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Tumor evolution often results in a wealth of heterogeneous

cancer cell types within a single tumor — heterogeneity that

can include epigenetic and gene expression changes that are

impossible to identify from histological features alone. The

invasion of cancer cells into nearby healthy tissue,

accompanied by the infiltration of responding immune cells,

results in an even more complex architecture of tumor and non-

tumor cells. However, bulk genomics-based methods can only

assay the aggregate transcriptomic and epigenetic profiles

across all of this rich cellular diversity. Such bulk averaging

hides small subpopulations of tumor cells with unique

phenotypes that might result in therapeutic resistance or

metastatic progression. The advent of single-cell-based

genomics assays for measuring transcription and chromatin

accessibility – particularly scRNA-seq and scATAC-seq – has

enabled the dissection of cell-types within tumors at a scale

and resolution capable of unraveling the epigenetic and gene

expression programs of rare and unique cellular

subpopulations. This Review focuses on recent advances in

scRNA-seq and scATAC-seq technologies and their

application to cancer biology in the context of furthering our

understanding of tumor heterogeneity.
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Introduction
Tumors generally comprise a complex mélange of cell

types, including malignantly transformed cells infiltrating

normal somatic tissue with variable levels of immune

response, all existing within a complex microenvironment

[1]. Genomics-based assays such as whole-exome
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sequencing, RNA sequencing (RNA-seq), and ATAC

sequencing (ATAC-seq) are starting to resolve the diver-

sity of cellular phenotypes within human cancers. The

overall goal of these assays has been to define a trajectory

of molecular patterns that underlie malignant transforma-

tion, to map the cell autonomous signals between tumor

cells and surrounding stroma, and/or to determine the

magnitude of phenotypic diversity of cells within the

tumor itself and thereby expose cells that may have

specific therapeutic weaknesses. Here we review current

methods for performing scRNA-seq and/or scATAC-seq,

the advantages and limitations of performing single-cell

compared to bulk assays on tumor samples, and how we

hope such technologies will help to unpack both the

common and unique biology of individual tumors.

Single cell transcriptomic profiling identifies
rare cancer subpopulations within tumors
In the last decade, advances in scRNA-seq technologies

have rapidly changed our understanding of tumor hetero-

geneity throughout cancer progression. Computational

methods aimed at deconvoluting subpopulations from

bulk RNA-seq data have provided some understanding

of the breadth of this cellular diversity [2]; however, cell

clustering based on single-cell transcriptomic profiles

provides substantially more resolving power capable of

identifying new cellular states. In particular, RNA isola-

tion and barcoding techniques have evolved from initial

well-based applications with modest throughput (Smart-

seq, CEL-seq2) [3�,4], to split-and-pool approaches that

enable the sequential barcoding of mRNA transcripts

originating from separate cells (sci-RNA-seq) [5], to the

droplet-based encapsulation of single cells using micro-

fluidics platforms (Drop-seq, inDrops, Seq-Well, and 10x

Chromium) [6–8] (previously reviewed [9]). While tradi-

tional microwell-based methods consistently detect

higher numbers of genes per cell, split-and-pool and

droplet-based methods generally allow the processing

of significantly more cells (up to 10 000 or more cells

in a single sample). The parallel development of compu-

tational packages to analyze these increasingly

large scRNA-seq datasets has been reviewed in depth

previously [9].

For detecting rare subpopulations of cancer cells with the

capacity for therapeutic resistance and/or metastatic pro-

gression, the higher throughput methods are perhaps

most appropriately matched for finding these potential
www.sciencedirect.com
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‘needles’ in the cellular ‘haystack.’ For example, these

methods have been used to identify pre-metastatic cancer

cells from non-small-cell lung cancer primary tumors

[10,11], revealing that cancer cells can begin to adopt a

metastatic-like transcriptomes before leaving the primary

tumor and not just after colonization at a secondary site.

This type of observation has widespread implications for

how patients are stratified into risk categories in the clinic

and has the potential to identify biomarkers to help

predict whether a tumor has already seeded micrometas-

tases before diagnosis. In addition, scRNA-seq has been

used to characterize the responses of infiltrating T-lym-

phocytes in models of basal and squamous cell carcinoma

and non-small cell lung cancer [12,13]. In the case of basal

and squamous cell carcinoma, scRNA-seq was used to

identify the specific subpopulation of T-lymphocytes

responsible for initiating an immune response following

checkpoint blockade, providing further insight into

why non-inflamed, ‘cold’ tumors might be resistant to

immunotherapy.

