-seq.

We first piloted the Spear-ATAC method with a pool of nine
CRISPRi sgRNAs targeting two transcription factors (GATA1
and GATA2) and three inert sgRNA controls (Non-targeting or
NT) (Supplementary Fig. 4a). We introduced this library into
K562 leukemia cells engineered to express a CRISPRi dCas9-
KRAB cassette to knockdown genes of interest, expanded the cells
for 6 days, and then FACS-isolated sgRNA+ cells to process for
Spear-ATAC. We captured 6390 nuclei in the pilot run, of which
we were able to directly associate 48% of single-cell epigenetic
profiles (n= 3045 nuclei) to their appropriate sgRNA target with
>80% specificity (Fig. 1b and Supplementary Fig. 4b–f). Captur-
ing the same number of cell-sgRNA assignments with existing
methods would have required ~30 Perturb-ATAC runs costing
$9.80/cell compared to one Spear-ATAC run costing $0.46/cell
(see “Methods” and Supplementary Fig. 5). Perturb-ATAC also
requires 4-hour run times on a Fluidigm C1 to process each set of
96 cells, necessitating the handling of multiple batches of frozen
cells over several days. Apart from the use of standard PCR
machines and bead purification steps, Spear-ATAC only requires
a 7-minute run time on a 10x Controller to process up to 80,000
nuclei at once (up to 10,000 cells x 8 samples per run), greatly
increasing the potential throughput of these methods (Supple-
mentary Fig. 5).

From the 3045 nuclei assigned to sgRNAs in the pilot Spear-
ATAC run, Uniform Manifold Approximation and Projection
(UMAP) clearly distinguished cells harboring sgGATA1 from
both sgGATA2 and sgNT cells, indicating the high specificity of
sgRNA assignments (Fig. 1c and Supplementary Fig. 4c–d).
GATA1 and GATA2 are both involved in hematopoietic
differentiation and development; however, the erythroid tran-
scription factor GATA1 is specifically an essential gene in K562
cells, whereas GATA2 is dispensable for growth and survival in
this cell line12. Of note, K562 derivatives additionally have a
naturally occurring side population (cluster 1 in Extended Data
Fig. 4c) that has been observed and characterized in previous
scATAC-seq datasets13. We next developed a framework for
unbiased identification of changes in transcription factor (TF)
motif accessibility across multiple populations of cells harboring
different sgRNAs. We first computed TF motif accessibility scores
(e.g., chromVAR deviation scores14 across all single cells for a
given sgRNA genotype (sgT), then subtracted the average TF
motif accessibility scores of the non-targeting (sgNT) cells. We
then ranked all of these sgRNA-to-TF motif accessibility
difference scores (sgRNA:TF scores) to identify hits (Fig. 1d).
As would be expected, knockdown of GATA1 decreased the
accessibility of peaks containing the GATA motif, as well as the
accessibility of peaks overlapping with known GATA1 ChIP-seq
peaks (Fig. 1e). Furthermore, GATA1 knockdown resulted in a
muted GATA footprint compared to K562;dCas9-KRAB cells
expressing non-targeting sgRNAs (Fig. 1f). Local accessibility at
the GATA1 locus also decreased following knockdown, further
validating that cells assigned to sgGATA1 are down-regulating
expression at this locus (Fig. 1g and Supplementary Fig. 6a).

By performing differential accessibility analysis between
sgGATA1-containing cells and sgNT-expressing control cells,
we observed 14,262 peaks (14.76%) increasing in accessibility and
14,026 peaks (14.52%) decreasing in accessibility (Fig. 1h). Each
of the three sgRNAs targeting GATA1 resulted in nearly
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indistinguishable chromatin accessibility profiles (Supplementary
Fig. 6b). Peaks decreasing in accessibility following GATA1
knockdown were enriched for the GATA motif and peaks
increasing in accessibility following GATA1 knockdown were
enriched for SPI/RUNX motifs (Supplementary Fig. 6c). Further-
more, individual cells with the lowest aggregate accessibility of
genomic regions containing GATA1 motifs had the highest
aggregate accessibility of genomic regions containing SPI/RUNX
motifs and vice versa, further underscoring these regulatory
relationships (Supplementary Fig. 6c–d). Supporting these
observations, SPI (also known as PU.1) and GATA1 have been
previously shown to physically interact and negatively regulate
each other15, exemplifying the type of direct phenotypes that can
be assayed and validated using the Spear-ATAC method.

