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Abstract

RNAs are central to fundamental biological processes in all known 
organisms. The set of possible intramolecular interactions of RNA 
nucleotides defines the range of alternative structural conformations 
of a specific RNA that can coexist, and these structures enable functional 
catalytic properties of RNAs and/or their productive intermolecular 
interactions with other RNAs or proteins. However, the immense 
combinatorial space of potential RNA sequences has precluded 
predictive mapping between RNA sequence and molecular structure 
and function. Recent advances in high-throughput approaches in vitro 
have enabled quantitative thermodynamic and kinetic measurements of 
RNA–RNA and RNA–protein interactions, across hundreds of thousands 
of sequence variations. In this Review, we explore these techniques, 
how they can be used to understand RNA function and how they might 
form the foundations of an accurate model to predict the structure 
and function of an RNA directly from its nucleotide sequence. The 
experimental techniques and modelling frameworks discussed here are 
also highly relevant for the sampling of sequence–structure–function 
space of DNAs and proteins.
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conformational states, stability and regulatory functions directly from 
the nucleotide sequence. Finally, we discuss the future extension of 
these methods to enable the investigation of different biochemical 
characteristics, to measure single molecules, to further scale up in 
terms of throughput and to improve availability.

The procedure of studying binding to DNA, RNA or protein with 
high throughput on next-generation sequencing chips has been imple-
mented by different groups with some variations in the details of experi-
mental protocols. The protocol for studying binding to DNA has been 
referred to as HiTS-FLIP (high-throughput sequencing–fluorescent 
ligand interaction profiling)26. For RNA, two highly related methods are 
HiTS-RAP (high-throughput sequencing and RNA affinity profiling)27 
and RNA-MaP (quantitative analysis of RNA on a massively parallel 
array)28. For studying protein mutants, the method has been referred 
to as Prot-MaP (protein display on a massively parallel array)29. In this 
Review, we refer to these classes of techniques as DNA, RNA and protein 
array technologies, respectively. We focus our discussion on RNA-
related applications, but our conclusions about the utility of and next 
steps for these applications are also highly relevant for functional 
sampling of DNA sequence space and protein sequence space.

Methodologies
Although next-generation sequencing has markedly expanded the 
known universe of RNA sequences that exist in cells, it has not provided 
insight into the structure and function of these molecules. To attempt 
to address this limitation, RNA array technologies use the same high-
throughput methods that are used to identify these sequences to assess 
their structure or function.

Biochemistry on sequencing chips
The RNA sequences to be studied by RNA array are first designed as a 
DNA library, later to be transcribed to RNA directly on the sequencing 
flow cell. The number of molecular variants that can be screened simul-
taneously — in other words, the size of the DNA library — has ranged  
from 103 to 107 sequence variants30,31. The DNA library is then amplified  
and sequenced using Illumina ‘sequencing by synthesis’ technology. 
First, individual DNA molecules are immobilized on a flow cell surface 
and each individual DNA is amplified to generate a cluster of ~1,000 
identical DNA molecules. Next, the DNA sequence of each cluster is 
determined using sequencing by synthesis, by flowing in fluorescent 
nucleotides that are incorporated into the growing complementary 
DNA strand such that each cycle of sequencing determines the identity 
of one nucleotide in each DNA cluster. Sequencing is carried out for 
30–600 cycles on the Illumina sequencer to determine the identity of 
each DNA cluster on the array (Fig. 2a). For studies of a biomolecule 
of interest that binds DNA, binding to the DNA clusters can be studied 
directly. Indeed, this DNA array approach was the first implementation 
of a high-throughput biophysical measurement on a sequencing chip, 
involving binding of the yeast transcription factor GCn4 to a library of 
DNA sites27. High-throughput measurements of DNA binding are not 
limited to Illumina sequencing technology and have also been made 
on the DNA nanoballs that are used in the BGISEQ-500 sequencing 
platform32.

