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Integrated single-cell chromatin and 
transcriptomic analyses of human scalp 
identify gene-regulatory programs and 
critical cell types for hair and skin diseases

Benjamin Ober-Reynolds1, Chen Wang2,3,4, Justin M. Ko2, Eon J. Rios2,3, 
Sumaira Z. Aasi2, Mark M. Davis    4,5,6, Anthony E. Oro    2,7 & 
William J. Greenleaf    1,8,9 

Genome-wide association studies have identi!ed many loci associated 
with hair and skin disease, but identi!cation of causal variants requires 
deciphering of gene-regulatory networks in relevant cell types. We 
generated matched single-cell chromatin pro!les and transcriptomes 
from scalp tissue from healthy controls and patients with alopecia areata, 
identifying diverse cell types of the hair follicle niche. By interrogating these 
datasets at multiple levels of cellular resolution, we infer 50–100% more 
enhancer–gene links than previous approaches and show that aggregate 
enhancer accessibility for highly regulated genes predicts expression. We 
use these gene-regulatory maps to prioritize cell types, genes and causal 
variants implicated in the pathobiology of androgenetic alopecia (AGA), 
eczema and other complex traits. AGA genome-wide association studies 
signals are enriched in dermal papilla regulatory regions, supporting the 
role of these cells as drivers of AGA pathogenesis. Finally, we train machine 
learning models to nominate single-nucleotide polymorphisms that 
a"ect gene expression through disruption of transcription factor binding, 
predicting candidate functional single-nucleotide polymorphism for AGA 
and eczema.

Skin consists of a community of cell types from diverse developmen-
tal origins that perform coordinated functions underlying tissue 
homeostasis. For example, skin contains hair follicles that progress 
through cycles of growth (anagen), regression (catagen) and resting 
(telogen), guided by paracrine signals from their surrounding stromal 

and immune niche1–4. Disruption of these cellular communities causes 
human skin and hair diseases such as alopecia areata, when normal hair 
follicle cycling is prevented by autoreactive T cells, or androgenetic 
alopecia (AGA), where hair follicles gradually miniaturize as a result 
of a poorly understood interplay of genetic and hormonal factors. 

Received: 1 September 2022

Accepted: 17 June 2023

Published online: xx xx xxxx

 Check for updates

1Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. 2Department of Dermatology, School of Medicine, Stanford 
University, Stanford, CA, USA. 3Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA. 4Institute of 
Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA. 5Department of Microbiology and Immunology, 
School of Medicine, Stanford University, Stanford, CA, USA. 6Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA, 
USA. 7Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA. 8Department of Applied Physics, Stanford University, 
Stanford, CA, USA. 9Chan Zuckerberg Biohub, San Francisco, CA, USA.  e-mail: wjg@stanford.edu

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01445-4
http://orcid.org/0000-0001-6868-657X
http://orcid.org/0000-0002-6261-138X
http://orcid.org/0000-0003-1409-3095
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-023-01445-4&domain=pdf
mailto:wjg@stanford.edu


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01445-4

Using the high-resolution scATAC-seq clusters we identified 
589,294 ‘peaks’ of open chromatin corresponding to CREs18. We iden-
tified 182,498 differentially accessible peaks between the broad scATAC 
clusters (Wilcoxon false discovery rate (FDR) ≤ 0.1, log2 (fold change 
(FC)) ≥ 0.5; Extended Data Fig. 2c). These cluster-specific peaks were 
enriched for lineage-determining TF motifs, such as RUNX and ETS fac-
tors in T lymphocytes23,24, SPI (PU.1) factors in myeloid lineage cells25, 
TP63 in keratinocytes26 and MITF in melanocytes27 (Fig. 1g).

All scRNA and scATAC clusters were composed of cells spanning 
the majority of patient donors (Extended Data Fig. 1d,e). However, 
certain cell types were more abundant in particular sample groups: 
samples from patients with alopecia areata had increased T lympho-
cytes and depletion of follicular keratinocytes (Fig. 1h,i and Extended 
Data Fig. 2d,e). These observations align with alopecia areata patho-
physiology, which involves peribulbar hair follicle T cell infiltration 
and disruption of normal hair follicle cycling28.

HRGs use distinct enhancer modules to tune gene expression
We bioinformatically integrated our scATAC and scRNA datasets using 
canonical correlation analysis29 and observed high correspondence 
between cell types (Extended Data Fig. 3d,e). We used these integrated 
datasets to identify CREs with accessibility correlated to local gene 
expression (‘peak-to-gene links’)18,19. To detect peak-to-gene linkages 
relevant for both broad cell type identity and regulation of more 
similar cell subtypes, we performed integration and peak-to-gene 
linkage identification on both the full scalp dataset and each of the 
subclustered datasets (Methods and Fig. 2a,b). In total, we identified 
146,088 peak-to-gene links (Extended Data Fig. 5a,b). Only 66,702 links 
were detected using the full dataset (Extended Data Fig. 5a), but link-
ages from any source were more likely to be evolutionarily conserved 
than unlinked peaks (Extended Data Fig. 5c) and were more likely 
to be corroborated by enhancer–gene pair predictions in a large 
activity-by-contact (ABC) model dataset than distance-matched, 
permuted linkages (Extended Data Fig. 5d)30,31. Most peaks (491,106, 
83.3%) were not linked to any gene, consistent with the expected small 
effect size of most CREs32. CREs were linked to the nearest gene in only 
47% of cases, a proportion supported by experimental estimates of 
enhancer–gene linkages (Extended Data Fig. 5e)30.

Consistent with previous studies, we identified a subset of genes 
associated with especially large numbers of linked CREs33,34. We iden-
tified 1,739 such HRGs by ranking genes according to the number of 
linked peaks and retaining those that exceeded the inflection point at 
20 peak-to-gene linkages (Fig. 2c). These genes include TFs driving cell 
identity (RUNX1, TWIST2 and MITF) and those with cell-type-specific 
functions (COL1A1, KRT14 and ICOS). Scalp HRGs were enriched for 
previously identified ‘superenhancer’-associated genes (Fig. 2d)35,36, 
and overlapped significantly with previously described domains of 
regulatory chromatin-associated genes in mouse skin (odds ratio 
(OR) = 6.18, one-sided Fisher’s exact test P = 6.27 × 10−119)33. To explore 
the regulatory heterogeneity of HRGs, we clustered k-nearest neigh-
bor pseudobulked samples by the accessibility of linked CREs, using 
k-means clustering to identify co-occurring regulatory modules  
(Fig. 2e). HRGs from each cluster were enriched for cell-type-specific 
Gene Ontology (GO) terms, including ‘adaptive immune response’ 
(myeloid), ‘melanocyte differentiation’ (melanocytes) and ‘hair follicle 
development’ (follicular keratinocytes) (Fig. 2e).

Whereas many HRGs were expressed in one or a few closely 
related cell types, several HRGs such as RUNX3 were expressed in 
multiple distinct cell types (Fig. 2b). To explore the regulatory hetero-
geneity of individual HRGs we clustered k-nearest neighbor pseudob-
ulks using the accessibility of peaks linked to a single HRG (Methods). 
For many HRGs we observed multiple ‘modules’ of coaccessible 
CREs in distinct cell types (Fig. 2f–i). Some modules were shared by 
multiple cell types while others were highly cell type specific. Inter-
estingly, the aggregate accessibility observed across linked peaks 

Understanding the pathobiology of these and other skin and hair dis-
eases therefore depends on approaches capable of identifying pertur-
bations across multiple candidate cell types and states.

While genome-wide association studies (GWAS) have identified 
numerous distinct genomic loci associated with complex hair- and 
skin-related disorders5–9, identification of specific causal variants 
and interpretation of their molecular function remains challenging. 
Most GWAS disease risk variants reside in noncoding genomic regions, 
and many are predicted to exert their effects through disruption of 
cell-type-specific cis-regulatory elements (CREs)10 that may not exert 
their effects on the nearest gene. Identifying causal variants and inter-
preting their function thus requires analysis of gene-regulatory net-
works in disease-relevant cell types.

Although single-cell genomics—primarily single-cell RNA sequenc-
ing (scRNA-seq)—has enabled identification and characterization of the 
diverse cell types in human skin in healthy and disease contexts11–17, many 
of these studies are limited by incomplete cell-sampling approaches. 
While scRNA-seq assays the transcriptional state of cell types within a 
tissue the underlying CREs are not observed, precluding deeper insights 
into how noncoding CRE variation influences disease phenotypes.

In this study we characterize gene-regulatory networks in healthy 
and diseased skin and hair follicles using paired, single-cell atlases of 
gene expression and chromatin accessibility in human scalp. We iden-
tify enhancer–gene linkages at multiple scales of cellular resolution, 
yielding 50–100% more enhancer–gene links than previous multiomic 
studies. We identify a subset of cell lineage genes with a dispropor-
tionately large number of CREs, and show that expression of these 
highly regulated genes (HRGs) is driven by distinct combinations of 
enhancer modules. We predict gene targets of transcription factors 
(TFs) driving keratinocyte differentiation trajectories. We integrate 
our data with skin and hair disease GWAS loci to identify critical cell 
types and putative target genes. AGA GWAS signals were strongly and 
specifically enriched in dermal papilla (DP) open-chromatin regions 
and linked to target genes enriched for roles in WNT signaling. Finally, 
we train machine learning models to nominate potential causal vari-
ants based on their predicted effects on cell-type-specific chromatin 
accessibility, identifying 47, 19 and 19 prioritized SNPs for AGA, eczema 
and hair color, respectively.

Results
A paired transcriptomic and epigenetic atlas of human scalp
We created paired, single-cell transcriptomic and chromatin accessibil-
ity atlases from primary human scalp tissue. We obtained tissue from 
three sources: punch biopsies from healthy control volunteers (C_PB, 
n = 3), patients with alopecia areata (n = 5) and discarded normal periph-
eral surgical tissue (C_SD, n = 7) (Fig. 1a,b and Supplementary Table 1). 
We dissociated tissue and prepared scRNA-seq and single-cell assay 
for transposase-accessible chromatin using sequencing (scATAC-seq) 
libraries using the 10X Genomics Chromium platform. We obtained 
54,288 single-cell transcriptomes and 45,896 single-cell chromatin 
accessibility profiles following quality control and filtering (Extended 
Data Fig. 1a–c,f,g), identifying 22 cell clusters in both scRNA-seq and 
scATAC-seq datasets (Fig. 1c,d).

To annotate clusters we examined the gene expression and gene 
activity scores of known marker genes (Fig. 1e,f and Extended Data 
Fig. 2a,b)18,19. To better resolve the heterogeneity of broad cell group-
ings we subclustered five major cell classes (keratinocytes, T lym-
phocytes, myeloid lineage cells, fibroblasts and endothelial cells) in 
both scRNA- and scATAC-seq datasets (Extended Data Fig. 3a–c). We 
identified 42 scRNA-seq and 38 scATAC-seq ‘high-resolution clusters’, 
revealing rare cellular subtypes including DP cells (HHIP, WNT5A and 
PTCH1)20, eccrine gland cells (AQP5 and KRT19)21 and TREM2-positive 
macrophages (TREM2 and OSM)22. Both low- and high-resolution 
cluster profiles were highly reproducible using subsampled datasets 
(Extended Data Fig. 4).
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was correlated with expression of the linked gene (Extended Data  
Fig. 5f ). These findings support an additive, modular model of 
enhancer activity—a model substantiated by genetic perturbation 
studies of individual enhancers for alpha-globin37 and Myc38, stud-
ies of enhancers involved in limb development39 and genomic-scale 
measures of enhancer activity40,41.