Beyond motif enrichment, GREAT16 enrichment of genomic
regions with decreased accessibility following GATA1 knock-
down were enriched for being near erythroid-specific genes
(Supplementary Fig. 6e), and genomic regions with increased
accessibility following GATA1 knockdown were enriched for
being near megakaryocyte-specific genes (Supplementary Fig. 6f).
This result is particularly interesting given that K562 cells are
often used as a model system for erythro-megakaryocytic
progenitor cells. Therefore, knocking down GATA1 in K562
leukemia cells appears to prematurely push cells down a more
SP1/RUNX1+, megakaryocyte lineage, despite the fact that
GATA1 activity is typically required for this differentiation
process17. Consistent with this idea, genetic disorders that impair
GATA1 function often result in both the dysregulation of
erythropoiesis as well as an increased incidence of transient

myeloproliferative disorder and/or acute megakaryoblastic leuke-
mia in a subset of patients18.

Assessing trans-regulatory perturbations over time using
Spear-ATAC. We next took advantage of the throughput of
Spear-ATAC to map the dynamic effects of knocking down
transcription factors over time. Traditional proliferation based
CRISPR screens evaluate the representation of sgRNAs after up to
three weeks in culture; therefore, we evaluated knockdown profiles
3, 6, 9, and 21 days post-knockdown. We introduced a library of
18 sgRNAs targeting 6 transcription factors (n= 3 sgRNAs each)
as well as 3 inert sgRNA controls into K562;dCas9-KRAB cells
and performed scATAC-seq across the four time-points (Fig. 2a
and Supplementary Fig. 7a-i). Similar to a proliferation-based
CRISPR screen, representation of sgRNAs can be monitored over
time using Spear-ATAC; for example, we observed a significant
reduction in the representation of sgGATA1-containing cells at
days 9 and 21 compared to days 3 and 6, whereas representation
of cells with guides targeting KLF1 remained constant across days
3, 6, and 9 before decreasing at day 21 (Fig. 2b and Supplementary
Fig. 7f). To identify hits from the screen—i.e., guides with sig-
nificant effects on the chromatin landscape—we again used
chromVAR to rank TF motif accessibility changes following
sgRNA perturbations (Fig. 2c). Motif regulatory changes following
GATA1 and KLF1 knockdown were the most significant across
the genotypes, although the responses to sgGATA1 diminished
over time corresponding to a decrease in representation of
sgGATA1 cells in the population (Fig. 2c). The peaks changing in
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Fig. 1 Spear-ATAC enables high-throughput CRISPR screening with a chromatin accessibility read-out. a Schematic of the Spear-ATAC method.
Modifications to traditional CRISPR screening methods and scATAC-seq approaches are outlined on the right. b Heatmap of the percent of sgRNA reads
assigned to 3045 individual cells with corresponding chromatin accessibility information via scATAC-seq. c UMAP of Spear-ATAC chromatin accessibility
profiles for the pilot K562 screen colored by sgRNA assignments. d Rank ordered plot of sgRNA:TF perturbations to identify top hits in the pilot
K562 screen. e UMAP of Spear-ATAC chromatin accessibility profiles for the pilot K562 screen colored by chromVAR deviations for GATA1 ENCODE
ChIP-seq. f (Top) Bias-Normalized footprint of the local accessibility for each scATAC-seq cluster for genomic regions containing GATA motifs. (Bottom)
Modeled hexamer insertion bias of Tn5 around sites containing each motif. g Pseudo-bulk ATAC-seq track at the GATA1 locus for sgGATA1 and
sgNT cells. Light grey box indicates the region targeted by sgGATA1-1, sgGATA1-2, and sgGATA1-2 CRISPRi sgRNAs. h Differential accessibility between
sgGATA1 and sgNT cells. The x axis represents the log2 mean accessibility per peak and the y axis represents the log2 fold change in sgGATA1 cells
compared to sgNT cells. Colored points are significant (|log2 fold change | >0.5, FDR < 0.05).
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accessibility also changed over time (Fig. 2d and Supplementary
Fig. 7j); for example, peaks enriched for STAT5 motifs increased
in accessibility soon after GATA1 knockdown at day 3 but
returned to near baseline levels of accessibility at days 6 and 9
(Fig. 2d). STAT5 is known to be involved in the maintenance of
erythroid differentiation in a GATA1-dependent process19;
therefore, decreased accessibility of peaks containing STAT5
motifs followed by the increased accessibility of peaks containing
SPI motifs at days 6 and 9 might further suggest a transition to a
more megakaryocyte lineage. Local accessibility near erythroid
and megakaryocytic genes also changed as a function of time
following knockdown, further emphasizing the importance of
timing when evaluating the effects of perturbations on chromatin
accessibility (Fig. 2e and Supplementary Fig. 7i).