To assay RNA, the DNA array on a sequenced flow cell is converted 
to RNA by in situ transcription (Fig. 2b). First, before transcription 
can take place, the single-stranded DNA (ssDNA) on the array surface 
is made double stranded by annealing a primer and extending the 
complementary strand with a DNA polymerase. After transcription 
of the nascent RNA by RNA polymerase, a ‘roadblock’ is introduced to 

Introduction
Sequence-specific RNA–RNA and RNA–protein interactions are essen-
tial for cellular regulation and function. Although RNAs have diverse 
biological functions, they are all composed of the same four nucleo-
tides, and thus the regulatory roles of RNAs must be determined by the 
combinatorial code built by these nucleotide building blocks. The RNA 
sequence determines the structural conformations that are available 
to the molecule and its interactions with RNA-binding proteins. RNA 
interacts with itself through a diverse set of intramolecular interac-
tions, including both canonical Watson–Crick base pairing and non-
canonical base pairing, to form helices, loops and bulges that define 
the overall three-dimensional structure of the molecule1 (Fig. 1). This 
structural diversity, which can often change dynamically in response 
to the binding of cellular signals such as ligands or proteins, in turn 
defines the diverse set of functions that a specific RNA might have2–7. 
Furthermore, RNA does not often exist in a single conformation in 
physiological conditions, but rather as a range of alternative confor-
mational states (the ensemble) that coexist for systems at equilibrium 
or as a constantly changing ensemble of conformations for systems out 
of equilibrium, in which some conformational states are more or less  
likely to be observed2,8,9. Therefore, the linkage of RNA sequence to  
structure is complex and does not involve a single solution but rather 
the definition of one or more ensembles of conformational states, 
in which each state is assigned a relative weighting. To derive these 
conformational ensembles from RNA sequence is thus challenging 
and is fundamentally a combinatorial problem, such that we might 
anticipate that a large diversity of RNA sequence space must be sampled 
and characterized before appropriate predictive models can be built.

Traditional methods in structural biology and biochemistry — 
whereby RNA structure has been studied by X-ray crystallography 
and NMR spectroscopy10–13, and RNA–RNA interactions have been 
studied using different biochemical assays14–17 — often have relatively 
low throughput, which makes it challenging to use these methods to 
sample the vast combinatorial RNA sequence space with any degree 
of completeness. More recently, various sequencing-based methods 
have been developed to probe RNA structure18–21 and RNA–protein 
binding22–24 in vivo with high throughput. These in vivo methods are 
not discussed in detail here but have been covered thoroughly in a 
recent review25. In short, the in vivo methods reveal the structural and 
binding properties of RNAs at one time point, while averaging over 
some or all of the RNA structures in the ensemble of conformations that 
are present. Therefore, in their current implementation, these assays 
do not quantify the occupancies and transition rates of all naturally 
occurring RNA structural states and they cannot easily be interpreted 
to determine the thermodynamic and kinetic parameters that regulate 
the structure and function of RNAs in the cell. New high-throughput, 
quantitative biochemical methods are now beginning to be used to 
address these limitations.

Here, we discuss how next-generation sequencing technologies 
enable quantitative measurements in vitro of the structural features 
and molecular functions of millions of biomolecular RNA sequence 
mutants at the same time. We start by explaining the methodology, 
highlighting the differences from more traditional biochemical assays 
for measuring biomolecular conformation, affinities and kinetics. Next, 
we review how these methods have been used so far to study RNA–RNA 
interactions, RNA–protein interactions, RNA-guided protein interac-
tions, RNA–small molecule interactions and catalytic RNAs. We provide 
an outlook on how the large amounts of quantitative binding data that 
are generated might be used to enable quantitative predictions of RNA 



Nature Reviews Genetics

Review article

5′

3′

Bulge

Helix Single-stranded region
Internal loopa

b Tetraloop
Kissing loop

Three-way
junction

Kink–turn

G-quadruplex

Pseudoknot

5′

5′

5′

3′

3′

3′

5′

G

G

G

G
AA

A A

5′3′

3′

3′

5′ 5′

5′

3′

3′

5′

5′

3′

3′

N N
R

G

G

G

G

G

G
5′

5′

5′

5′

3′

3′

3′

3′
3′

Loop 1

Loop 2 Loop 3

Hairpin
loop

Fig. 1 | Diversity of RNA secondary and tertiary structures. a, Schematic of 
common RNA secondary structure motifs, comprising hairpin loops, helices, 
internal loops, bulges and single-stranded regions. b, Examples of RNA 
secondary structure motifs and the corresponding tertiary structure motifs 
from crystal structures: ‘kissing loop’ structure of dimeric HIV-1 RNAs (Protein 
Data Bank (PDB) ID: 1K9W)103, tetraloop structure of signal recognition particle 
(SRP) RNA from Pyrococcus furiosus (PDB ID: 2F87)104, pseudoknot structure of 