Gene-regulatory diversity of scalp keratinocytes
Whereas the transcriptional heterogeneity of interfollicular12,17 and 
follicular42 keratinocytes is known, our peak-to-gene linkage analysis 
enabled deeper interrogation of the gene-regulatory logic of these 
populations (Fig. 3a,b and Extended Data Fig. 6a,b). To focus on the 
gene-regulatory mechanisms delineating keratinocyte subsets, we 

MLANA
MITF

SOX10
LYVE1
FLT4
SELE
VWF

PECAM1
TRPC6
MYL9

COL11A1
TPM1

TAGLN
COL1A1

THY1
SOX9
ITGB8
KRT10
KRT15
KRT5

KRT14
TPSB2
HPGD

KIT
XCR1

CLEC9A
CD1A

CD163
CD14

CD200
CCL19
CD86

CD79A
CD4

CD8A
CCL5
IKZF2
CD3D

MLANA
MITF

SOX10
LYVE1
FLT4
SELE
VWF

PECAM1
TRPC6
MYL9

COL11A1
TPM1

TAGLN
COL1A1

THY1
SOX9
ITGB8
KRT10
KRT15
KRT5

KRT14
TPSB2
HPGD

KIT
XCR1

CLEC9A
CD1A

CD163
CD14

CD200
CCL19
CD86

CD79A
CD4

CD8A
CCL5
IKZF2
CD3D

a b c d

f

i

e

h

g

25
50
75
100

Percentage 
expressed

C
D8

.T
c

C
D4

.T
c

T r
eg

s

M
1_

M
ac

s
M

ac
s_

1
DC

s_
1

C
LE

C
9a

.D
C

M
as

t
Ba

sa
l.K

c_
2

Ba
sa

l.K
c_

1
Sp

in
ou

s.
Kc

_1
Sp

in
ou

s.
Kc

_2
H

F.
Kc

_1
D.

Fi
b

D.
Sh

ea
th

M
us

cl
e

Pe
ric

yt
es

Va
s.

En
do

Ly
m

ph
.E

nd
o

M
el

an
oc

yt
es

M
cS

C

Pl
as

m
a

C
D8

.T
c

C
D4

.T
c

T r
eg

s

M
ac

s_
1

DC
s_

1
C

LE
C

9a
.D

C
Ba

sa
l.K

c_
1

Sp
in

ou
s.

Kc
_1

Sp
in

ou
s.

Kc
_2

H
F.

Kc
_1

H
F.

Kc
_2

H
F.

Kc
_3

H
F.

Kc
_4

D.
Fi

b
D.

Sh
ea

th
M

us
cl

e
Pe

ric
yt

es
Va

s.
En

do
_1

Va
s.

En
do

_2
Ly

m
ph

.E
nd

o
M

el
an

oc
yt

es

Pl
as

m
a

C
D8

.T
c

C
D4

.T
c

T r
eg

s

M
ac

s_
1

DC
s_

1
C

LE
C

9a
.D

C
Ba

sa
l.K

c_
1

Sp
in

ou
s.

Kc
_1

Sp
in

ou
s.

Kc
_2

H
F.

Kc
_1

H
F.

Kc
_2

H
F.

Kc
_3

H
F.

Kc
_4

D.
Fi

b
D.

Sh
ea

th
M

us
cl

e
Pe

ric
yt

es
Va

s.
En

do
_1

Va
s.

En
do

_2
Ly

m
ph

.E
nd

o
M

el
an

oc
yt

es

Pl
as

m
a

Percentage 
expressed

20
40
60
80

N
orm

alized enrichm
ent –log

10 (P adj.)

0

50

100

C
D8

.T
c

C
D4

.T
c

T r
eg

s

M
1_

M
ac

s
M

ac
s_

1
DC

s_
1

C
LE

C
9a

.D
C

M
as

t
Ba

sa
l.K

c_
2

Ba
sa

l.K
c_

1
Sp

in
ou

s.
Kc

_1
Sp

in
ou

s.
Kc

_2
H

F.
Kc

_1
D.

Fi
b

D.
Sh

ea
th

M
us

cl
e

Pe
ric

yt
es

Va
s.

En
do

Ly
m

ph
.E

nd
o

M
el

an
oc

yt
es

M
cS

C

Pl
as

m
a

To
ta

l

AA2
AA4
AA7
AA8
C_SD1
C_SD2
C_SD3
C_PB1
C_PB2
C_PB3

C
D8

.T
c

C
D4

.T
c

T r
eg

s

M
ac

s_
1

DC
s_

1
C

LE
C

9a
.D

C
Ba

sa
l.K

c_
1

Sp
in

ou
s.

Kc
_1

Sp
in

ou
s.

Kc
_2

H
F.

Kc
_1

H
F.

Kc
_2

H
F.

Kc
_3

H
F.

Kc
_4

D.
Fi

b
D.

Sh
ea

th
M

us
cl

e
Pe

ric
yt

es
Va

s.
En

do
_1

Va
s.

En
do

_2
Ly

m
ph

.E
nd

o
M

el
an

oc
yt

es

Pl
as

m
a

To
ta

l

AA1
AA2
AA4
AA7
C_SD1
C_SD2
C_SD3
C_SD4
C_SD5
C_SD6
C_SD7
C_PB1
C_PB2
C_PB3

0

0.25

0.50

0.75

1.00

Pr
op

or
tio

n 
of

 c
lu

st
er

0

0.25

0.50

0.75

1.00

Pr
op

or
tio

n 
of

 c
lu

st
er

scRNA clusters scATAC clusters

Muscle

scATAC-seqscRNA-seq
45,895 cells

T cells

Keratinocytes

Fibroblasts Myeloid

Endothelial

Lymphatic

Melanocytes

UMAP 1

54,288 cells

Lymphatic

T cells

Keratinocytes

Fibroblasts

Muscle

Myeloid

Endothelial

Melanocytes

Mast cells

UMAP 1

UM
AP

 2

Human scalp samples

3 Control punch biopsies: C_PB 
7 Control surg. dogears: C_SD 
5 Alopecia areata: AA 

Tissue 
dissociation

scATAC-seq

AAAAA
AAAAA

AAAAA
scRNA-seq

Relative
expression

Max.

Min.

RUNX1/2
ELF,ETS,

ERG

SPI

BCL11A,B

TFAP2A

JUN/FOS

TP63
TFAP2

TCF4
ID3/4

KLF

GRHL1
ZFX/Y

ZNF148
NFIC

LHX4
SOX4

ZNF238
TCF21

TAL1/2

MYOG

SOX9,13
MITF

USF/TFEB

KLF6

Basal.Kc

Muscle/pericytes

Infundibulum

HF.KcIsthmus

Inf.segment

Sebaceous

Dermal fibroblasts (Fb)Dermal papilla

Melanocytes

Dendritic cells

Macrophages

Plasma cells

T cells

Dermal sheath

Matrix

Vascular/lymphatic 
Endothelial

Spinous.Kc

Relative
gene activity

Max.

Min.

Fig. 1 | Multiomic single-cell atlas of primary human scalp. a, Samples and 
profiling methods used in this study. b, Schematic representation of cellular 
diversity within human scalp. c,d, UMAP representation of all scRNA-seq (c) 
and scATAC-seq (d) cells passing quality control, colored by annotated clusters. 
Broad cell types are labeled on UMAP and higher-resolution labels are shown 
in e,f. e, scRNA gene expression for selected marker genes for each scRNA-seq 
cluster. Color indicates relative expression across all clusters and dot size 

indicates the percentage of cells in that cluster expressing the gene. f, scATAC 
gene activity scores for the markers shown in e. g, Hypergeometric enrichment of 
TF motifs in marker peaks for each scATAC-seq cluster. h, Fraction of each sample 
comprising each scRNA-seq cluster. Samples from control punch biopsies are 
shown in shades of green, control surgical tissue in shades of blue and patients 
with alopecia areata in red. Total proportions for each sample are shown in the 
rightmost column. i, Same as h but for scATAC-seq clusters.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01445-4

used peak-to-gene linkages specific to keratinocytes (28,991 links) for 
subsequent analyses. K-means clustering of linkages revealed extensive 
gene-regulatory diversity within keratinocyte subtypes, with clusters of 
coaccessible peaks enriched for distinct TF motifs (Extended Data Fig. 
6c,d). To identify TFs with a regulatory role in specifying keratinocyte 
subsets, we first identified motifs with variable accessibility between 
keratinocyte populations (Extended Data Fig. 6e, y axis); to differentiate 
between TFs with similar motifs, we correlated TF expression with motif 
activity across cell types (Extended Data Fig. 6e, x axis). This approach 
identified TFs with known roles in skin (TP63, FOSL1 and KLF4)26,43–45 
and hair differentiation (SOX9, LHX2 and HOXC13)36,46,47. Some TFs were 
active in multiple related cell types, such as TP63 in basal keratinocyte 
clusters and SOX9 in follicular keratinocyte clusters, while others were 
more cell type specific, like LHX2 in the inferior segment of the hair 
follicle and RUNX3 in sebaceous gland cells (Fig. 3c).

Gene targets of TFs driving keratinocyte differentiation
Interfollicular keratinocytes undergo continuous replacement by coor-
dinated differentiation and outward migration of basal keratinocytes 
to spinous, granular and, finally, cornified keratinocytes. To identify TF 
drivers of this differentiation in a human in vivo context we constructed 
a semisupervised pseudotemporal trajectory between basal keratino-
cytes and differentiated spinous keratinocytes (Fig. 3d). Visualization 
of the most variable 10% of peaks along this trajectory revealed a con-
tinuous, gradual opening and closing of accessible chromatin (Fig. 3e).  
The most variable 10% of genes included known transcriptional changes 
during keratinocyte differentiation, with early trajectory cells express-
ing basal keratins (KRT15, KRT5 and KRT14) and hemidesmosome 
components (ITGA6, ITGB1 and COL17A1) and later cells expressing 
suprabasal keratins (KRT1 and KRT10) (Fig. 3e)48,49. Genomic tracks 
of ITGB1, active in basal keratinocytes, and KRT10, active in spinous 
layer keratinocytes, demonstrate coordinated changes in linked 
enhancer accessibility and target gene expression across differentiation  
(Fig. 3f,g). By correlation of TF motif activity with expression using 
cells along the differentiation trajectory we identified TFs with known, 
sequential roles in interfollicular keratinocyte differentiation, such as 
TP63 followed by KLF3/4, RORA and then CEBPA/D (Fig. 3h)43,50.

We next sought to identify potential regulatory gene targets of 
TFs driving keratinocyte cell identity. For TFs identified as potential 
differentiation drivers (Fig. 3h and Extended Data Fig. 6e) we correlated 
TF motif activity with the integrated gene expression of all expressed 
genes. Next, for each gene we selected all linked peaks containing the 
TF motif and computed a ‘linkage score’ aggregating peak-to-gene link-
age strength and the confidence of embedded motif matches. Using 
this approach we identify potential TF regulatory targets as genes with 
expression correlated to global motif activity and a high TF linkage 
score (Pearson correlation >0.25 and linkage score >80th percentile). 
We identified 175 potential TP63 regulatory targets (Fig. 3i) and found 
enrichment of genes that were downregulated (OR = 1.95, one-sided 
Fisher’s exact test P = 0.0002), but not upregulated (OR = 0.71), in 

keratinocytes with inactivating TP63 mutations51. These targets 
included basal keratins (KRT5 and KRT14) and genes involved in anchor-
ing keratinocytes to the basement membrane (LAMC2, ITGA6 and 
COL17A1), consistent with the known role of TP63 in regulation of 
adhesion52. FOSL1, active in the intermediate stages of differentiation, 
was linked to targets enriched for cadherin binding functionality, a 
regulatory signal in early keratinocyte differentiation (Fig. 3j)53. For 
KLF4, a TF involved in terminal differentiation, targets included regula-
tors of keratinocyte differentiation (DMKN and KRTDAP) and structural 
components of spinous and granular keratinocytes (KRT1, 2 and IVL; 
Fig. 3k). Predicted KLF4 targets were also enriched for genes down-
regulated (OR = 1.87, one-sided Fisher’s exact test P = 4.9 × 10−7) but not 
upregulated (OR = 0.95) in keratinocytes following KLF4 knockdown54. 
We also identified gene targets of TFs involved in follicular keratinocyte 
function, identifying those associated with WNT–protein binding 
for LHX2, a TF expressed in inferior segment follicular keratinocytes 
(Extended Data Fig. 6f–h).