High-throughput perturbation screens using Spear-ATAC. To
test the ability of Spear-ATAC to screen the chromatin

accessibility effects of transcription factors in high-throughput,
we evaluated the effects of knocking down 36 transcription fac-
tors expressed in K562;dCas9-KRAB leukemia cells with
2–3 sgRNAs each, in addition to 14 control non-targeting
sgRNAs and 12 sgRNAs targeting essential genes (Fig. 2a and
Supplementary Fig. 8a–d). We chose a variety of transcription
factors with growth effects when knocked down in K562 cells
(Growth TFs) as well as ones with no proliferation phenotype
following knockdown (Non-Growth TFs)20 (Fig. 3a). Overall, we
captured 32,832 nuclei representing 128 sgRNA genotypes across
six Spear-ATAC samples, with on average 372 single cells being
assigned to each sgRNA target with high specificity (Supple-
mentary Fig. 8a). We next used chromVAR to rank motif
accessibility changes following sgRNA perturbations and identi-
fied the top sgRNA:TF motif associations. We consistently
identified the sgGATA1:GATA and sgKLF:KLF pairs as well as
additional pairs such as sgNFE2:NFE2 and sgFOSL1:FOSL
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Fig. 2 Assessing trans regulatory perturbations over time using Spear-ATAC. a Schematic of Spear-ATAC time-course experiment with a 21-sgRNA pool
analyzed at 4 time-points (3, 6, 9, and 21 days post-transduction). b Change in sgGATA1 representation over time, represented by the number of cells
analyzed per time-point (red) and the % of cells in the total pool (black). c Rank ordered plot of sgRNA:TF perturbations to identify top hits in the K562
time-course screen at the indicated time points. d (Left) Heatmap of chromatin peak accessibility for each scATAC-seq sub-population using the top
differential scATAC-seq peaks. Each row represents a z score of log2 normalized accessibility within each group using scATAC-seq. Day 21 was excluded
due to low representation of sgGATA1 cells at this time point. (Right) Transcription factor hypergeometric motif enrichment with FDR indicated in
parentheses. e Pseudo-bulk ATAC-seq track at the IRF1 locus for sgGATA1 (day 3, day 6, day 9, and day 21) and sgNT cells (day3). Light grey box indicates
peak regions that increased in accessibility in the sgGATA1 vs sgNT cells. Day 21 was excluded due to low representation of sgGATA1 cells at this
time point.
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(Fig. 3b and Supplementary Fig. 9a–b). Similarly, for sgRNA
genotypes that resulted in strong motif accessibility differences
compared to sgNT-containing cells, the motifs identified were
consistent with the targeted transcription factor, as shown for
GATA1, NFE2, KLF1, FOSL1, and NRF1 (Fig. 3c).

To establish regulatory relationships between TFs, we mea-
sured the effects of TF perturbations on co-varying regulatory
networks7 (Fig. 3d). To identify these perturbed co-varying
networks, we subtracted the TF–TF motif accessibility correla-
tions within the non-targeting cells by the targeting cells. We first
analyzed these relationships for the strongest target perturbation,
sgGATA1. We identified five modules of TF motifs that are
differentially perturbed by GATA1 knockdown (Fig. 3e). From
this analysis, we again found that depletion of GATA1 led to
increased coordinated activity of Module 1 consisting of crucial
hematopoietic TFs such as SPI1, IRF1, RUNX, and others. To
further test the specificity and performance of Spear-ATAC in
additional cell lines, we performed a smaller scale screen with the
same K562-optimized sgRNA targets in GM12878;dCas9-KRAB
lymphoblastic cells and MCF7;dCas9-KRAB breast cancer cells.
Overall, we captured an additional 12,175 cells with sgRNA

associations between the two cell lines. As expected, the sgRNA:
TF motif perturbations were strongest and specific to K562 cells,
highlighting cell-type specificity for TF regulation. However,
shared patterns of co-varying regulatory networks were also
uniquely observed in MCF7;dCas9-KRAB cells following knock-
down of HINFP, CUX1, and NRF1 (Supplementary Fig. 10a–c).
While HINFP, CUX1, and NRF1 have not previously been shown
to directly interact with each other, HINFP and CUX1 are both
involved with histone H4 gene regulation and their overlapping
regulatory networks suggest a common pathway21.