human telomerase RNA (PDB ID: 2K96)105, three-way junction formed by human 
7SL RNA (PDB ID: 1MFQ)106, kink–turn structure of SAM-I riboswitch RNA from 
Thermoanaerobacter tengcongensis (PDB ID: 3IQN)107 and G-quadruplex structure 
of human telomeric RNA (PDB ID: 31BK)108. Red nucleotides highlight the distinct 
structural motifs. Reprinted from ref. 7, CC BY 4.0 (https://creativecommons.org/
licenses/by/4.0/).
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stall the RNA polymerase and tether the RNA to the DNA cluster. For 
example, streptavidin, which binds a biotin present on the 5′ edge of 
the primer annealed in the previous step, can be introduced into the 
flow cell as the roadblock28 (Fig. 2c). Alternatively, the roadblock can 
be the Escherichia coli replication terminator protein Tus27.

The biochemical measurement is then carried out using a fluores-
cence microscope. In the early days of the technology, measurements 
were carried out directly on modified Illumina Genome Analyzer IIx 
instruments27,28,33,34, which are now no longer supported. These have 
mostly been replaced by sequencing on Illumina MiSeq30,31,35–42, fol-
lowed by biochemical measurements on custom-built30,31,35–42 and 
commercial43,44 total internal reflection fluorescence microscopes, with 
custom-built fluidic adaptors to control flow and introduce medium 
into the flow cell. To assist in the mapping between sequencing and 
binding data image positions, generated RNAs can be labelled with 
a fluorescent oligonucleotide complementary to a sequence that is 
present in all members of the RNA library (Fig. 2d). Biophysical changes 
are recorded through changes in fluorescence intensity at another 
wavelength by, for example, flowing in a fluorescently labelled bind-
ing partner over the RNA clusters (Fig. 2e). The identities of the RNA 
clusters that bind the fluorescent partner are then assigned by mapping 
the location of the clusters from the binding measurements to those 
from the DNA sequencing using an image registration process such as 
hierarchical cross-correlation45. The fluorescence intensity can then be 
quantified by, for example, fitting and integrating a two-dimensional 
Gaussian distribution to each RNA cluster in the images45. Generally, 
unique members of the DNA library are represented multiple times 
on the array, both to minimize experimental noise and to quantify the 
technical errors of the measurement. The optimal number of clusters 
measured per molecular variant is, in practice, between 10 and 100 
depending on the signal-to-noise ratio of the experimental set-up, 
whereby brighter fluorophores and stronger binders require fewer 
measurements per variant.

Measuring thermodynamic and kinetic parameters
Equilibrium measurements of fluorescent analytes binding to the DNA 
or RNA variants presented on the array can be carried out by flowing 
in different concentrations of the fluorescent binding partner, letting 
the binding equilibrate and recording images at each concentration. 
Hill equation binding curves fitted to the quantified fluorescence can 
be used to determine effective equilibrium dissociation constants 
(KD) (Fig. 2f), and the equation ΔG = RT log(KD) gives effective bind-
ing free energies. (R is the universal gas constant; T is temperature 
(K)). Correspondingly, binding kinetics can be directly measured by 

continuously recording images while the binding reaction is equilibrat-
ing, which can be used to produce association curves by plotting the 
cluster-averaged fluorescence intensity for each molecular variant 
against time. Similarly, dissociation curves can be acquired by flow-
ing in buffer without the binding partner over an already-equilibrated 
array (Fig. 2g). Effective association rate constants (ka) and effective 
dissociation rate constants (kd) can be determined either by the initial 
slopes of the binding curves or by fitting exponentials to the binding 
curves. This approach also gives a redundant measure of the effective 
equilibrium dissociation constant (KD = kd/ka), which can be compared 
with the KD obtained from the equilibrium measurement to check for 
consistency with an exponential binding model in which one target 
binds one probe.