Selective preservation of HFSCs in alopecia areata
Alopecia areata results in disruption of hair follicle cycling by autore-
active cytotoxic T lymphocytes, but we did not observe a clear phe-
notypic distinction between T lymphocytes originating from areata 
versus control samples (Supplementary Note). However, we found that 
selected follicular keratinocyte populations appeared to be depleted 
in areata samples (Extended Data Fig. 7a). Using Milo55 we confirmed 
that, compared with control samples, areata samples had fewer cells 
corresponding to the inferior segment of the hair follicle (Fig. 4a,b). 
Further subclustering of these cells revealed six populations of folli-
cular keratinocytes in the bulbar and suprabulbar regions of the hair 
follicle (Fig. 4c,d and Extended Data Fig. 7b,d). We annotated these 
as quiescent hair follicle stem cells (HFSCs: KRT15, CD200, LHX2 and 
NFATC1)36,56–58, two populations of sheath cells (Sheath_1/2: SOX9, KRT5 
and KRT75)42, matrix cells (Matrix: LEF1, KRT81 and HOXC13)59,60 and 
hair germ cells (HG: CD34, LGR5, CDH3 and WNT3)61. Using Milo, we 
found that areata samples demonstrated preservation of HFSCs but a 
depletion of sheath populations (FDR < 0.1; Fig. 4e), consistent with the 
known nonscarring, relapsing–remitting nature of alopecia areata and 
supporting the theory that sheath cells in the hair bulb are especially 
affected by the disrupted immune environment28,62,63.

WNT pathway dynamics in hair keratinocyte differentiation
The WNT signaling pathway plays an essential role in hair follicle devel-
opment, cycling and regeneration after wounding33,46,64–68. However, 
most studies of WNT pathway activity in hair follicle cycling used 
in vitro or mouse in vivo systems. To explore WNT signaling dynamics 
in human hair follicles we constructed a semisupervised pseudotem-
poral trajectory from quiescent HFSCs to matrix cells (Fig. 4f). We 
correlated TF motif activity with expression along this trajectory to 
identify putative drivers of differentiation (Extended Data Fig. 7e). 
Consistent with mouse studies, NFATC1 was active in quiescent HFSCs, 

Fig. 2 | Gene-regulatory dynamics and modularity in human scalp. a, Peak-to-
gene linkages were identified on the integrated scATAC and scRNA full datasets, 
and on the five major cell type subclustered datasets. Linkages identified in each 
dataset are merged to form the full set of peak-to-gene linkages. b, Genomic 
tracks for chromatin accessibility around the RUNX3 locus. Right: integrated 
RUNX3 expression levels are shown in the violin plot for each cell type. Loops 
shown below the top panel indicate peak-to-gene linkages identified on the full 
dataset. Bottom: genomic tracks for accessibility around RUNX3 for subclustered 
keratinocytes. Loops shown below these tracks indicate peak-to-gene linkages 
identified on the subclustered dataset. Gray vertical bars spanning both panels 
highlight selected peaks linked to RUNX3 expression that were identified 
in subclustered keratinocytes but not using the full integrated dataset. c, 
Genes ranked by the number of peak-to-gene links identified for each gene: 
1,739 HRGs had >20 peak-to-gene linkages. d, Hypergeometric enrichment of 

superenhancer-linked genes in human scalp HRGs for multiple cell and tissue 
types. Red dots represent enrichment of hair follicle superenhancer-linked 
genes. e, Heatmap showing chromatin accessibility (left) and gene expression 
(right) for 146,088 peak-to-gene linkages, which were clustered using k-means 
clustering (k = 25). Sample top HRGs for selected clusters are shown to the 
right of the gene expression heatmap. Right: GO term enrichments for the top 
200 genes ranked by number of peak-to-gene linkages for selected k-means 
clusters. f, Heatmap showing chromatin accessibility at RUNX3-linked peaks for 
246 pseudobulked scATAC-seq samples. Cell type labels are shown in the bar 
above the heatmap, and RUNX3 expression levels for each pseudobulk below. 
Right: scatter plot showing the relationship between linked peak accessibility 
and resulting gene expression for each of the pseudobulked samples shown in 
the heatmap on the left. Red line indicates line of best fit. g, Same as in f but for 
RUNX1. h, Same as in f but for HLA-DRB1. i, Same as in f but for AQP3.
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the WNT-regulating TFs TCF3 and TCF4 became active in intermediate 
sheath cells and LEF1 activity surged in matrix cells69–71. GO term analysis 
on the most variably expressed genes across this trajectory revealed 
enrichment of WNT signaling pathway genes (Extended Data Fig. 7f). To 

visualize WNT signaling dynamics during HFSC differentiation we plot-
ted the expression of WNT signaling factors and receptors across pseu-
dotime (Fig. 4g). HFSCs robustly expressed WNT receptors FZD1 and 
7, but also soluble WNT inhibitors (DKK3, SFRP1) and the soluble FZD 
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Fig. 3 | Scalp keratinocyte diversity and regulatory control of interfollicular 
keratinocyte differentiation. a, UMAP representation of subclustered 
keratinocytes in the scATAC-seq dataset. b, Integrated gene expression for select 
markers across keratinocyte subtypes. Color indicates relative expression across 
all clusters and dot size indicates the percentage of cells in that cluster expressing 
the gene. c, ChromVAR deviation z-scores showing TF motif activity for selected 
TFs. d, Slingshot differentiation trajectory starting with basal interfollicular 
keratinocytes and progressing to upper layer spinous keratinocytes. e, Heatmap 
of 10% most variable peaks (n = 31,333) and 10% most variable genes (n = 2,127) 
along the trajectory from basal to spinous keratinocytes. f, Genomic tracks of 
accessibility around the ITGB1 promoter. Tracks are pseudobulked samples 
ordered along the interfollicular differentiation trajectory. Right: integrated 
ITGB1 expression levels are shown in the violin plot for each pseudobulk. g, Same 

as in f but for the KRT10 promoter. h, Paired heatmaps of positive TF regulators 
whose TF motif activity (left) and matched gene expression (right) are positively 
correlated across the interfollicular keratinocyte differentiation pseudotime 
trajectory. i, Prioritization of gene targets for TP63. The x axis shows Pearson 
correlation between TF motif activity and integrated gene expression for all 
expressed genes across all keratinocytes; the y axis shows TF linkage score (for 
all linked peaks, sum of motif score scaled by peak-to-gene link correlation). 
Color of points indicates hypergeometric enrichment of the TF motif in all linked 
peaks for each gene. Top gene targets are indicated in the shaded area (motif 
correlation to gene expression >0.25, linkage score >80th percentile). Inset, GO 
term enrichments for top gene targets. j, Same as in i but for FOSL1. k, Same as in i 
but for KLF4. Norm., normalized. ReadsInTSS, reads in transcription start sites.
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receptor FRZB, suggesting that these cells may be primed to respond 
to paracrine WNT signaling but maintain quiescence by blocking these 
signals. As differentiation progresses, expression of WNT pathway 
inhibitory signals decreases and expression of beta-catenin (CTNNB1) 
and WNT-regulating TFs (TCF3 and TCF4) increases. Consistent with 
studies in mice, dividing matrix cells in the hair bulb express activat-
ing WNT effectors (WNT3, WNT5A and WNT10A/B) and the TF LEF1  
(Fig. 4d,g and Extended Data Fig. 7e)33,72.

Identification of critical cell types for skin and hair traits
Many skin and hair diseases are highly polygenic, and most associated 
variants reside in noncoding genomic regions5,7,9,73. To identify cell 
types involved in the pathoetiology of skin and hair disease we used 
cell-type-specific open-chromatin regions to perform linkage disequi-
librium score regression (LDSC) using GWAS for 13 traits spanning skin 
and hair disease, autoimmune disease and several nonskin phenotypes 
(Fig. 5a and Extended Data Fig. 8a,b)74,75. We observed enrichment of 
AGA according to SNP heritability across fibroblast open-chromatin 
regions, with the strongest enrichment in DP peaks—the component 
of the hair follicle reported to have the highest androgen receptor 
activity76,77. We also found modest but significant enrichment of AGA 
GWAS signal in several follicular keratinocyte clusters. Autoimmune 
skin diseases, including psoriasis and eczema, had significant enrich-
ment in T lymphocyte open-chromatin regions while tanning and hair 
pigment color were most enriched in melanocyte open-chromatin 
regions. Traits not related to scalp, such as schizophrenia and body 
mass index, did not demonstrate any cell-type-specific enrichment 

(Fig. 5a). Additional LDSC analyses are discussed in Supplementary 
Note and Extended Data Fig. 8c–f.

Because LDSC requires full GWAS summary statistics, which 
were unavailable for several traits including alopecia areata, we also 
examined enrichment of fine-mapped SNPs in cell-type-specific 
open-chromatin regions78–80. Fine-mapped SNPs for skin, hair and 
autoimmune disorders were more likely to overlap scalp CREs than 
those for neurodegenerative and psychiatric disorders, and this gap 
widened with increasing fine-mapping posterior probability (Fig. 5b 
and Extended Data Fig. 8f). We observed cell-type-specific enrichment 
of fine-mapped SNPS for several diseases (Fig. 5c). Alopecia areata 
SNPs were most enriched in CD4 T cell (OR = 3.91, one-sided Fisher’s 
exact test adjusted P = 0.00018) and T regulatory cell (Treg; OR = 4.16, 
one-sided Fisher’s exact test adjusted P = 0.0012) open-chromatin 
regions, but were also enriched in several myeloid lineage clusters (for 
example, M2.macs_2: OR = 3.25, one-sided Fisher’s exact test adjusted 
P = 0.00027). Interestingly, although body height-associated SNPs 
were broadly enriched in fibroblast clusters there was little enrich-
ment in the DP cluster, while AGA SNPs were most strongly enriched 
in DP open-chromatin regions (OR = 5.72, one-sided Fisher’s exact test 
adjusted P = 4.3 × 10−34; Fig. 5c).

Linking fine-mapped SNPs to potential target genes
After nominating disease-relevant cell types in the scalp, we sought to 
identify specific genes associated with fine-mapped SNPs. For a given 
phenotype we aggregated the posterior probability of fine-mapped 
SNPs overlapping linked peaks for each gene then plotted the 
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Fig. 4 | Regulatory dynamics of human hair follicle cycling. a, Subclustered 
keratinocytes in scATAC-seq space. The inferior segment of the hair follicle is 
highlighted. b, Differential abundance of cycling hair follicle keratinocytes 
between alopecia areata and control samples using Milo. Colored spots 
represent neighborhoods that are differentially abundant with spatial FDR < 0.1. 
c, Subclustered hair follicle keratinocytes from the inferior segment of the hair 

follicle. d, Selected marker gene expression and TF motif activity deviation 
z-scores for subclustered inferior segment hair follicle keratinocytes. e, Same as 
in b, except for subclustered cycling hair follicle keratinocytes. Hair sheath cells 
are differentially depleted relative to HFSCs. f, Differentiation trajectory from 
HFSCs to matrix cells. g, Heatmap of variable expression of members of the WNT 
signaling pathway during hair follicle cycling.
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Fig. 5 | Identification of cell types and genes associated with hair, skin and 
autoimmune diseases. a, LDSC identifies enrichment of GWAS SNPs for various 
skin- and nonskin-related conditions in peak regions specific to subclustered 
cell types in human scalp. FDR-corrected P values from LDSC enrichment tests 
are overlaid on the heatmap (*FDR < 0.05, **FDR < 0.005, ***FDR < 0.0005). b, 
Fraction of fine-mapped (FM) SNPs overlapping scalp open-chromatin regions 
binned by increasing fine-mapping posterior probability. Each dot represents 
one trait and boxplot color indicates the group of traits being plotted; the 
number of traits per group is shown in c. Boxplots represent the median, 25th and 
75th percentiles of the data and whiskers represent the highest and lowest values 
within 1.5 times the interquartile range of the boxplot. c, One-sided Fisher’s exact 