Discussion
Spear-ATAC can be used to evaluate the effects of perturbing
transcription factor expression on gene regulatory networks,
increasing the throughput of previous methods by between 35-
and 100-fold (depending on target nuclei capture rate) and
decreasing cost by 20-fold (Supplementary Fig. 5). Of note, while
this manuscript was under review, a preprint of another method
to capture sgRNAs from RNA transcripts alongside scATAC-seq
was made available (CRISPR-sciATAC)22. In contrast to both

Fig. 3 High throughput chromatin accessibility screening of CRISPR perturbations using Spear-ATAC. a Schematic of Spear-ATAC large screens with a
132-sgRNA pool analyzed for three different cell lines (K562, MCF7, and GM12878). b Rank ordered plot of sgRNA:TF perturbations to identify top hits in
the K562 large screen. c Motif enrichment in differentially accessible peaks across 6 perturbed transcription factors in the K562 large screen. Color
indicates whether the motif enrichment corresponds to up-regulated (red) or down-regulated (blue) peaks. d Schematic of inferring regulatory relations
with Spear-ATAC. Briefly, the correlation for each TF–TF motif is determined in both the targeting (sgT) and non-targeting (sgNT) cells. Next the
correlation in the non-targeting cells is subtracted from targeting cells. These TF–TF motif pairs are then assessed for different regulatory relationships.
e (Left) Heatmap of the differences between sgGATA1 targeting and non-targeting cells for all TF–TF motif accessibility correlations grouped into five
different modules in the K562 large screen. (Right) Zoomed-in heatmap of modules 1 and 2 highlighting transcription factors with largely perturbed TF–TF
motif accessibility relationships.
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Perturb-ATAC and Spear-ATAC, CRISPR-sciATAC relies on
using 96 barcoded transposases to index ATAC and cDNA
fragments from the same nucleus in plates. While the throughput
of Spear-ATAC and CRISPR-sciATAC are similar, we anticipate
that Spear-ATAC may be easier for laboratories to adopt due to
its use of commercially available reagents.

An exciting application for Spear-ATAC will likely involve the
creation of transcription factor interaction maps following mul-
tiplexed perturbations, which will enable a higher-level under-
standing of how proteins interact to regulate the non-coding
genome. We additionally envision the application of this method
following the perturbation of individual regulatory elements
through high-fidelity editing methods such as prime editing23,
allowing a quantitative understanding of how disease-related
mutations alter transcription factor occupancy (as inferred by
ATAC-seq) and accessibility at these sites. Spear-ATAC also
enables facile monitoring of pooled epigenetic perturbations
across time, providing insight into the timescales involved in
epigenetic reprogramming. Given the time-dependent differences
we observe in our chromatin accessibility profiles following
CRISPRi perturbations, we believe that this temporal dimension
of monitoring is crucial for identifying the appropriate timepoint
for a given study to exclude or include downstream effects. In
addition, the use of inducible knockdown models with a Spear-
ATAC read-out has the potential to give key insights into the
mechanisms of chromatin plasticity. Finally, the Spear-ATAC
workflow is not inherently limited to reading out CRISPR/
Cas9 sgRNAs, but could be adapted to identify sample barcodes
for higher throughput multiplexing or to read-out dynamic
lineage tracing marks to understand the relationship between cells
during differentiation or cancer evolution.

Methods
Cell lines. Human cell lines (K562, GM12878, and MCF7) were a gift from
Michael Bassik and Howard Chang’s laboratories, who previously purchased them
from ATCC. The dCas9-KRAB derivatives used have been validated and published
previously7,24,25. K562;dCas9-KRAB and GM12878;dCas9-KRAB cells were cul-
tured in RPMI media supplemented with 10% FBS, 1% penicillin-streptomycin-
glutamate, and 0.1% amphotericin. MCF7;dCas9-KRAB cells were cultured in
DMEM media supplemented with 10% FBS, 1% penicillin-streptomycin-glutamate,
and 0.1% amphotericin. All cell lines tested negative for mycoplasma using the
MycoAlert Mycoplasma Detection Kit (Lonza). Of note, while we typically think of
immortalized cell lines as relatively homogeneous, K562s still exhibit and maintain
natural heterogeneity, as shown by the two clusters representing the control
population observed in Fig. 1c. These clusters are not unique to our dCas9-KRAB
clone and we have observed that other K562-derivatives from separate sources have
side populations as well. We have more extensively characterized this heterogeneity
previously (Buenrostro et al. 2015). Similar side-populations have also been
observed by scRNA-seq for K562s in other labs (Jost et al. 2020).