Previous applications of RNA arrays
A grand challenge in molecular biophysics is the creation of predictive 
models that link RNA sequence to relevant thermodynamic and kinetics 
parameters expected from intermolecular or intramolecular binding 
(Fig. 3a). Such models would provide a means to predict the physical 
parameters of binding for molecular RNA variants that were previously 
unobserved experimentally. Furthermore, such models would ideally 
also provide deeper mechanistic insights into the sequence determi-
nants of RNA binding by defining the intramolecular properties that 
affect the interaction (Fig. 3b). So far, models aiming to describe high-
throughput datasets from RNA arrays have been constructed using 
a bottom-up approach, based on hypothesized expectations of how 
RNA interactions might work at the molecular level. In the following 
sections, we describe some important examples of these experimental 
applications and models.

RNA–RNA interactions
Many RNAs fold into complex tertiary structures that are essential for 
their biological functions4,46–49. Common methods for studying RNA 
tertiary structure, such as X-ray crystallography, NMR spectroscopy and  
cryo-electron microscopy, have limitations in terms of throughput  
and resolution; RNA array technology has the potential to address these 
methodological gaps. The formation of RNA tertiary structures has been 
studied by RNA array using tectoRNAs as a model system30,35,41. The tec-
toRNA model system consists of two folded RNAs with well-defined sec-
ondary structures — the variable ‘chip piece’ RNA that is presented on 
the array and a fluorescently labelled, constant ‘flow piece’ RNA that is 
flowed onto the sequencing chip — that bind each other to form a heter-
odimer (Fig. 4a). The binding free energy (ΔG) of a mutant library of chip 
piece RNAs for the constant flow piece RNA can then be determined.  

Fig. 2 | Using next-generation sequencing chips for high-throughput 
biochemical measurements. a, Schematic of DNA sequencing using the 
Illumina platform, whereby the nucleotide sequence identity of all molecular 
variants in a DNA library is determined through sequencing by synthesis. 
b, Generation of RNA from a library of DNA clusters. The single-stranded 
DNA (ssDNA) on the array surface is made into double-stranded DNA (dsDNA) 
by annealing a primer and extending the complementary strand with a DNA 
polymerase. This is followed by transcription of nascent RNA from dsDNA by 
RNA polymerase. c, Stalling of the RNA polymerase by using a streptavidin 
‘roadblock’, which binds a biotin present on the 5′ edge of the primer annealed in  
part b, is used to attach the RNA transcript to the flow cell surface. d, To assist 
in mapping between sequencing and binding data images, generated RNAs can 
be labelled with a fluorescent oligonucleotide complementary to a sequence 

that is present in all members of the RNA library. e, Binding measurements 
are carried out by introducing a fluorescently labelled binding partner into 
the flow cell and recording changes in fluorescence intensity at the RNA 
clusters. f, Equilibrium binding measurements for different RNA clusters can 
be obtained by equilibrating the flow cell with increasing concentrations of 
the binding partner to determine effective equilibrium dissociation constants 
(KD). g, Kinetic association measurements can be obtained by measuring 
cluster intensities during equilibration (left of dashed line), and dissociation 
measurements can be obtained by flowing in buffer without binding  
partner after equilibration (right of dashed line). Line colours in parts f and  
g correspond to the DNA and RNA sequence variants shown in parts a and d.  
Parts a–f reprinted with permission from ref. 45, Cold Spring Harbor Laboratory 
Press.
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A structure-based model was developed that randomly samples the 
conformation of each base pair step (two sequential base pairs) in a 
tectoRNA based on its relative occurrence in structured RNAs in the 
RNA crystal structure database30 (Fig. 4b). The distance between  
the binding sites of the chip piece and flow piece tectoRNAs was then 
calculated for each sampled structure, and binding free energies were 
estimated using a fixed-distance cut-off to assign whether the RNAs 
were bound for each structure in the sampled library of chip piece 
RNAs (Fig. 4c). These predicted binding energies agreed well with the 
experimentally determined binding energies30, demonstrating that 
accurate binding energies can be inferred when the variety of structural 
conformations is known. A future hope for RNA array technology is 
that the opposite inference can also be made — namely, that the RNA 
conformations present and their relative abundances can be predicted 
from binding energies using models trained on the RNA array data. This 
extension will almost certainly require several intramolecular proper-
ties and distance measures to be probed in these high-throughput  
experiments.