test enrichment for fine-mapped, trait-related SNPs in peak regions specific 
to subclustered cell types in human scalp. Dot color indicates FDR-corrected 
–log10 P value and dot size indicates enrichment OR. Traits are grouped as in b. 
d, The top genes linked to peaks containing fine-mapped SNPs for eczema. The 
heatmap shows relative gene expression for each high-resolution scRNA cluster. 
The number of linked fine-mapped SNPs per gene is indicated in the red bar plot 
to the right, and the sum of fine-mapped posterior probability for linked SNPs 
is indicated in the blue bar plot. The gray bar plot shows the total number of 
identified peak-to-gene linkages for that gene. Gene names colored red indicate 
fine-mapped SNP-to-gene linkages supported by GTEx expression quantitative 
trait loci. e, Same as in d but for AGA.
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expression of linked genes across high-resolution scRNA clusters to 
identify cell-type-specific expression of genes linked to fine-mapped 
SNPs (fmGWAS-linked genes). We identified 137 eczema fmGWAS-linked 
genes, the majority of which were expressed in T cell or keratinocyte 
clusters (Fig. 5d). These genes included modulators of immune signal-
ing (TNF, CTLA4 and FASLG) and previously nominated GWAS gene tar-
gets (IL6R, PUS10 and IL2RA)9,81. We identified 130 AGA fmGWAS-linked 
genes, most of which were expressed in keratinocyte or fibroblast clus-
ters (Fig. 5e). These genes were enriched for TFs (OR = 3.18, one-sided 
Fisher’s exact test P = 4.1 × 10−7), including TWIST2, RUNX3 and SOX11, 
and were also enriched for members of the WNT signaling pathway 
(WNT3, WNT10A, FZD1 and FZD10; Extended Data Fig. 9a). We identified 
only 31 alopecia areata fmGWAS-linked genes, but these included exam-
ples involved in T cell functions such as IL21, ICOS and IRF4 (Extended 
Data Fig. 9b). IL21 had multiple linked SNPs, is known to support the 
persistence of cytotoxic CD8 T cells in chronic viral infections82,83 and 
has been implicated in the etiology of several autoimmune diseases84. 
We also identified 158 hair color fmGWAS-linked genes, principally 
expressed in keratinocyte subpopulations and melanocytes (Extended 
Data Fig. 9c).

Nominating functional SNPs for skin and hair phenotypes
After nominating cell types and gene targets associated with skin and 
hair disease, we sought yet-higher-resolution information by identify-
ing SNPs that might directly alter TF binding and enhancer function. To 
prioritize functional SNP candidates we implemented a gapped k-mer 
support vector machine (gkm-SVM) learning framework to score the 
allelic effect of a SNP on cell-type-specific chromatin accessibility, 
a proxy for differential TF binding (Methods and Fig. 6a)85–88. These 
models demonstrated accurate and stable performance on held-out 
data in a tenfold cross-validation scheme (Extended Data Fig. 10a–d). 
We used GkmExplain to predict the per-base impact of variants in a 
target sequence by providing models with sequences containing both 
the reference and alternative allele for a candidate SNP89. To create 
a set of prioritized SNPs for AGA, eczema and hair color we selected 
SNPs that (1) had fine-mapping posterior probability ≥0.01, (2) over-
lapped scalp CREs and (3) were predicted to disrupt chromatin acces-
sibility in our model. Prioritized SNPs for eczema were enriched in 
keratinocyte and T cell clusters relative to random trait CRE-resident 
fine-mapped SNPs, while prioritized SNPs for hair color were enriched 
more specifically in follicular keratinocytes and melanocytes  
(Fig. 6b and Extended Data Fig. 10e). We did not observe cluster-specific 
enrichment of AGA-prioritized SNPs, perhaps due to the specificity of 
this trait for DP cells and the lack of a DP-specific model given the rarity 
of these cells in our dataset (Methods and Extended Data Fig. 10f). We 
filtered prioritized SNPs to include only those linked to a target gene 
using our peak-to-gene linkage analysis, increasing the interpretability 
of potential causative variants. Using these criteria we identified 47, 19 
and 19 prioritized SNPs for AGA, eczema and hair color, respectively 
(Supplementary Table 12 and Extended Data Fig. 10g–j).

One high-effect eczema SNP is rs2058622, which resides in an 
IL18R1 intron (Fig. 6c). This candidate SNP overlapped a CRE preferen-
tially accessible in the CD4 helper T cell cluster and, although this CRE 
was within an IL18R1 intron, this peak was linked to IL18RAP expression. 
Our CD4 T cell model suggested that the alternative allele of this SNP 
increases cell-type-specific chromatin accessibility at this peak, possi-
bly by creating a RUNX motif (Fig. 6d). Interestingly, T-bet (encoded by 
TBX21), which also contains a central ‘GTG’ in its binding motif, has been 
shown to bind to this SNP region in a genotype-specific manner, sug-
gesting multiple candidates for transfactors with differential binding 
to the major and minor allele of this regulatory element90. Furthermore, 
this SNP had been identified as a significant eQTL for IL18RAP expres-
sion in blood, with the G allele increasing expression (P = 4.8 × 10−54, 
normalized effect size 0.28). While this locus is one of those most 
strongly associated with eczema9,81, it is a region with substantial LD and 

multiple potential gene targets, making identification of causal SNPs 
for this locus challenging and highlighting the utility of our multitiered 
approach (Fig. 6e). IL18RAP encodes an accessory protein required for 
potentiation of IL-18 signaling91 and IL-18 overexpression in mouse skin 
induces a phenotype similar to eczema92, suggesting a mechanistic 
pathway for this causal variant.

One high-effect AGA SNP is rs72966077, located immediately 
downstream of the WNT10A gene body (Fig. 6f). This SNP has 
also been implicated in acne vulgaris, another hair follicle- and 
androgen-associated disease93. The overlapping CRE is accessible 
in multiple keratinocyte clusters, although WNT10A expression was 
highest in basal keratinocytes and infundibular follicular keratino-
cytes. Our model demonstrates that the alternative allele of this SNP 
disrupts an ERG family TF motif (Fig. 6g). ERG2 is expressed in infun-
dibular, isthmus and inferior segment hair follicle keratinocytes, and 
these cell populations also have higher ERG2 motif activity than other 
keratinocyte populations (Fig. 6h). Patients with WNT10A mutations 
exhibit multiple skin appendage-related phenotypes, including hair 
thinning that resembles AGA94. Furthermore, depletion of ERG2 (also 
known as Krox20)-positive follicular keratinocytes in mice resulted 
in arrest of hair growth95. These converging evidences highlight the 
importance of the WNT signaling pathway in the pathobiology of AGA 
and show that, while the strongest AGA GWAS signal enrichment is in 
DP cells, there may also be keratinocyte-intrinsic genetic factors that 
contribute to this complex trait.

Discussion
We generated epigenomic and transcriptomic atlases of human scalp, 
a complex tissue harboring dynamic and precisely regulated hair folli-
cles. We identified principles of variable gene expression across diverse 
cell types, defined gene-regulatory networks across keratinocyte sub-
populations and prioritized cell types, genes and causal variants impli-
cated in the pathobiology of skin and hair phenotypes.

The aggregate accessibility of linked enhancer modules predicts 
HRG expression (Fig. 2f–i), supporting an additive model of enhancer 
activity wherein expression is proportional to the integrated effect of 
multiple, generally interchangeable, CREs. We posit that this regulatory 
strategy makes expression of core function genes resistant to pertur-
bation but also allows for tunable expression across cellular contexts. 
Thus, a mutation disrupting one of relatively few CREs controlling 
expression may have a greater biological impact than disruption of an 
HRG CRE (Fig. 5d,e and Extended Data Fig. 9b,c). This mode of enhancer 
activity is consistent with a recent study of enhancer–promoter inter-
actions showing that variability in intrinsic enhancer activity is low 
compared with intrinsic promoter activity, and that enhancer elements 
are generally functionally interchangeable41.

To identify TF regulatory targets we combined the correlation 
between TF activity and target gene expression, with a linkage score 
accounting for linked CREs containing TF binding motifs. Typically, 
high linkage scores were associated with positive correlation between 
TF activity and target gene expression (Fig. 3i,k and Extended Data  
Fig. 6f,g) but, for some TFs such as FOSL1 and POU2F3 (Fig. 3j and 
Extended Data Fig. 6h), several gene targets had high linkage scores 
but negative correlation to TF motif activity. This may imply a 
gene-silencing role for these TFs for selected targets. Indeed, selective 
transcriptional repression has been described for both FOSL1 (ref. 96) 
and POU2F3 (refs. 97,98). Several genes also had high linkage scores but 
little correlation to TF activity (Fig. 3i–k and Extended Data Fig. 6f–h). 
This may be due to biologically relevant TF binding despite lower global 
TF activity, or CRE accessibility may be driven by a different TF with 
co-occurring binding motifs. Emerging single-cell methodologies, 
such as single-cell CUT&Tag99 or NEAT-seq100, may help differentiate 
between these possibilities.

Our analyses using LDSC and fine-mapped SNP enrichment in 
CREs revealed driver cell types for hair and skin diseases. While we 
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Fig. 6 | Candidate causal variants in skin and hair disease. a, Schematic of 
strategy used for identification of potential causative variants. b, Enrichment 
of high-effect fine-mapped SNPs from select skin and hair traits relative to 
random fine-mapped SNPs in cis-regulatory regions. c, Normalized chromatin 
accessibility landscape for cell-type-specific pseudobulk tracks around the 
IL18RAP locus. Integrated IL18RAP expression levels are shown in the violin plot 
for each cell type to the right. The position of ATAC-seq peaks, the GWAS lead 
SNP, the fine-mapped SNP candidates in LD with the lead SNP and the candidate 
functional SNP are shown below the ATAC-seq tracks. Significant peak-to-gene 
linkages are indicated by loops connecting the IL18RAP promoter to indicated 
peaks. d, GkmExplain importance scores for the 50-base-pair region surrounding 

rs2058622, an eczema-associated SNP that disrupts a RUNX motif in a CRE linked 
to IL18RAP expression. The effect and noneffect alleles for the gkm-SVM model 
correspond to the model trained on the CD4 helper T cell cluster. e, LocusZoom 
plot of the region shown in c, highlighting the strong LD and high overall GWAS 
signal of this locus. f, Same as in c but for the WNT10A locus. g, GkmExplain 
importance scores for the 50-base-pair region surrounding rs72966077, an AGA-
associated SNP that disrupts an ERG motif in a CRE linked to WNT10A expression. 
The effect and noneffect alleles for the gkm-SVM model correspond to the model 
trained on the infundibular keratinocytes cluster. h, UMAP projection of high-
resolution keratinocyte subclustering, showing expression of WNT10A, EGR2 and 
EGR2 ChromVAR motif activity.
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see enrichment of GWAS signals for AGA in some follicular keratino-
cyte subpopulations, the most significant enrichment was in DP CREs  
(Fig. 5). This is consistent with functional studies showing that DP cells 
have robust AR expression76 and exhibit distinct expression profiles 
when isolated from both balding and nonbalding individuals101,102. 
Interestingly, autoimmune diseases such as eczema and psoriasis, 
with clear keratinocyte phenotypes clinically and histopathologi-
cally, showed little GWAS signal enrichment in keratinocytes relative 
to T lymphocytes, suggesting that the genetic susceptibility to these 
diseases is primarily immunological and due less to genetic variation 
intrinsic to keratinocytes.