Lentivirus production. All lentiviruses were produced by co-transfecting lentiviral
backbones with packaging vectors (delta8.2 and VSV-G) into 293 T cells using PEI
(Polysciences). The viral-containing supernatant was collected at 48- and 72-h
post-transfection, filtered through a 0.45 uM filter, and combined with fresh media
to transduce cells. K562 and GM12878 derivatives were transduced by spinfection
at 1000 g at 37 °C for 2 h. MCF7 derivatives were transduced by incubating with
viral-containing supernatant for up to 2 days prior to the first fresh media change.
Cell lines were incubated with 8 ug/mL polybrene (Sigma) to enhance transduction
efficiency. Cells were transduced with varying amounts of virus and Spear-ATAC
was only performed on cells with an MOI < 0.05 to reduce the likelihood of
multiple transduction events per cell. Please see Supplementary Note 2 for a
detailed protocol.

Spear-ATAC: cloning and modifications to the sgRNA plasmid backbone.
pSP618 was derived from a modified pMJ114 backbone where the U6-sgRNA
cassette was replaced with an alternate sequence from an IDT gBlock. This new
U6-sgRNA cassette includes a mouse U6 promoter with a 34 bp Nextera Read2
adapter in place of the loxP site that is commonly embedded within mouse U6
promoters, followed by the original constant region (cr1) from the Perturb-seq
backbones, followed by a constant region and 34 bp Nextera Read1 adapter. This
plasmid will be made available on Addgene. sgRNA spacer sequences of interest
were inserted into the pSP618 backbone individually using site-directed

mutagenesis (please see Supplementary Note 1 for more details). These sequences
were originally picked from the Dolcetto CRISPRi genome-wide library available
on Addgene and a full list is available in Supplementary Data 7. In addition, to
allow for sgRNA read-out directly from sequencing the scATAC-seq library, we
also cloned in unique, 10-bp sgRNA barcode sequences immediately adjacent to
the Nextera Read1 adapter by site-directed mutagenesis (sequences also available in
Supplementary Data 7). However, we found that targeted sgRNA amplification
followed by targeted sgRNA sequencing gives the highest quality sgRNA:nuclei
associations, and so we would recommend cloning in the sgRNA spacer sequences
only and using the custom sequencing primer oMCB1672 (5ʹ- GCCACTTTTTCA
AGTTGATAACGGACTAGCCTTATTTAAACTTGCTATGCTGTTTCCAGCTT
AGCTCTTAAAC-3ʹ) for Read 1 to directly sequence the sgRNA spacer sequence.
sgRNA plasmids were mixed at equimolar ratios before making virus and trans-
ducing the cells of interest. Of note, for the pilot experiment, sgGATA2-3 was
slightly underrepresented in the original plasmid pool for the pilot experiment,
which is also reflected in the Spear-ATAC data (Fig. 1).

Spear-ATAC: modifications to the 10x scATAC-seq protocol. sgRNA+ nuclei
were prepared for the 10x Genomics scATAC-seq protocol using version 1 of the
scATAC-seq kit (10x Genomics PN-1000110)10. Only two modifications were
necessary for Spear-ATAC. First, during GEM generation, 1.2 uL of 50 uM
oSP1735 in ddH2O (5ʹ- gctacattttacatgataggcttgg-3ʹ) was spiked into the Master
Mix. In addition, PCR1 following GEM generation was extended from 12 cycles to
15 cycles. Please note that all primer sequences are included as part of Supple-
mentary Data 8.