Engineered RNA transcripts can also be introduced into

the cell and read out alongside single-cell transcriptomes

to provide orthogonal information, including the presence

of CRISPR/Cas9 sgRNAs that perturb cellular function

[14–16] or lineage tracing cassettes that track the relation-

ships between cells following cell division [17,18]. Along

these lines, scRNA-seq methods that combine sgRNA

read-out can substantially enrich information derived

from traditional proliferation-based CRISPR screens. In

particular, cellular responses to perturbations may be

categorized into patterns depending on how the entire

transcriptome changes. For example, Hill et al. revealed

how the transcriptome of the breast cancer cell line

MCF7 responds differently to the chemotherapeutic drug

doxorubicin depending on which tumor suppressor genes

have been mutated by CRISPR/Cas9 sgRNAs [19]. Simi-

lar experiments have the potential to inform why specific

genotypes of tumors might be more or less susceptible to

a range of possible chemotherapy regimens available.

These types of studies are especially important in an

age where clinical trials are increasingly enrolling patients

based on the molecular profiles of their tumors rather than

on the organ in which their tumor originated [20]. Lineage

tracing methods (reviewed in depth here [21]), either

using engineered evolvable cassettes or naturally existing

variation in mitochondrial genomes [22], are also proving

to be indispensable tools for understanding the clonal

expansions that bring about tumor heterogeneity.

Although their use in the cancer field is just beginning,

lineage tracing cassettes have already been used to under-

stand the metastatic trajectory of solid tumors by mapping

the most recent ancestry of pre-metastatic cells within

primary tumors and comparing their transcriptomes to

cells within metastases [23�]. Such techniques will likely

become increasingly essential for understanding the

molecular drivers of metastatic progression.
www.sciencedirect.com 
Along these lines of ‘RNA-seq plus’ assays that add data

enhancing biological interpretation to ‘vanilla’ scRNA-

seq are methods that combine transcriptome analysis with

DNA-indexed affinity reagents (generally antibodies),

thereby enabling simultaneous characterization of a

diversity of surface proteins along with the transcriptome

[24]. These methods have immense promise to provide

appropriate FACS markers linked to interesting expres-

sion phenotypes, enabling the isolation of these cells and

potential downstream phenotypic analysis or mechanistic

study. Similarly, unpacking the relationships between

immunophenotypic surface markers and genomics-based

profiles could allow for the easy stratification of patients

based on novel combinations of surface markers.

Single cell chromatin accessibility reveals
regulatory mechanisms of cancers
Profiling chromatin accessibility at single cell resolution,

most commonly using scATAC-seq, can help to identify

regions in the genome that are ‘open’ or accessible to the

binding of trans-factors that may drive gene expression

programs. Thus, in addition to stratifying subsets of

transcriptionally distinct cells within a heterogeneous

population, scATAC-seq provides a window into the

underlying epigenetic regulatory mechanisms that drive

cell type differences.

The technological evolution of scATAC-seq has substan-

tial similarities to the dynamics observed for scRNA-seq;

namely, initial implementations were of relatively modest

throughput, while subsequent implementations using

split-and-pool or droplet-based protocols have radically

increased the number of single cells that can be studied at

once. Similar to scRNA-seq, computational methods to

analyze such large datasets are rapidly growing and have

been reviewed previously [25,26]. Recent scATAC-seq

applications have included defining an array of epigenetic

regulators that drive T-cell exhaustion in basal cell

carcinoma [27] and identifying the transcription factor

RUNX2 as a master regulator of extracellular matrix

remodeling in a mouse model of non-small cell lung

cancer [28�]. Importantly, scATAC-seq has the power

to identify patterns of changes that are not readily appar-

ent at the transcriptome-level; for example, widespread

changes in the accessibility of transcription factor binding

motifs might offer a more mechanistic explanation for the

differences between non-metastatic and metastatic cells

compared to seemingly disparate transcriptomic changes.

However, while scRNA-seq technologies can readily

be combined with orthogonal read-outs such as

CRISPR/Cas9 sgRNAs, lineage tracing methods, or the

sequencing-based characterization of surface markers,

applications that add ‘bells and whistles’ to standard

scATAC-seq datasets are currently limited. For example,

a lentiviral sgRNA sequence only has a single copy

integrated into genomic DNA per cell but might have

hundreds of copies being expressed per cell at the RNA
Current Opinion in Genetics & Development 2021, 66:36–40
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level. While this limitation does not entirely preclude

doing CRISPR screens with a scATAC-seq read-out, it

does restrict our ability to associate sgRNAs to chromatin

accessibility profiles to �50% of cells assayed in a given

experiment [29]. Combining scATAC-seq with an RNA

read-out will likely be the most efficient way to relate

orthogonal readouts back to chromatin accessibility, and

this strategy has already been applied to read-out

CRISPR/Cas9 sgRNA transcripts from differentiating

keratinocyte cells and to read-out T-cell receptor tran-

scripts from leukemia samples combined with scATAC-

seq [30,31].