Finally we used machine learning models of chromatin accessi-
bility to nominate functional SNPs for hair and skin diseases, tracing 
the regulatory effect of single-base changes to disruption of target 
gene expression in the relevant cell type. However, we were unable to 
identify a potential causal SNP for many GWAS loci, perhaps because 
the affected CREs are observed only in the disease state or because the 
relevant cell type was not recovered. Some traits may be the result of a 
developmental process, with relevant regulatory regions dormant in 
adult tissues. While these analyses provide a valuable framework for 
linking genetic variation to disease phenotypes, individual SNP-to-gene 
linkages will require experimental validation in appropriate cellu-
lar contexts to be claimed as bona fide regulatory interactions. We 
anticipate that future studies will be able to fill these gaps as the costs 
of single-cell sequencing decrease, experimentally tractable model 
systems improve and models of gene regulation are refined.
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Methods
Sample acquisition and patient consent
Primary human scalp samples were obtained either in the form of 4 mm 
punch biopsies or from excess discarded scalp tissue from patients 
undergoing dermatological surgeries (surgical ‘dogears’). Samples 
were collected from either Stanford University or Santa Clara Valley 
Medical Center with Stanford University Institutional Review Board 
approval, and all patients provided written informed consent. Follow-
ing collection, samples were stored in 1× PBS at 4 °C until dissociation 
and downstream processing. Samples were stored no longer than 5 h 
before dissociation. A 4 mm punch was performed on surgical dogear 
samples before proceeding with sample dissociation.

Single-cell dissociation and fluorescent activated cell sorting
Scalp punch biopsies were rinsed with ice-cold 1× PBS and then lightly 
diced into 1–2-mm pieces with a sterile razor blade. Diced samples 
were then dissociated using the Miltenyi Biotec Human Whole Skin 
Dissociation Kit (catalog no. 130-101-540) according to the manu-
facturer’s directions. Briefly, samples were incubated in 0.5 ml of 
dissociation solution containing the indicated volumes of enzymes 
P, A and D for 3 h at 37 °C. Following incubation, 0.5 ml of ice-cold 
RPMI 1640 with 10% FBS was added to each sample and samples were 
then mechanically dissociated using the gentleMACs dissociator 
with the ‘h_skin_01’ program. Following dissociation, samples were 
briefly centrifuged and then filtered through a 70 µm cell strainer. The 
dissociation tube was washed with additional ice-cold medium and 
samples were then centrifuged for 10 min at 300g in a swinging-bucket 
centrifuge. After aspiration of supernatant, samples were either resus-
pended in 0.1 ml of BamBanker freezing medium (Wako Chemicals, 
catalog no. 302-14681) and cryopreserved at −80 °C or subjected 
immediately to staining for fluorescent activated cell sorting (FACS). 
We did not observe any systematic clustering differences between 
samples that had been sorted immediately after dissociation and 
those that had been cryopreserved, even without Harmony or other 
batch correction methods (Extended Data Fig. 1d–g and Comparison 
of fresh versus cryopreserved samples in Supplementary Methods). 
Cryopreserved samples included C_SD4, C_SD5, C_SD6, C_SD7, AA7 
and AA8. All remaining samples were sorted immediately after dis-
sociation without cryopreservation.

Cells were stained with anti-CD90 PE Cy7 (BD Pharmingen, no. 
561558) for 30 min at 4 °C in FACS staining buffer (PBS with 0.5% 
bovine serum albumin) then washed with FACS buffer. Live cells were 
distinguished using the LIVE/DEAD Fixable Aqua Dead Cell Stain Kit 
(ThermoFisher, catalog no. L34957) according to the manufacturer’s 
directions. For cryopreserved samples, cells were thawed at 37 °C for 
3 min, resuspended in RPMI + 10% FBS and washed with FACS buffer 
before staining. Aqua-negative live cells were sorted as fibroblast 
(CD90+) and nonfibroblast (CD90–) populations. Sorted cells were 
counted and the CD90+ population reduced by half before recombina-
tion with the CD90– population for further processing by scATAC-seq 
and/or scRNA-seq.

scRNA library generation, sequencing and alignment
Following sorting, cell suspensions were centrifuged at 300g for 5 min 
at 4 °C and resuspended in 1× PBS with 0.5% bovine serum albumin. 
Samples were counted using a hemocytometer, and the required 
volume of cells was aliquoted for generation of scRNA-seq libraries. 
scRNA-seq libraries were prepared using the 10X Genomics Chromium 
Next GEM Single Cell 3′ RNA v.3.1 protocol, targeting 8,000 cells per 
sample. Completed libraries were sequenced on an Illumina Next-
Seq 550 platform with 28/8/0/91 base-pair cycles. Raw sequencing data 
were converted to fastq format using the command ‘cellranger mkfastq’ 
(10X Genomics, v.3.1.0). Resulting fastq files were then aligned to the 
hg38 reference genome (cellranger-GRCh38-3.0.0) and quantified 
using the command ‘cellranger count’.

scATAC library generation, sequencing and alignment
After the required number of sorted cells were aliquoted for generation 
of scRNA-seq libraries, the remaining sample volume was used for gen-
eration of scATAC-seq libraries. The remaining cell volume was used to 
prepare nuclei according to the 10X ATAC nuclei isolation protocol for 
‘low cell input nuclei isolation’ (CG000169, Rev B). scATAC-seq libraries 
were prepared using the 10X Genomics Chromium Next GEM Single 
Cell ATAC v.1.1 protocol, targeting 6,000 cells per sample. Completed 
libraries were sequenced on an Illumina NextSeq 550 platform with 
33/8/16/33 base-pair cycles. Raw sequencing data were converted to 
fastq format using the command ‘cellranger-atac mkfastq’ (10X Genom-
ics, v.1.2.0). Resulting fastq files were aligned to the hg38 reference 
genome (cellranger-atac-GRCh38-1.2.0) and quantified using the com-
mand ‘cellranger-atac count’.

scRNA-seq quality control, dimensionality reduction and 
clustering
Unless otherwise indicated, all subsequent analyses were performed 
using R v.4.0.2. Following alignment and quantification, scRNA-seq 
count matrices were further processed using the Seurat R package 
(v.4.0.4)29. Initial quality control was performed on each sample inde-
pendently. First, cells were removed if they had fewer than 200 genes 
expressed, fewer than 1,000 unique sequenced reads (unique molecu-
lar identifiers) or greater than 20% of counts corresponding to mito-
chondrial genes. Doublets were identified and removed using the 
‘DoubletFinder’ R package (v.2.0.3)103. Because we observed evidence of 
ambient RNA contamination in several samples, we used the ‘DecontX’ 
method in the ‘celda’ R package (v.1.6.1) to estimate and remove con-
taminating ambient RNA from each cell104. After carrying out each of 
these quality-control steps, samples were merged into a single Seu-
rat object for clustering. Decontaminated count data were scaled to 
10,000 and then log2 normalized.

We adapted an iterative latent semantic indexing (LSI) approach to 
dimensionality reduction and clustering19. First we removed mitochon-
drial genes, sex chromosome genes and genes associated with cell cycle 
(Seurat’s ‘cc.genes’) to minimize sample batch effects in variable feature 
selection. Next we identified the top 4,000 variable genes across all 
cells and calculated term frequency–inverse document frequency 
(TF–IDF) for these variable genes. We performed singular value decom-
position (SVD) on the TF–IDF matrix and used the first 25 dimensions as 
input into Seurat’s sharing-nearest-neighbor clustering with an initial 
resolution of 0.2. Counts from single cells in each of these resulting 
clusters were summed, transformed with the logCPM transformation 
‘edgeR::cpm(mat, log=TRUE, prior.count=3)’ and then used to identify 
the top 4,000 variable genes for the next round of LSI. TF–IDF trans-
formation followed by SVD was again performed using the new set of 
4,000 variable genes, and clustering was repeated with an increased 
resolution of 0.4. The previously described variable gene selection, 
TF–IDF transformation and SVD were performed once more and clus-
tering was repeated with a final resolution of 0.8. The 25 LSI dimensions 
from the final round were used to generate two-dimensional repre-
sentations using the uniform manifold approximation and projec-
tion (UMAP) implementation from the Seurat and ‘uwot’ R packages 
(v.1.0.10; n.neighbors=50, min.dist=0.5, metric=cosine).

This initial clustering procedure identified 29 clusters. After iden-
tification of marker genes for each cluster using Seurat’s ‘FindAllMark-
ers’ function and inspection of sample representation of each cluster, 
we identified a small number of clusters that appeared to be doublet 
clusters (clusters 18, 26, 28 and 29). Each of these clusters was com-
posed entirely, or nearly entirely, of a single sample, did not have unique 
marker genes when compared with other clusters or expressed biologi-
cally incompatible combinations of marker genes. We removed all cells 
belonging to these clusters and repeated the previously described 
iterative LSI clustering procedure on the remaining cells, this time 
using clustering resolutions of 0.1, 0.3 and 0.6 for the three rounds. 

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01445-4

We regenerated UMAP with the same parameters used previously; this 
final filtered and clustered dataset contained 21 clusters. Visualization 
of gene expression on UMAP representations was smoothed using the 
MAGIC diffusion algorithm105. To minimize the risk of ‘oversmoothing’ 
expression patterns, the application of MAGIC was restricted to data 
visualization106.

scATAC-seq quality control, dimensionality reduction and 
clustering
Following alignment, ATAC-seq fragment data were further processed 
using the ‘ArchR’ R package (v.1.0.1)18. For each cell we computed the 
number of unique sequenced fragments and transcription start site 
(TSS) enrichment, which serves as a signal-to-noise metric for ATAC-seq 
data19. We plotted all barcoded droplets on a scatter plot using these 
two metrics and observed that, while some samples had a clear sepa-
ration between true cells (high TSS and number of unique fragments) 
others had a more continuous distribution between true cells and 
droplets containing contamination-free DNA (lower number of unique 
fragments and lower TSS enrichment). To label droplets as probable 
true cells we used an expectation maximization-based approach. For 
each sample we used the ‘mclust’ R package (v.5.4.7) to fit up to four 
two-dimensional gaussians to log10 nFragments (number of ATAC-seq 
fragments) by TSS enrichment joint distribution (‘Mclust(df, G=2:4, 
modelNames=VVV’). Cells classified as originating from the Gaussian 
with the greatest mean TSS enrichment were labeled as true cells while 
the remaining droplets were filtered from the project. Cells with a TSS 
of below five or nFragments below 1,000 were all filtered from the 
project, regardless of their expectation maximization classification 
label. This approach was functionally similar to setting a hard filter 
for TSS and nFragments for samples that had clearly defined true cell 
populations, but enabled exclusion of more contaminating droplets 
for samples that had a less clearly defined population of true cells 
(Extended Data Fig. 1a).

Following initial quality control, doublets were identified and 
filtered using the ArchR ‘addDoubletScores’ and ‘filterDoublets’ func-
tions, with a filter ratio of 1. We then used ArchR’s implementation 
of iterative LSI dimensionality reduction using the ‘addIterativeLSI’ 
function with 50,000 variable features and 25 dimensions. We identi-
fied clusters using the ArchR function ‘addClusters’ with a resolution 
of 0.6 and then generated a two-dimensional representation of the 
data using the ‘addUMAP’ ArchR function, with nNeighbors=50, minD-
ist=0.4 and metric=cosine. This initial clustering procedure identified 
22 clusters. We identified marker genes for each cluster using the ‘get-
MarkerFeatures’ function with the accessibility around each gene (the 
‘Gene Activity Score’) as a proxy for gene expression18. We identified a 
small number of poor-quality clusters (clusters 7, 13, 15 and 18). These 
clusters were composed entirely, or nearly entirely, from a single sam-
ple, did not have unique marker genes, had systematically lower TSS 
enrichment or were enriched for high doublet scores. Cells belonging 
to these clusters were removed from the project, and dimensionality 
reduction and clustering was repeated on the filtered project using 
50,000 variable features and 50 dimensions for ‘addIterativeLSI’, and 
then a resolution of 0.7 for ‘addClusters’. We regenerated the UMAP 
using nNeighbors=60, minDist=0.6 and metric=cosine. This final fil-
tered and clustered dataset contained 22 clusters. Visualization of 
gene activity scores on UMAP was similarly smoothed using the MAGIC 
algorithm105. Smoothed data were used only for visualization purposes.