RNA–protein interactions
Physical interactions between RNA and RNA-binding proteins (RBPs) 
are crucial for post-transcriptional gene regulation50, and these inter-
actions are controlled by the sequence-specific binding energies of 
the RNA–RBP interactions. Several RBPs have been studied using 
RNA arrays27,28,33,36,51. Early studies looked at binding of green fluores-
cent protein (GFP) and negative elongation factor subunit E (NELF-E)  
to RNA aptamers27,33, and of the coat protein of MS2 bacteriophage to 
RNA hairpins28. In these studies, an RNA mutant library is presented 
on the array and a fluorescently labelled RBP is flowed over the array. 
For NELF-E binding to RNA aptamers with two mutations, binding 
energies were accurately predicted as the sum of binding energies 
for the corresponding single mutants27. This was not the case for GFP 
binding to RNA, which showed a more complex contribution of indi-
vidual RNA mutations to the total binding energy27. In the case of MS2 
coat protein binding to RNA hairpins, binding data from an RNA array 
were used to train a model in which specific sequence features in the 
RNA hairpin — namely, base transversions, base transitions, loss of 
base pairing and non-canonical base pairing — had additive effects on 
binding energy. When trained on data from RNA hairpins having single 
mutations from the consensus sequence, the model could accurately 
predict the measured binding energies of RNA hairpins with two or 
three mutations28. Related modelling approaches have also proven suc-
cessful for predicting the binding energies of the RNA-binding Pumilio 

proteins PUM136, PUM236 and PUF451, when trained and tested on RNA 
array data. In these studies, additive energy parameters were used 
for each RNA nucleotide at each position in the 9-base-long site that 
recognizes these proteins (additive consecutive model). The models 
gave more accurate predictions when energy terms were also added 
for ‘flipping’ individual bases out of the recognition site in RNA, as the 
protein does not always bind nine consecutive bases (additive noncon-
secutive model), and also when coupling terms were added for a few 
neighbouring RNA positions that influence each other to contribute 
non-additively to the binding (additive nonconsecutive and coupling  
model)36,51 (Fig. 5a). In sum, the RNA array technology has allowed  
for predictive mapping between RNA sequence and RBP binding free 
energy that might enable a better understanding of RBP biology and 
the engineering of new RNA–RBP binding pairs.

RNA-guided protein interactions
Nucleic acid-guided binding systems such as CRISPR–Cas have revolu-
tionized genome measurement and manipulation in living organisms52. 
Accurate predictive models for RNA-guided protein interactions would 
thus enable the accurate prediction of on-target and off-target binding, 
allowing for improved sensitivity and specificity of these methods. 
To this end, several array studies have investigated proteins that bind 
other nucleic acid sequences through base pairing with a guide nucleic 
acid32,38,43,44,53,54. In these studies, single-stranded RNA, ssDNA or double-
stranded DNA (dsDNA) was presented on the array, depending on the 
target of the protein of interest. Binding affinities have been measured 
for guide-loaded CRISPR proteins, including Cascade43, Cas343 and dif-
ferent engineered variants of Cas9 and Cas12a44, to off-target libraries 
of dsDNA on sequencing chips. Furthermore, binding and unbinding 
kinetics have been measured for catalytically inactive Cas9 (dCas9)53. 
As dCas9 has been observed to bind a greater number of off-target sites 
than are cleaved by Cas955, separating the DNA sequence determinants 
of binding from the determinants of cleavage across a large sequence 
space is a crucial challenge44. In this regard, one study compared the  
binding affinities of Cas9 measured on a sequencing array with  
the cleavage rates measured by NucleaSeq, a method that sequences the 
cleavage products of a DNA library at different time points to estimate 
the rate of cleavage of the library members44. Interestingly, this study 
found that the tested engineered Cas9s had much higher cleavage 
specificity than wild-type Cas9, but similar binding specificity. Mod-
elling efforts for CRISPR proteins have included empirical models of 
binding affinity43 and cleavage specificitity44 involving additive effects 
of specific sequence features. Furthermore, mechanistic kinetic models 
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have been developed that explicitly handle the base pair transitions 
that occur during guide RNA strand invasion of the target DNA56,57 
(Fig. 5b). These kinetic models have been used to determine in which 
order the nucleotides in the target DNA are bound during the formation 
of the specific Cas9-bound complex56 and to deduce the free-energy 
landscape on the reaction path to the bound conformation57 (Fig. 5c), 
and they can accurately predict experimental binding affinities and 
cleavage rates57.