The development of multi-omic approaches to
dissect tumor heterogeneity
scRNA-seq and scATAC-seq provide highly complemen-

tary information regarding both the transcriptional phe-

notype and underlying regulatory logic of the cell state;

thus, generating independent single-cell transcriptomic

and chromatin accessibility profiling from portions of the

same sample can provide synergistic data sets for deeper

mechanistic insights into cancer. For example, integrative

analysis using these two single-cell methods helped to

identify genes with both differential gene expression and

local accessibility differences in a rare form of leukemia

called mixed-phenotype acute lymphoblastic leukemia

(MPAL) [32��]. These analyses then enabled the identi-

fication of putative oncogenic transcription factors (e.g.

RUNX1) that directly regulate these genes, opening up

new avenues for personalized therapeutic targets. Fur-

thermore, with multiple sophisticated informatics

packages such as Seurat and ArchR to streamline, stan-

dardize, and visualize these analyses, multi-omic data

integration has become far more broadly accessible

[33,34�].

While joint chromatin accessibility and transcriptomic

profiling appears promising, several limitations make

these types of studies challenging. First, these methods

rely on correctly linking cells to their ‘nearest neighbor’

across two highly distinct data types to provide an inte-

grated manifold combining RNA and chromatin accessi-

bility landscapes. Such a linking across independent

single-cell data sets becomes especially difficult when

analyzing tumor subpopulations with relatively subtle

distinctions. In addition to these analytical hurdles, the

technical difficulties of splitting an initial sample into

multiple portions to perform separate analyses might not

be feasible for rare and limited samples, including many

biopsy and metastatic samples.

Have your cake and eat it too: the promise of
simultaneous transcriptomic and chromatin
accessibility profiling of individual cancer
cells
Simultaneous generation of scATAC-seq and scRNA-seq

data from the same cell solves the challenges of
Current Opinion in Genetics & Development 2021, 66:36–40 
independent application of these techniques, and appears

to be a major methodology for the future of multi-omic

exploration of cancer biology. Four high throughput joint-

assay strategies have been reported: sci-CAR-seq [35],

Paired-seq [36], SNARE-seq [37], and SHARE-seq [38�].
While highly scalable, the first two methods for single-cell

ATAC-seq and RNA-seq in the same cell, sci-CAR-seq

and Paired-seq, are operationally complex and require

multiple barcoded Tn5 preparations, which likely

has hindered their widespread adoption. In contrast,

SNARE-seq and SHARE-seq rely on the ligation of

barcoded adapters to cDNA and ATAC fragments in

droplets or in a split-and-pool format, respectively, result-

ing in a substantial simplification that may accelerate

broader adoption of these approaches. Additionally,

SHARE-seq increases the number of ATAC-seq frag-

ments detected per cell by at least �7-fold and the

number of distinct transcripts by RNA-seq detected

per cell by at least �3-fold compared to previous meth-

ods, allowing similar data quality to standard independent

assays [38�]. Furthermore, 10x Genomics has recently

launched the first commercial droplet-based kit for joint

scATAC-seq and scRNA-seq on nuclei, reporting data

quality from the joint assay similar to that observed when

these assays are deployed separately. Altogether, these

multi-omic techniques directly link the transcriptome of a

cell to its accessibility profile to provide more information

per cell for more thorough cell type and functional

annotations, especially for rare cell types in a tumor or

in precious primary samples.

In addition to overcoming the limitations of performing

scATAC-seq and scRNA-seq separately, multi-omics

assays allow techniques that require an RNA read-out to

be directly associated with ATAC fragments, such as line-

age tracing of RNA barcodes, detecting sgRNA IDs

in large-scale CRISPR/Cas9 perturbations, andfutureaddi-

tion of affinity-based DNA readouts. Further, we expect

that modeling the effects of commonly mutated genes in

cell culture, spheroid, and/or mouse tumor models followed

by a simultaneous transcriptomic and chromatin accessi-

bility read-out will soon become a common method for

dissecting the transcriptional and epigenetic phenotype

from the mutational heterogeneity of cancer.

Conclusion
The single-cell and multi-omics methods described in

this Review are just the beginning of the genomics-based

techniques that will be employed in cancer research in

the years to come. While initial applications focused on

cell type annotations in the tumor and its microenviron-

ment, improvements in independent scRNA-seq and

scATAC-seq methodologies as well as wider adoption

of multi-omic approaches will quickly expand and deepen

our functional insight into rare cancer subpopulations,

limited primary biopsies and metastases, and the mechan-

ics of immune evasion. Adapting these assays to include
www.sciencedirect.com
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orthogonal information, including reading out CRISPR/

Cas9 perturbation genotypes, surface marker expression,

and/or transcription factor levels, will further enhance

our understanding of tumor heterogeneity and ideally

will help us predict if and how cells will respond to

therapeutics.
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