Subclustering of major cell types
To improve identification of rare cell types we subclustered several 
major cell groups from the full scRNA- and scATAC-seq datasets. For 
scRNA-seq data, cluster labels were assigned based on known cell type 
markers (Fig. 1e, ‘NamedClust’). Cluster labels for scATAC-seq data were 
assigned in a similar manner, using gene activity scores as a proxy for 
gene expression (Fig. 1f, ‘NamedClust’). For example, basal keratinocyte 

clusters exhibited high gene activity and expression of the basal keratin 
KRT15 (ref. 107), hair follicle keratinocyte clusters exhibited high gene 
activity and expression of the TF SOX9 (ref. 108), T lymphocyte clusters 
exhibited high gene activity and expression of the cell surface marker 
CD3D and fibroblast clusters exhibited high gene activity and expres-
sion of the cell surface marker THY1 (ref. 109). We observed a relatively 
large scRNA-seq cluster expressing high levels of mast cell markers, 
including beta tryptases (TPSB1/2) and HPGD110–112, but did not observe 
a corresponding scATAC-seq cluster, perhaps due to the tendency for 
granulocyte chromatin to spontaneously decondense during nuclear 
isolation113,114. After labeling clusters in each modality we subclustered 
major cell types in each dataset (keratinocytes, fibroblasts, endothe-
lial cells, T lymphocytes and myeloid lineage cells; Extended Data  
Fig. 3a–c). See Supplementary Methods for clustering details and 
information about peak calling across subclustered datasets.

Integration of scRNA- and scATAC-seq datasets
Starting with the full dataset, we matched each scATAC-seq cell with 
its closest corresponding scRNA-seq cell using a previously described 
multimodal dataset integration technique based on canonical cor-
relation analysis. Specifically we used the ArchR function ‘addGe-
neIntegrationMatrix’, which employs Seurat’s ‘FindTransferAnchors’ 
function to integrate datasets18,29. We then used nGenes=3,000 for 
integration of the full dataset. We computed the Jaccard index between 
scRNA- and scATAC-seq cluster labels of integrated metacells and 
observed high correspondence (Extended Data Fig. 3e). Furthermore 
we identified the same major cell types in each dataset, with the excep-
tion of mast cells, which were observed only in the scRNA-seq dataset 
(Fig. 1c,d). We repeated this integration procedure for each of the 
previously described subclustered datasets (keratinocytes, fibro-
blasts, endothelial cells, T lymphocytes and myeloid lineage cells) using 
nGenes=2,000. For each subclustered dataset we similarly observed 
high correspondence between scRNA- and scATAC-seq-derived cluster 
labels (Extended Data Fig. 3d).

Linkage of gene-regulatory elements to gene expression using 
integrated datasets
CREs were linked to their potential gene targets (‘peak-to-gene links’) 
using a correlation-based approach115. This procedure involves 
the creation of up to 500 partially overlapping pseudobulks of 
100 k-nearest-neighbors integrated single cells (‘low-overlapping cell 
aggregates’). The peak counts of each pseudobulk are summed, as are 
the gene expression counts of the corresponding integrated scRNA-seq 
transcript profiles. Candidate peak–gene pairs are then identified by 
first associating peaks within a genomic distance of 250 kb to the TSS 
of each gene and then computing the Pearson correlation coefficient 
of log2-normalized accessibility and gene expression counts. This 
procedure was carried out using the ‘addPeak2GeneLinks’ function in 
ArchR18. High-confidence peak-to-gene links were obtained by retaining 
those with a Pearson correlation coefficient of >0.5.

Because this correlation procedure is dependent on dimension-
ality reduction of the particular dataset used, and because dimen-
sionality reduction in turn is dependent on variable gene selection 
across the full dataset, we found that using the entire scalp dataset 
for this analysis robustly identified peak-to-gene links correspond-
ing to regulatory interactions defining major cell types (for exam-
ple, keratinocytes versus T cells), but was less efficient at recovering 
regulatory interactions between more closely related cell subtypes (for 
example, specific hair follicle keratinocyte subsets; Fig. 2b). To increase 
our sensitivity in detection of peak-to-gene linkages distinguishing 
more fine-grained cell subtypes, we repeated the previously described 
peak-to-gene linking procedure on each subclustered major cell type 
using only the subset of peaks relevant to a specific subclustered data-
set as described above. To create a consensus peak-to-gene link set we 
combined all identified peak-to-gene links from the full dataset and 
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each subclustered dataset, sorted peak-to-gene links by their Pearson 
correlation coefficients and removed duplicate peak-to-gene links, 
resulting in a consensus peak-to-gene link set of 146,088.

Validation of inferred peak-to-gene linkages using 
conservation and ABC model predictions
Following identification of peak-to-gene linkages on the full scalp 
dataset and on each of the subclustered datasets (keratinocytes, fibro-
blasts, endothelial, T lymphocytes and myeloid), peak-to-gene links 
were validated using two strategies. First we used the ‘gscores’ function 
from the ‘GenomicScores’ R package (v.2.2.0) to compute mean phast-
Cons 100-way vertebrate evolutionary conservation scores for peaks 
linked in the full dataset and in each of the subclustered datasets, as 
well as for peaks that were not linked in any analysis. For each group of 
peak-to-gene linkages (that is, the full dataset linkages and each of the 
subclustered datasets) we used a Wilcoxon rank-sum test to compare 
linked and unlinked peaks (Extended Data Fig. 5c).

Second, we compared our peak-to-gene linkages with predicted 
enhancer–gene interactions from a recently published ABC dataset 
generated from 131 human tissues and cell types31. We downloaded the 
full dataset of all 131 tissues (https://www.engreitzlab.org/resources/) 
and cell types and converted enhancer coordinates from hg19 to hg38 
using the ‘liftover’ function from the ‘rtracklayer’ R package (v.1.50.0). 
For validation of our peak-to-gene link inferences we required both 
that the linked peak had to overlap an enhancer region in the ABC 
model dataset and that the corresponding linked gene had to match. 
We used all possible peak-to-gene linkages (that is, all peak–gene pairs 
separated by <250 kb) as background to test for enrichment of ABC 
model-predicted enhancer-gene links in our inferred peak-to-gene 
links (Extended Data Fig. 5d, top bar). To account for the skewed 
length distribution for inferred peak-to-gene links compared with 
all possible peak-to-gene links, we also compared the enrichment of 
ABC model-predicted enhancer–gene links in inferred peak-to-gene 
links with a distance-matched background set of peak-to-gene links 
(Extended Data Fig. 5d, second bar). To do this we first computed 
the distance between gene promoter and linked peak for all inferred 
peak-to-gene links. We divided these distances into 20 contigu-
ous equal-sized bins and assigned background peak-to-gene links 
to each of these. We sampled 146,088 peaks from the background 
peak-to-gene link set while matching the distance distribution of the 
inferred peak-to-gene links, and then calculated the number of back-
ground peak-to-gene links that overlapped ABC enhancer–gene pair 
predictions. We repeated this sampling procedure 100 times and used 
the mean number of overlapping background peak-to-gene links to 
calculate the enrichment of ABC enhancer–gene pair predictions in 
our inferred peak-to-gene linkages using a hypergeometric enrich-
ment test. We calculated the enrichment of ABC model-predicted 
enhancer–gene pairs in inferred peak-to-gene linkages for linkages 
identified on the full, nonsubclustered dataset (‘full scalp’), and for each 
of the subclustered datasets (Extended Data Fig. 5d, bottom six bars).

Identification and analysis of HRGs
Following creation of our consensus peak-to-gene link set we ranked 
all expressed genes by their number of peak-to-gene links, finding 
that a subset of genes had notably more peak-to-gene linkages than 
others. We set a cutoff near the inflection point (‘elbow’) of 20 linked 
peaks per gene to identify a subset of HRGs, 1,739 genes (Fig. 2c). 
We compared these HRGs with a dataset of previously identified 
superenhancer-associated genes from a variety of tissues and cell 
lines35. We also compared these HRGs with the human homologs of 
previously identified mouse hair follicle-associated superenhancer 
genes36. We calculated the enrichment of superenhancer-associated 
genes from various tissues in our set of 1,739 scalp HRGs using a hyper-
geometric enrichment test (Fig. 2d). We additionally compared HRGs 
with previously identified domains of regulatory chromatin-associated 

genes following conversion of mouse genes to their human orthologs33. 
We calculated the significance of this overlap using a one-sided Fisher’s 
exact text. In Fig. 2e we list two of the top HRGs for each k-means cluster 
to the right of the peak-to-gene heatmap. We performed GO enrich-
ment analyses on the top 200 genes ranked by number of peak-to-gene 
linkages for each of the k-means clusters using the topGO (v.2.42.0) 
R package116. For this and all subsequent GO term enrichment analyses 
we use the topGO ‘weight01’ method for calculation of enrichment 
P values. Because P values calculated using this method are condi-
tioned on neighboring terms in the GO topology, term tests are not 
independent and multiple testing theory does not directly apply. As 
the authors of the package suggest, we therefore do not apply further 
multiple hypothesis testing correction. See section 6.2 of the topGO 
manual for further details: http://www.bioconductor.org/packages/
release/bioc/vignettes/topGO/inst/doc/topGO.pdf.

Analysis of modular enhancer usage in HRGs
To visualize the heterogeneity of enhancer usage between cell types 
expressing the same gene, we generated 246 pseudobulks of k-nearest 
neighbor cells with k = 250. To plot peak using pseudobulk heatmaps 
we normalized pseudobulk accessibility by summing the peak counts 
for each pseudobulk, depth normalization- and log2-transformed 
counts data and then quantile normalization using the ‘normalize.
quantiles’ function from the ‘preprocessCore’ R package (v.1.52.0). For 
each individual HRG we then calculated the z-score for the normalized 
accessibility of each linked peak across all pseudobulk samples. Peaks 
were ordered using hierarchical clustering, with euclidean distance as 
the dissimilarity measure and complete linkage as the agglomeration 
method. For scatter plots comparing pseudobulk-linked peak acces-
sibility with linked gene expression we calculated the mean normalized 
integrated gene expression for each pseudobulk sample and applied 
log2 transformation. To calculate total linked chromatin accessibility 
we summed the depth-normalized counts of linked peaks for a given 
gene and then applied log2 transformation. Pseudobulk labels in both 
heatmaps and scatter plots were determined by selection of the most 
frequent cluster label from the 250 cells comprising each pseudobulk.

ChromVAR motif analysis
We used chromVAR (v.1.12.0) to measure enrichment of TF motifs in 
accessible chromatin across single cells117. Specifically, we first used 
the ArchR function ‘addMotifAnnotations’ to identify all cisbp motif 
matches in the peak set, used ‘addBgdPeaks’ to identify a set of genomic 
copy- and accessibility-matched background peaks and then used the 
‘addDeviationsMatrix’ function to calculate motif deviation z-scores 
for each cisbp motif.

Trajectory analysis for interfollicular and hair follicle 
keratinocytes
For analysis of epigenetic and gene-regulatory dynamics over the 
course of differentiation of interfollicular keratinocytes we used the 
R package ‘slingshot’ (v.1.8.0)118. To apply slingshot to our integrated 
scATAC-seq data for interfollicular keratinocytes we used the ArchR 
function ‘addSlingShotTrajectories’ with ‘embedding=UMAP’, restrict-
ing available clusters to interfollicular keratinocyte clusters (Basal.Kc_1, 
Spinous.Kc_1 and Spinous.Kc_2) and designating the basal keratinocyte 
cluster as the origin of differentiation. To identify TF regulator candi-
dates for this differentiation trajectory we used two complementary 
approaches. First, using all keratinocyte clusters, we calculated the 
correlation between a given TF’s chromVAR motif deviation z-scores 
and that same TF’s integrated gene expression across low-overlapping 
cell aggregates. Correlating these measures can help distinguish which 
specific TF in a larger TF family is responsible for the motif activity 
observed in a given cell type. These TF correlations were plotted against 
the maximum difference in chromVAR motif z-scores between clusters, 
highlighting TFs exhibiting more dynamic regulatory activity across 
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cell types (Extended Data Fig. 6e). To identify TFs more specific to the 
interfollicular keratinocyte differentiation trajectory, we selected 
integrated gene expression values and chromVAR deviation scores 
along the previously determined slingshot differentiation trajectory 
using the ArchR function ‘getTrajectory’ with groupEvery=1.5. We then 
correlated these trajectories using the ArchR function ‘correlateTra-
jectories’ with default parameters.