Binding interactions of two Argonaute-family proteins have been 
studied on sequencing chips: the RNA-loaded, RNA-binding eukaryotic 
protein Ago238 and the DNA-loaded, ssDNA-binding bacterial protein 
TtAgo54. In the case of Ago2, binding measurements on the RNA array 
were combined with high-throughput cleavage measurements using a 
method based on reverse transcription, PCR and sequencing. Binding 
energies and cleavage rates were modelled using two linear models 
with additive parameters for certain sequence position features. These 
models captured ~60% of the variability in binding energies and ~70% of 
the variability in cleavage rates of the test datasets38. Furthermore, the 
authors constructed a simple model of ordinary differential equations, 
parameterized with the in vitro-determined biochemical parameters, 
that could predict the degree of knockdown of RNA targets in live 
cells for RNAs with a constant sequence context around the target 
binding site38. In the case of TtAgo, DNA cleavage rates were meas-
ured directly on the sequencing chip after the binding measurement, 
whereby cleavage was detected as a loss of fluorescence when the 
end-labelled binding site of DNA was cleaved off54. Models for asso-
ciation rates and binding energies were constructed using secondary 
structure predictions and energy estimates for the guide DNA seed 
region using Nucleic Acid Package (NUPACK) software58. These models 
described and predicted the same large-scale variations in the data as 
were observed experimentally54.

RNA–small molecule interactions
Structured RNAs can interact with small molecules to function as sen-
sors, resulting in, for example, RNA cleavage59 or transcription termina-
tion60. To this end, RNA arrays have also been used to study the binding 
and cleavage of RNA induced by small molecule ligands40,42. One study 
combined an RNA array with crowdsourced RNA design, whereby an 
internet community proposed RNA aptamers to bind certain small 
ligands (the ‘inputs’), including flavin mononucleotide, theophylline 
and l-tryptophan. These RNAs were engineered to change their second-
ary structure upon detection of these input ligands, revealing binding 
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sites for ‘output’ signalling molecules such as fluorescently labelled 
MS2 coat protein, malachite green or the GFP mimic DFHBI. On the RNA 
array, binding of these output signalling molecules could be detected as 
fluorescence (malachite green and DFHBI fluorescence become much 
brighter when bound to their RNA aptamers). For several of the input–
output pairs, just one round of design and testing resulted in engineered 
RNA switches with a tenfold greater affinity for the output molecule 

when the input ligand was present. Iterative rounds of design and testing 
of the flavin mononucleotide–MS2 coat protein input–output pair pro-
duced RNAs that approached the thermodynamic optimum of a perfect 
molecular switch42. The glucosamine-6-phosphate (GlcN6P) riboswitch 
(glmS) ribozyme, an RNA molecule that undergoes a self-cleavage reac-
tion upon binding of the specific ligand GlcN6P, has also been the sub-
ject of high-throughput investigation by RNA array40. GlcN6P-induced 
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the fitted kinetic model are shown. The on-target (pink) free-energy landscape 
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mismatch penalties are additive, so that, for example, the off-target free energy 
at nucleotide position 15 is equal to F15 + 𝛿Є3 + 𝛿Є15. dsDNA, double-stranded 
DNA; ΔΔGb

X, free energy terms for bound bases; ΔΔGf
Y, free energy terms for 

flipped-out bases; ΔΔGc
Z, free energy terms for coupled bases; X, bound base; 

Y, flipped-out base. Parts b and c reprinted from ref. 57, Springer Nature Limited.
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self-cleavage of the ribozyme was detected as a loss of fluorescence of 
the labelled 5′ end of the ribozyme RNA. By fitting a Michaelis–Menten-
type model to these cleavage data, the authors discovered that most 
point mutations of glmS only caused a small change in binding affinity 
for GlcN6P, whereas the variability in cleavage rates accounted for the 
majority of the overall catalytic differences observed. Naturally occur-
ring ribozyme mutations generally maintain a high cleavage rate, which 
suggests that this biochemical parameter is conserved in evolution.