With regards to the number of nuclei to load into the 10x controller, 10x
Genomics recommends that users capture between 500 and 10,000 nuclei from
each sample. Loading >10,000 nuclei is not recommended by the manufacturer.
Sometimes a user might be limited based on the number of nuclei available and
might only choose to capture 500 nuclei total; other times the number of nuclei
might not be limiting, but a user will still choose to target only 6000–7000 nuclei
rather than the maximum number of 10,000 nuclei. The main downside to
targeting more nuclei is that the multiplet rate (the number of gel bead emulsions
that will be loaded with more than one nucleus) will increase—if a user targets 5000
nuclei, the multiplet rate is ~3.9%. If a user targets 10,000 nuclei, the multiplet rate
is ~7.6% (according to the 10x Genomics website). On average in this manuscript,
6000 nuclei were targeted per sample for Spear-ATAC for K562;dCas9-KRAB
samples and 4000–5000 nuclei were targeted per sample for Spear-ATAC for
MCF7;dCas9-KRAB and GM12878;dCas9-KRAB samples. For the pilot screen, one
sample was processed for K562;dCas9-KRAB. For the time-course screen, four
samples were processed for K562;dCas9-KRAB (one for each time-point). For the
large screen, six identical samples were processed in parallel for K562;dCas9-KRAB
and four identical samples were processed in parallel for MCF7;dCas9-KRAB and
GM12878;dCas9-KRAB samples.

Spear-ATAC: amplification of sgRNA fragments out of the scATAC-seq
libraries. In brief, after the final scATAC-seq libraries were prepared (~150 nM
final concentration in 20 uL ddH2O), 2.5 uL of the libraries were used as input for a
targeted sgRNA linear amplification PCR reaction using a 5ʹ biotinylated, sgRNA-
specific primer (oSP2053: 5ʹ- GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCTaagtatcccttggagaaccaccttg-3ʹ) for 25 cycles. PCR product was pooled and
purified using a Qiagen Minelute kit (Qiagen). Biotinylated sgRNA fragments were
then enriched using Streptavidin MyOne C1 beads (ThermoFisher) and re-
suspended in 40 uL ddH2O, which was used as input for an exponential PCR
amplification reaction for 15 cycles using primers corresponding to P5 (oSP1594:
5ʹ- AATGATACGGCGACCACCGAGA-3ʹ) and an indexed P7-containing primer
(5ʹ- CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTC
AGACGTGTG-3ʹ, where NNNNNNNN is replaced with the index of choice).
Please see Supplementary Note 3 for a more detailed protocol.

Genome and transcriptome annotations. All analyses were performed with the
hg38 genome. We used the hg38 genome transcripts for gene annotations from
“TxDb.Hsapiens.UCSC.hg38.knownGene”.

SpearATAC—aligning sgRNA data. To identify the sgRNA for each single cell we
first aligned each sgRNA (conventionally Read1, i.e., for 10x scATAC “R1_001.
fastq.gz”) to cell barcode (conventionally Index1, i.e., for 10x scATAC “R3_001.
fastq.gz”) combination to the sgRNA library and cell barcode library respectively.
We first compiled the cell barcode library of all cell barcodes with up to 1 mis-
match. We additionally created a dictionary of the sgRNA barcodes using “PDict”
in R. With these 2 libraries, we read in the 2 fastq reads (Read1 and Index1) in
500,000 read chunks using the package “ShortRead” in R. We next matched the
Index reads to the cell barcode library using “fmatch” in R. Then, we matched the
Read1 reads to the sgRNA library using “chunkDictMatch” in R. We compiled the
match results into a data frame and iterated through the full fastq reads. Finally, we
created a cell by sgRNA matrix that encompassed the aligned sgRNA for each cell
and identified cells that had a high-fidelity sgRNA assignment as having at least
20 sgRNA counts and a specificity of 0.8 to the top target.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23213-w

6 NATURE COMMUNICATIONS |         (2021) 12:2969 | https://doi.org/10.1038/s41467-021-23213-w | www.nature.com/naturecommunications

www.nature.com/naturecommunications


SpearATAC—aligning scATAC data. Raw sequencing data was converted to fastq
format using cellranger atac mkfastq (10x Genomics, version 1.2.0). Single-cell ATAC-
seq reads were aligned to the hg38 reference genome and quantified using cellranger
count (10x Genomics, version 1.2.0). The current version of Cell Ranger can be accessed
here: https://support.10xgenomics.com/single-cell-atac/software/downloads/latest.

SpearATAC—pre-processing scATAC data. We used ArchR26 (version 0.9.5) for
all downstream scATAC-seq analysis (https://greenleaflab.github.io/ArchR_Website/).
We used the fragments files for each sample with their corresponding csv file with cell
information. We then created Arrow files using “createArrowFiles” with using the
barcodes from the sample 10x CSV file with “getValidBarcodes”. This step adds the
accessible fragments a genome-wide 500-bp tile matrix and a gene-score matrix. We
did not filter doublets because for these screens the cells will not form many discrete
clusters and thus not many heterotypic doublets can be identified. We created an
ArchRProject and then filtered cells that had a TSS enrichment below 4 and <1000
fragments. For QC plots, we used “plotGroups”, “plotTSSEnrichment” and “plot-
FragmentSizes”. We added the sgRNA assignments for each individual sgRNA and
the sgRNA targets. We reduced dimensionality with “addIterativeLSI” (default
parameters), added clusters with “addClusters” (default parameters), and added a
UMAP with “addUMAP” (default parameters).