For analysis of the differentiation trajectory of the inferior seg-
ment of the hair follicle we further subclustered these cells as described 
above. We used the keratinocyte scATAC-seq clusters Inf.Segment_1, 
Inf.Segment_2 and Matrix and scRNA-seq cluster Inf.Segment. For the 
subclustered scRNA-seq datasets we used 1,500 variable genes, 20 SVD 
dimensions and a clustering resolution of 0.2 in the first round, followed 
by a clustering resolution of 0.4 in the final round. To generate UMAPs 
for the subclustered scRNA-seq dataset we used n.Neighbors=20, min.
Dist=0.1 and metric=cosine. For scATAC-seq subclustering we again used 
ArchR’s implementation of iterative LSI dimensionality reduction. We 
used 25,000 variable features, 30 dimensions and 0.4 resolution for 
clustering. To generate UMAPs for the subclustered scATAC-seq data we 
used n.Neighbors=20, min.Dist=0.1 and metric cosine. We reintegrated 
these subclustered datasets and reidentified peak-to-gene linkages as 
described above. This hair follicle inferior segment subclustering was used 
only for analysis of hair follicle differentiation trajectory (Fig. 4), and the 
peak-to-gene links identified on this dataset were not used for any other 
analyses. Identification of TF regulators for the hair follicle differentiation 
trajectory was performed using slingshot as described above, providing 
the HFSC, Migratory, Shaft_1, Shaft_2 and Matrix clusters as being involved 
in the trajectory and designating the HFSC cluster as the origin.

Identification of potential regulatory target genes of TF 
regulators
To identify potential gene targets of a TF we calculated the Pearson 
correlation coefficient between the candidate TF regulator’s chrom-
VAR motif activity and the integrated gene expression of all expressed 
genes. Next we calculated a linkage score for each gene and TF pair. This 
score is calculated by identification of all peak-to-gene links for that 
gene for which the linked peak contains an instance of the candidate 
TF motif, and then summing the product of the squared peak-to-gene 
linkage correlation with the the motif score:

LS

g

=

n

∑
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R

2

k

MS

k

where LSg is the linkage score of gene g, n is the number of linked peaks 
for gene g, R is the peak-to-gene Pearson correlation coefficient for 
peak k and MSk is the motif score for the motif occurring in peak k. 
The linkage score is thus higher for genes that have multiple linked 
peaks containing the TF motif, have more strongly correlated linked 
peaks containing the TF motif and/or have linked peaks that contain 
highly confident instances of the motif. See Supplementary Methods 
for additional details.

Differential cell type abundance testing using Milo
We used the ‘miloR’ R package (v.1.1.0) to perform k-nearest neighbor 
graph-based differential cell type abundance testing between alopecia 
areata and unaffected control samples (C_PB and C_SD)55. Although 
miloR was originally designed to be applied to scRNA-seq data, the 
algorithm depends only on having a cell–cell similarity structure to 
the dataset and thus can be similarly applied to scATAC-seq data. We 
applied miloR to our integrated scATAC-seq data by creating a ‘Single-
CellExperiment’ R object from the counts matrix of our keratinocyte 
ArchR project, and then used ArchR LSI dimensionality reduction 
as the reduced.dim input for miloR in the ‘buildGraph’ function. For 
comparison of differential abundance across all keratinocytes we 
used only samples that had at least 50 cells in the subclustered dataset, 

k = 30 for the ‘buildGraph’ function and prop=0.1 for the ‘makeNhoods’ 
function. For comparison of differential abundance across only the 
lower, cycling portion of hair follicle keratinocytes (Fig. 4e) we used 
only samples that had at least ten cells in the subclustered dataset, 
k=30 for the ‘buildGraph’ function and prop=0.3 for the ‘makeNhoods’ 
function. We plotted differentially abundant cell neighborhoods with 
SpatialFDR = <0.1 using the ‘plotNhoodGraphDA’ function.

LDSC using scATAC-seq data
We used LDSC (v.1.0.1) to estimate the heritability of multiple skin, 
hair and other traits in each high-resolution clustered cell type in our 
dataset75. Cluster-specific peak regions were used as input functional 
categories for LDSC. To obtain these cluster-specific peaks we first 
removed clusters with fewer than 40 cells in total, because these clus-
ters generally had too few cells for identification of sufficient numbers 
of confident cell-type-specific peaks. For the remaining clusters we 
identified which peaks from the union peak set were originally identi-
fied in a given cluster by overlapping the union peak set with the MACS2 
peak calls from that specific cluster. For each cluster we then retained 
only peaks that had been identified in no more than 25% of all clus-
ters (nine out of a possible 36 clusters). This strategy enabled us to 
both filter out common ‘housekeeping peaks’ that are accessible in the 
majority of cell types while retaining peaks that are unique to, at most, 
a few clusters. Formatted summary statistics for partitioning can be 
downloaded from https://console.cloud.google.com/storage/browser/
broad-alkesgroup-public-requester-pays/sumstats_formatted. We fol-
lowed the recommended guidelines for cell-type-specific partitioned 
heritability analysis using the 1000 G EUR phase 3 population reference 
and the hg38 baseline model (v.2.2). We used the ‘ldsc.py’ script to 
calculate partitioned heritability for each trait in cluster-specific peak 
sets. We used Benjamini–Hochberg FDR correction to adjust heritability 
enrichment P values. See Supplementary Methods for additional details.

Analysis of fmGWAS variants
We obtained fine-mapped SNPs from multiple sources. First we down-
loaded a compendium of fine-mapped SNPs for 94 UK Biobank traits 
(www.finucanelab.org/data) and used the male pattern balding (‘Bald-
ing_Type4’), body mass index and systolic blood pressure (‘SBP’) traits 
for downstream analyses79. Second, we downloaded precomputed PICS 
fine-mapped SNPs for a variety of traits in the GWAS catalog (https://
pics2.ucsf.edu/Downloads/PICS2-GWAScat-2021-06-11.txt.gz)78,80. 
Details of trait definitions are available from either the UK Biobank 
(https://www.ukbiobank.ac.uk/) or the GWAS catalog (https://www.
ebi.ac.uk/gwas/). We calculated enrichment of fine-mapped SNPs with 
a fine-mapping posterior probability of ≥0.01 from selected traits in the 
previously described cluster-specific peak sets, using one-sided Fish-
er’s exact test with a background SNP set containing all fine-mapped 
SNPs (also with a fine-mapping posterior probability of ≥0.01) across all 
traits. Enrichment P values were adjusted using Benjamini–Hochberg 
FDR correction. See Supplementary Methods for additional details.

In regard to identification of genes associated with fine-mapped 
SNPs for selected traits, we identified those with a fine-mapping pos-
terior probability of ≥0.01 and that overlapped a scATAC-seq peak 
region. Next, for each gene we identified all fine-mapped SNPs that fell 
within a peak linked to the expression of that gene then summed the 
fine-mapping posterior probability for these linked SNPs. Genes linked 
to a peak containing a fine-mapped SNP with a high posterior probabil-
ity, or those linked to multiple linked peaks containing fine-mapped 
SNPs with appreciable fine-mapping posterior probability, were 
assumed more likely to represent genes whose expression is associ-
ated with the trait of interest. We plotted row-scaled gene expression 
for the top 80 genes (by total associated fine-mapping probability) in 
each of our high-resolution scRNA-seq clusters in a heatmap then plot-
ted the number of linked peaks and cumulative fine-mapping posterior 
probability to the right of each gene.
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gkm-SVM machine learning classifier training and testing
We adapted a previously published strategy for trained gkm-SVM mod-
els using scATAC-seq data85. See Supplementary Methods for details 
on model training, testing and SNP prioritization.

Statistics and reproducibility
The statistical methods and tests used in various analyses are listed in their 
respective figure legends or section of Methods. No statistical method was 
used to predetermine sample size. The authors were not blinded to patient 
diagnosis during sample collection or analysis. All datasets generated 
that did not fail experimentally (for example, overloaded sample) were 
included in the study. Data (in the form of individual cells) were excluded 
from downstream analyses if they did not pass technical quality control 
thresholds in the initial data-processing stage, as described in Methods.

Ethics statement
All research described complies with the ethical guidelines for human 
subjects research under the approved Institutional Review Board pro-
tocol at Stanford University (no. 40524) for the collection and use of 
human tissue samples.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequencing data generated in this study have been deposited in the 
Gene Expression Omnibus (GEO) with accession code GSE212450. The 
full scalp dataset can be explored interactively at http://shiny.scscal-
pchromatin.su.domains/shiny_scalp/ (ref. 119). Reference genome 
files for alignment of single-cell data can be downloaded from https://
support.10xgenomics.com/single-cell-gene-expression/software/
release-notes/build. Predicted superenhancer-associated genes from 
86 human cell types and tissues were downloaded from Supplementary 
Table 2 of https://doi.org/10.1016/j.cell.2013.09.053 (ref. 35). Predicted 
superenhancer-associated genes from mouse hair follicle cell populations 
were downloaded from Supplementary Table 1 of https://doi.org/10.1038/
nature14289 (ref. 36). The ABC dataset generated from 131 human tis-
sues and cell types was downloaded from https://www.engreitzlab.org/
resources/ (ref. 31). Differentially expressed genes identified between 
control human keratinocytes and keratinocytes containing a mutant, 
binding-incompetent form of TP63 were obtained from Supplemen-
tary Table 1d of https://doi.org/10.1016/j.celrep.2018.11.039 (ref. 51). The 
counts matrix from short hairpin RNA knockdown of KLF4 in human adult 
keratinocytes is available on GEO with accession no. GSE111786 (ref. 54). 
Formatted summary statistics for partitioning heritability using LDSC 
can be downloaded from https://console.cloud.google.com/storage/
browser/broad-alkesgroup-public-requester-pays/sumstats_formatted. 
Fine-mapped SNPs for 94 UK Biobank traits can be downloaded from www.
finucanelab.org/data (ref. 79). Precomputed PICS fine-mapped SNPs for a 
variety of traits from the GWAS catalog are available at https://pics2.ucsf.
edu/Downloads/ (refs. 78,80). Source data are provided with this paper.