Further development of RNA arrays
In the current state of the art, several methodological challenges remain 
for high-throughput biophysical measurements in vitro. Further devel-
opments and improvements are possible and likely — namely, probing 
of intramolecular interactions at the single-molecule level, improving 
the scalability and throughput of the methods, and making the methods 
more widely available.

Probing intramolecular states by FRET
Fluorescence resonance energy transfer (FRET)61,62 and fluorescence 
quenching are natural mechanisms of signal generation downstream 
of molecular conformational changes that would be useful on the RNA 
array. These techniques use an appropriately placed donor and accep-
tor fluorophore pair to report on end-to-end distance changes that 
might correspond to folded or unfolded states of an RNA molecule 
(Fig. 6a). This signalling mechanism may also allow for the measure-
ment of melt curves for RNA structures by changing the temperature 
of the RNA array and measuring changes to the distance-dependent 
fluorescence signals as RNA structures melt. These energy transfer-
based approaches can also be used to probe more than just two-state 
behaviour, giving a measure of the distance between two labelled points 
of a molecule63–65. For RNAs on an RNA array, a molecular ruler might 
be created by introducing donor and acceptor fluorophores at differ-
ent locations in a molecule with known and stable structure, such as 
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dsDNA, which can then be used to calibrate the fluorescence signal to 
average molecular distance. Site-specific labelling of RNA at variable 
nucleotide positions could be achieved on the array by the stepwise 
and site-specific stalling of transcription through omission of differ-
ent nucleotides in the transcription reaction, changing which sets of 
nucleotides are omitted at the different steps and introducing an azide-
modified nucleotide at the step corresponding to the RNA position that 
is to be labelled66. The azide-modified nucleotide can then be labelled 
with a fluorophore of choice using click chemistry67. Varying the donor 
and acceptor fluorophore locations in the molecular complex might 
provide further constraints on three-dimensional structure. Compar-
ing the constraints from RNA array data with structures obtained by 
classical methods and results by molecular dynamic simulations are 
likely to help elucidate the intramolecular states of RNA.

Single-molecule measurements
Single-molecule measurements63,68–70 have revolutionized our under-
standing of the molecular ensemble. By following signals from indi-
vidual molecules over time, we can resolve the lifetimes and identities 
of underlying intramolecular states, as well as the transition pro-
babilities between these states (Fig. 6b), which provides a full picture 
of the intramolecular kinetics of a molecular species (Fig. 6c). High-
throughput, single-molecule sequencing by synthesis combined with 
fluorescence-based detection of intermolecular interactions has previ-
ously been used to study nucleosome modifications in a DNA library 
of the mouse genome71. However, biophysical measurements on com-
mercial sequencing chips have largely, so far, been carried out in bulk 
mode, as all clusters on the array give an integrated signal aggregated 
from the binding to ~1,000 identical target molecules. In principle, 
single-molecule experiments might be implemented on a sequencing 
chip by carrying out the biophysical measurements before sequencing, 
such that the individual library molecules have not yet been made into 
clusters at the time of measurement, or by taking biophysical meas-
urements after amplification and sequencing using a sufficiently low 
concentration of fluorescently labelled analyte to enable detection of 
single-molecule binding72. Challenges to implementing this strategy 
include the general challenges of nearly all single-molecule fluorescence 
experiments, including weak fluorescence signals emanating from 
single fluorophores that necessitate the use of high numerical aperture 
objectives and sensitive cameras. Challenges unique to implementation 
on a sequencing chip include the inherent optical properties of the flow 
cell (which cannot be easily modified) as well as the linkage of specific 
sequences to the locations of these molecular variants on the chip72.