To improve the fidelity of our SpearATAC sgRNA assignments, we identified
the highest quality assignments for each target (similar to Replogle et al. 202027).
To perform this analysis, we first created an individual sgRNA by tile matrix and an
sgRNA Target by tile matrix. For each target, we identified the top 5000 increasing
and 5000 decreasing peaks between the target and non-targeting that were
reproducibly regulated when comparing the individual sgRNA to the non-targeting
cells. We used these 10,000 differential tile regions to perform an LSI
dimensionality reduction and subsequent UMAP (n_neighbors= 40, min_dist=
0.4, metric= “cosine”). We next computed the “PurityRatio” for each sgRNA
target cell based on the proportion of nearest neighbors being targeting cells (n=
20). Cells that had a “PurityRatio” greater than 0.9 kept their assignment (greater
than 95% of assigned cells met this criterion) for downstream analysis.

Following these assignments, we created a reproducible non-overlapping peak
matrix with “addGroupCoverages” and “addReproduciblePeakSet” using the
sgRNA targets as groups i.e., sgGATA1, sgGATA2, sgNT, and etc. We quantified
the number of Tn5 insertions per peak per cell using “addPeakMatrix”. We
subsequently added motif annotations using “addMotifAnnotations” with the
motifs curated and clustered from Vierstra et al. (2020)28 (https://www.vierstra.org/
resources/motif_clustering). We computed chromVAR deviations for each single
cell with “addDeviationsMatrix”. To identify the top sgRNA:TF perturbations, we
computed the average TF motif deviations for each target and subtracted the
average TF motif deviations for the non-targeting cells. By ranking the top sgRNA:
TF perturbations by the absolute differences we could distinguish the top hits in
each SpearATAC screen. For TF footprinting of GATA we used “plotFootprints”
with normalization method “subtract” which substracts the Tn5 bias from the
ATAC footprint. When performing motif based analyses, we first ranked all motifs
based on variability (relevant to the analysis) and the kept the highest motif for
each motif cluster/family identified from Vierstra et al. (2020)28 (https://www.
vierstra.org/resources/motif_clustering). This filtration step removed redundant
motifs, which can confound downstream analysis.

SpearATAC—analyzing K562 pilot screen (9-sgRNA). Following preprocessing
of the SpearATAC data, we identified differential peaks for each target vs non-
target cells using “getMarkerFeatures” (testMethod= “binomial”). We identified
differential peaks as those with a|log2FC| greater than 0.5 and FDR less than 0.1.
Differential peaks for sgGATA1 (up-regulated and down-regulated independently)
were used as input to GREAT16 (Association= “Two nearest genes”) to identify
inferred regulated biological processes (i.e., GO terms). We next computed the
average accessibility per peak for each individual sgRNA using “getGroupSE”
(scaleTo= 10^6). To create a heatmap of differential peaks for each sgRNA of a
target with sgNT (see Supplementary Fig. 6b), we subset by all differential peaks
that were |log2FC| greater than 1 and then plotted a k means (k= 4) z score (log2-
transformed) heatmap using “ArchR:::.ArchRHeatmap”. To identify motifs enri-
ched in each k means cluster of peaks we used “ArchR:::.computeEnrichment” with
the motifmatches and all peaks as a background set. Lastly, we computed a
chromVAR deviations matrix using the ENCODE ChIP seq data set within ArchR
with “addArchRAnnotations” (“EncodeTFBS”) and “addDeviationsMatrix”.