Code availability
Custom code for data processing, peak-to-gene analyses and GWAS 
analyses is available on Github (https://github.com/GreenleafLab/
scScalpChromatin and https://doi.org/10.5281/zenodo.7915926). Our 
analyses also make use of published software tools, with description 
of their use and parameter settings available in Methods and in the 
custom code above where applicable.
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Extended Data Fig. 1 | Quality control of single cell RNA and ATAC datasets. 
(a) Scatter plots of the number of unique fragments by the transcription start 
site (TSS) enrichment for each of the scATAC-seq samples. Gray dots indicate 
cells that did not pass quality control filters (Methods). Colorbar indicates the 
density of points. (b) Violin plots of the number of unique reads (UMIs, top) 
and the percent of reads from mitochondrial genes (bottom) for each of the 
scRNA-seq samples. The inset box plot represent the median, 25th percentile 
and 75th percentile of the data, and whiskers represent the highest and lowest 
values within 1.5 times the interquartile range of the boxplot. (c) Violin plots of 

the TSS enrichment (top) and number of unique fragments (bottom) for each of 
the scATAC-seq samples. Box plot as in (B). (d) UMAP projection of full scRNA-
seq dataset, colored by patient sample. (e) UMAP projection of full scATAC-seq 
dataset, colored by patient sample. (f) Differential scATAC-seq peaks between 
samples processed immediately after collection or after cryopreservation for 
each of the major cell groupings. Differential peaks (FDR < 0.1) are indicated 
by colored dots. (g) Differential scRNA-seq genes between samples processed 
immediately after collection or after cryopreservation for each of the major cell 
groupings. Differential genes (FDR < 0.1) are indicated by colored dots.
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Extended Data Fig. 2 | Annotation of single cell RNA and ATAC datasets. 
(a) UMAP projections of full scRNA-seq dataset colored by relative expression 
levels of representative cell compartment marker genes. (b) UMAP projections 
of full scATAC-seq dataset colored by relative gene activity scores of the same 
marker genes shown in (A). (c) Marker peaks (Wilcoxon FDR ≤ 0.1 and Log2 fold 

change ≥ 0.5) for each scATAC cluster. (d) The fraction of each scRNA-seq cluster 
comprising each sample. The total proportions for each cluster are shown in 
the rightmost column. (e) The fraction of each scATAC-seq cluster comprising 
each sample. The total proportions for each cluster are shown in the rightmost 
column.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Sub-clustering of major cell groups and integration 
of scRNA and scATAC datasets. (a) UMAP representations of sub-clustered 
major cell groups using scATAC data. Cell compartments are labeled on the 
left, and cells are colored according to their high-resolution cluster labels. (b) 
UMAP representations of sub-clustered major cell groups using scRNA data. Cell 
compartments are labeled on the right, and cells are colored according to their 
high-resolution cluster labels. (c) scRNA gene expression for selected marker 
genes for each high-resolution scRNA-seq cluster from each sub-clustered cell 

group. The color indicates the relative expression across all high-resolution 
clusters and the size of the dot indicates the percentage of cells in that cluster 
that express the gene. (d) Correspondence between scRNA and scATAC-seq 
cluster labels for high-resolution clusters in each of the sub-clustered datasets. 
Heatmaps are colored according to the Jaccard index of cluster label overlap 
between the scRNA and scATAC-seq datasets. (e) Correspondence between 
scRNA and scATAC-seq cluster labels in the full scalp dataset.
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Extended Data Fig. 4 | Clustering and CCA-based integration robustness to 
subsampling. (A through C) Repeated dimensionality reduction and clustering 
of the scRNA and scATAC-seq datasets with three samples (AA4, C_SD3, and 
C_PB3) removed from the full dataset. (a) UMAP representations of the full 
subsampled dataset and sub-clustered major cell groups using scRNA data. 
Cell compartments are labeled on the left, and cells are colored according 
to their high-resolution cluster labels as shown in the x-axis in (C). (b) UMAP 
representations of the full dataset and sub-clustered major cell groups using 

scATAC data. Cell compartments are labeled on the left, and cells are colored 
according to their high-resolution cluster labels as shown in the y-axis in (C). 
(c) Correspondence between scRNA and scATAC-seq cluster labels for the low- 
and high-resolution clusters in each of the subsampled datasets. (D through F) 
Repeated dimensionality reduction and clustering of the scRNA and scATAC-seq 
datasets with 25% of the cells randomly removed from the full dataset. (d) Same 
as in (A), but for the cell-subsampled dataset. (e) Same as in (B), but for the cell-
subsampled dataset. (f) Same as in (C), but for the cell-subsampled dataset.
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Extended Data Fig. 5 | Identification and characterization of peak-to-
gene linkages. (a) Upset plot indicating the number of peak-to-gene linkages 
identified in the full dataset and in each of the sub-clustered datasets. (b) 
The distribution of the number of linked peaks per gene (median = 4). (c) The 
PhastCons 100-way vertebrate conservation scores for peaks with a linked gene 
in each dataset compared to unlinked peaks. Two-sided Wilcoxon rank-sum test 
comparing each dataset to unlinked peaks, p < 2.2 ×10–16. Boxplots represent 
the median, 25th percentile and 75th percentile of the data, and whiskers 
represent the highest and lowest values within 1.5 times the interquartile range 
of the boxplot. (d) Bar plot showing the proportion of peak-to-gene linkages 
where both peak and gene were validated by a multi-tissue dataset of activity-by-
contact (ABC) model enhancer-gene predictions. Categories compared included 
the space of all possible peak-to-gene links, the mean of 100 permutations drawn 

from all possible peak-to-gene links where for each permutation 146,088 peaks 
were selected to match the anchor distance distribution of true peak-to-gene 
links, and the set of true peak-to-gene links identified on each sub-clustered 
dataset. One-sided Fisher’s exact test enrichment comparing each subgroup of 
true peak-to-gene links to a distance-matched background set, p < 2.2 ×10–16. 
(e) Venn-diagram indicating the overlap of peak-to-gene linkages and peak-
to-nearest-gene associations. (f) Comparison of the linked peak score (sum of 
accessibility at linked peaks) compared to the gene activity score for predicting 
gene expression for the 1739 HRGs. Plotted is the Pearson R2 from 246 pseudo-
bulked samples per gene. Boxplots represent the median, 25th percentile and 
75th percentile of the data, and whiskers represent the highest and lowest values 
within 1.5 times the interquartile range of the boxplot.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Marker genes and cell type–specific TF regulator 
activity for sub-clustered interfollicular and hair-follicle associated 
keratinocytes. (a) UMAP projections of sub-clustered keratinocyte scRNA-
seq dataset colored by expression levels of representative marker genes. (b) 
UMAP projections of sub-clustered keratinocyte scATAC-seq dataset colored 
by gene activity scores of the same marker genes shown in (A). (c) Heatmap 
showing the chromatin accessibility (left) and gene expression (right) for 
28,991 keratinocyte-specific peak-to-gene linkages. Peak-to-gene linkages were 
clustered using k-means clustering (k = 12). Rows indicate peak accessibility and 
gene expression on the left and right heatmaps respectively. Each column is a 
pseudo-bulk sample, with the colorbar on top of each heatmap indicating the 
cluster identity of each pseudo-bulk sample. (d) Hypergeometric enrichment 
p-values of TF motifs in peaks from each of the k-means clusters from (C). (e) 

Plot of TF motif activity correlation to corresponding TF gene expression across 
sub-clustered dataset against the maximum difference in chromVAR deviation 
z-score between clusters. TF’s with a maximum chromVAR difference in the 
top quartile and a pearson correlation greater than 0.5 are colored in red. (f) 
Prioritization of gene targets for LHX2. The x-axis shows the Pearson correlation 
between the TF motif activity and integrated gene expression for all expressed 
genes across all keratinocytes. The y-axis shows the TF Linkage Score (for all 
linked peaks, sum of motif score scaled by linkage correlation). Color of points 
indicates the hypergeometric enrichment of the TF motif in all linked peaks for 
each gene. Top gene targets are indicated in the shaded area (motif correlation 
to gene expression >0.25, linkage score >80th percentile). GO term enrichments 
for the top gene targets are shown in the inset bar plot. (g) Same as in (F), but for 
androgen receptor (AR). (h) Same as in (F), but for POU2F3.
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Extended Data Fig. 7 | Supplemental analyses of sub-clustered inferior 
segment hair follicle keratinocytes. (a) UMAP projection of sub-clustered 
keratinocytes showing cells originating from alopecia areata. Cells originating 
from control samples are colored gray and sorted to the back of the plot. 
(b) UMAP projection of sub-clustered scRNA inferior segment hair follicle 
keratinocytes. (c) UMAP projection of sub-clustered scATAC inferior segment 
hair follicle keratinocytes colored by matched nearest scRNA cluster. (d) 

Correspondence between scRNA and scATAC-seq cluster labels for integrated 
inferior segment hair follicle keratinocytes. (e) Paired heatmaps of positive TF 
regulators whose TF motif activity (left) and matched gene expression (right) 
are positively correlated across the hair follicle keratinocyte differentiation 
pseudotime trajectory. (f) GO term enrichments of the most variable 10% of 
genes across the hair follicle keratinocyte differentiation pseudotime trajectory.
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Extended Data Fig. 8 | Supplemental analyses of GWAS signal enrichment 
in cell type–specific open chromatin regions and cell type–specific genes. 
(a) Cluster-specificity of peaks used for LD score regression and for Fisher 
enrichment tests in Fig. 5. More than 50% of peaks are specific to <1/8 of high-
resolution scATAC clusters, and 85% of peaks are specific to ≤ 1/4 of clusters. (b) 
Distribution of the number of clusters in which each peak is accessible. Peaks 
accessible in ≤ 1/4 of clusters (9 high-resolution clusters) were used for cluster-
specific enrichment analyses. (c) Cluster-specificity of marker genes used for LD 
score regression and for Fisher enrichment tests in (E) and (G) respectively. (d) 
Distribution of the number of clusters identified as expressing a given marker 
gene. Marker genes expressed in ≤ 1/4 of clusters (10 high-resolution clusters) 
were used for cluster-specific enrichment analyses. (e) LD score regression 

identifies enrichment of GWAS SNPs for various skin and non-skin related 
conditions in gene regions specific to sub-clustered cell types (from the scRNA 
dataset) in human scalp. FDR-corrected P-values from LDSC enrichment tests 
are overlaid on the heatmap (*FDR < 0.05, **FDR < 0.005, ***FDR < 0.0005). (f) 
Same as in (E), but using only open-chromatin regions (from the scATAC dataset) 
that are implicated in peak-to-gene linkages (N = 98,188). (g) Fraction of fine-
mapped SNPs for selected traits overlapping scalp CREs binned by fine-mapping 
posterior probability. (h) Fisher’s exact test enrichment of the nearest gene for 
fine-mapped trait-related SNPs in cell type–specific genes for sub-clustered cell 
types in human scalp. The FDR-corrected -log10 p-value is indicated by the color 
of the dots, and the dot size indicates the enrichment odds ratio.
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Extended Data Fig. 9 | Supplemental analyses of fmGWAS-linked genes. (a) 
GO term enrichment for the top genes linked to fine-mapped SNPs by summed 
fine-mapping posterior probability in associated peak-to-gene linkages. (b) 
The top genes linked to peaks containing fine-mapped SNPs for alopecia areata. 
The heatmap shows relative gene expression for each high-resolution scRNA 
cluster. The number of linked fmSNPs per gene is indicated in the red bar plot 

to the right, and the total sum of fine-mapped posterior probability for linked 
SNPs is indicated in the blue bar plot. The grey bar plot shows the total number 
of identified peak-to-gene linkages for that gene in the entire scalp dataset. Gene 
names colored red indicate fine-mapped SNP to gene linkages supported by 
GTEx eQTLs. (c) Same as in (B), but for hair color.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Assessment of gkmSVM model performance and 
additional high-effect candidate fine-mapped SNPs. (a) The area under 
the receiver operator (AUROC), or (b) precision recall (AUPRC) curves for the 
gkm-SVM machine learning classifiers for each of the cluster models. Each dot 
indicates a cross-validation fold (n = 10). Boxplots represent the median, 25th 
percentile and 75th percentile of the data, and whiskers represent the highest 
and lowest values within 1.5 times the interquartile range of the boxplot. (c) The 
overlap of training data (peak sequences) between models. (d) The performance 
of each cluster model on predicting test sequences from a non-target cluster. (e) 
Enrichment of high-effect fine-mapped SNPs from eczema relative to random 
fine-mapped SNPs in cis-regulatory regions. (f) Same as in (e), but for AGA. (g) 
Normalized chromatin accessibility landscape for cell type–specific pseudo bulk 

tracks around the BNC2 locus. Integrated BNC2 expression levels are shown in 
the violin plot for each cell type to the right. The position of ATAC-seq peaks, the 
GWAS lead SNP, the fine-mapped SNP candidates in LD with the lead SNP, and 
the candidate functional SNP are shown below the ATAC-seq tracks. Significant 
peak-to-gene linkages are indicated by loops connecting the BNC2 promoter 
to indicated peaks. (h) GkmExplain importance scores for the 50 bp region 
surrounding rs12350739, a hair color associated SNP that creates a JUN motif in 
a CRE linked to BNC2 expression. (i) Same as in (G), but for the ALX4 locus. (j) 
GkmExplain importance scores for the 50 bp region surrounding rs10769041, 
an AGA associated SNP that disrupts an ETS motif in a CRE linked to ALX4 
expression.
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