SpearATAC—analyzing K562 time-course screen (21-sgRNA). Following
preprocessing of the SpearATAC data, we identified differential peaks for each
target vs non-target cells using “getMarkerFeatures” (testMethod= “binomial”) for
each time point (day 3, day 6, day 9, and day 21). For each time point, we identified
differential peaks as those with a |log2FC| greater than 0.5 and FDR less than 0.1.
We next computed the average accessibility per peak for each time point and
individual sgRNA using “getGroupSE” (scaleTo= 10^6). To create a heatmap of
differential peaks for each sgRNA of a target with sgNT (see Fig. 2d and Supple-
mentary Fig. 7j), we first subset by the union of all differential peaks that were |
log2FC| greater than 1 for each time point. Next, we computed the average log2
fold changes for sgRNA target vs the sgNT at that time point (using the pseudobulk

matrix above). We further filtered the differential peaks by those peaks that have a |
log2FC| greater than 0.25 in at least 1 time point. We plotted a k means (k= 6) z-
score (log2-transformed) heatmap using “ArchR:::.ArchRHeatmap”. To identify
motifs enriched in each k means cluster of peaks we used “ArchR:::.compu-
teEnrichment” with the motifmatches and all peaks as a background set.

SpearATAC—analyzing large screens for K562, GM12878, and MCF7 (128-
sgRNA). Following preprocessing of the SpearATAC data, we identified differential
motifs for each target vs non-target cells using “getMarkerFeatures” (testMethod
= “wilcoxon”, bufferRatio= 0.95, maxCells= 250, useSeqnames= “z”). We filtered
sgNT-5,6,8,11,12 cells prior to this differential comparison after identifying these
sgRNA as outliers while performing pseudobulk PCA analysis. To identify perturbed
co-varying regulatory networks (see Fig. 3e and Supplementary Fig. 10a–c), we first
got the motif deviations matrix for each screen (K562, GM12878, and MCF7) and
filtered cells corresponding to sgNT-5,6,8,11,12. Next, we computed the average motif
deviation scores for each sgRNA target. We subtracted the average motif deviation
scores from the non-targeting cells. We rank ordered the motifs by the maximum
observed average motif deviation score difference (absolute difference) across all
targets in each screen. Finally, we rank ordered the motifs by the average of these
maxima across all three screens (K562, GM12878, and MCF7). We de-duplicated the
motifs in each cluster (see Vierstra et al. 202028; https://www.vierstra.org/resources/
motif_clustering) to remove redundant motifs. For each sgRNA we computed all
TF–TF deviation score correlations for the non-redundant motifs. Each targeting
sgRNA was then subtracted by the non-targeting sgRNA TF–TF correlations. This
differential correlation matrix was subsequently hierarchal clustered with “hclust” and
split into five modules with “cutree”. A heatmap of the differential correlations for the
sgRNA targeting cells was then constructed across all modules.

Spear-ATAC—cost analysis vs C1 fluidigm perturb-ATAC (Rubin et al., 2019).
To compare the cost of capturing both scATAC and sgRNA in the same cell for
Spear-ATAC vs Perturb-ATAC we first calculated the cost for capturing scATAC
for each method respectively (~$750 for C1 Fluidigm scATAC for ~96 cells and ~
$1400 for 10x scATAC for 500–10,000 cells). We ignored the cost of sequencing in
this analysis because previously published results differ in the total reads sequenced
per cell (C1 Fluidigm experiments have traditionally been over sequenced because of
lower complexity scATAC libraries vs 10x scATAC libraries)10,29. We next deter-
mined the sgRNA capture for both methods (85% for Perturb-ATAC and 48% in
Spear-ATAC for the K562 Pilot experiment). We additionally simulated a range of
capture rates for Spear-ATAC to account for capture rate variability. We used these
values to then determine the cost per cell with both scATAC and sgRNA (Cost Per
Sample / Number of cells with both scATAC and sgRNA). With this estimation we
determined the total cost given the number of cells desired and the number of kits
needed to generate this cell count. We note that each 10x kit has eight samples that
can be performed in parallel for massive throughput. These numbers should serve as
a reference for future adoption of the Spear-ATAC method.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All matrices (peak matrix and chromVAR) are available through AWS (see
Supplementary Data 6). We also made the 10x cell ranger atac output files and all
scATAC-seq matrices used in this study available through AWS (see Supplementary
Data 6). All sequencing data have been deposited in the Gene Expression Omnibus
(GEO) at GSE168851]. Plasmids generated in this study are available from the Lead
Contact without restriction. The Spear-ATAC lentiviral backbone (pSP618) is available
on Addgene and the sequence is on GenBank with accession MW852482. Any other
relevant data are available from the authors upon reasonable request. Source data are
provided with this paper.

Code availability
All custom code used in this work is available upon request. We additionally are hosting
a Github website that includes the main analysis code used in this study as well as a
tutorial with sample data (https://github.com/GreenleafLab/SpearATAC_MS_2021)30.
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