The time resolution of the dynamics of single-molecule RNA 
structural variation is fundamentally limited by the detectors used 
for acquiring fluorescence data. Current implementations of the RNA 
array technology involve relatively standard, laser-excited, wide-field 
imaging methods using non-amplified charge-coupled device cam-
eras, which give a time resolution in the range of 10 milliseconds to 
seconds, at best. This limits the potential use of these single-molecule 
approaches for kinetic studies to the dynamics of RNA tertiary struc-
tures, whereas secondary structure dynamics that occur on faster 
time scales2 would require faster detectors. Faster detection might be 
possible using scanning confocal microscopy followed by fluorescence 
correlation spectroscopic analysis of the data73,74. The detectors used 
can count the arrival of photons with nanosecond accuracy74, in which 
case the time resolution of the measurement will no longer be limited by 
the detector but by the number of photons emitted by the fluorophore 
per unit of time, which currently is ~1 photon per 100 μs for commonly  

used organic fluorophores at high excitation power75,76. However,  
scanning an entire sequencing chip with a confocal microscope will 
take longer than wide-field imaging, for which imaging of different 
experimental conditions already takes several hours. This means that 
trade-offs will have to be made between time resolution, noise level 
in the signal output, the total time to carry out an experiment and the 
throughput of molecular variants.

Scaling-up the throughput of sequencing chips
The throughput of an RNA array is fundamentally limited by the num-
ber of DNA clusters that can be sequenced on any given sequencing 
technology platform. Most recent applications of array technology use 
Illumina MiSeq for sequencing, which has a throughput in the order of 
107, giving a throughput of 105–106 unique library members per experi-
ment when accounting for 10 to 100 repeat clusters per molecular 
variant. A natural progression of the technology is to use sequenc-
ers with increased throughput. Contemporary sequencing platforms 
can achieve higher throughputs — for example, from 109 for Illumina 
NextSeq to 2 × 1010 for Illumina NovaSeq.

Distributable software and hardware
For these high-throughput methods to have maximum impact in the 
fields of biochemistry and biophysics, they must be accessible to all 
laboratories that wish to use them. To achieve this, several outstanding 
challenges remain in terms of the distribution and automation of hard-
ware and optics, software for control of hardware, know-how for library 
construction, protocols for executing experiments and analysis tools for 
interpretation of raw data. Ideally, all of the required hardware — such as 
the fluorescence microscope, fluidics system and computers controlling 
these units — would be assembled in a standardized way, and perhaps 
even sold as a single product together with the software necessary to 
control the hardware and run experiments. The instrument could inte-
grate sequencing by synthesis or could take a flow cell from a separate 
sequencer as the input, a strategy that might be more straightforward 
to implement. The hope is that the experimental procedure can be made 
heavily automated and user friendly, similarly to what has already been 
achieved in commercial products for next-generation sequencing and 
for low-throughput binding measurements on biosensors.

In addition to standardized instrumentation, users of these meth-
ods would also need specific knowledge to construct the libraries 
and execute experimental protocols. In the simplest experimental 
scenario, library construction involves PCR amplification of an ordered 
DNA library with Illumina sequencing adaptors on the DNA ends. 
However, library construction is sometimes more complex and involves 
‘bottlenecking’ as a means to couple each DNA sequence of interest to 
a unique barcode that is to be read out during sequencing35. In terms 
of the experimental protocol, variations are required to present either 
DNA or RNA on the array, or to carry out either equilibrium thermo-
dynamics or kinetic measurements. All of this information should be 
compiled in an easily accessible protocol document, and common 
variations of the experimental protocol should be easily executable 
through a simple graphical user interface. Furthermore, streamlined 
tools for downstream image analysis should be provided. As cluster 
identification and fluorescence quantification are necessary steps in all 
variations of the experimental set-up, tools for these steps are already 
relatively standardized. These upstream analysis steps would ideally be 
automated and optimized to run in real-time on the hardware-control 
computer as it acquires data. However, as image acquisition is currently 
at least ten times faster than image analysis on one central processing 
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unit, images are generally uploaded to a centralized remote cluster 
for later analysis.

In sum, although the RNA array experimental procedure involves 
many steps and requires specific instruments, there is great potential 
for automation of the protocols and the development of a commercial 
or academically standardized product. When thinking about the future 
impact of this method, it is easy to draw parallels to the emergence of 
second-generation DNA sequencing techniques during the 1990s, 
which since then have replaced first-generation sequencing techniques 
for many applications. If the DNA, RNA and protein array technology 
can be made readily available, easy to use and inexpensive, it might 
provide a new standard for biochemical measurements.

Quantitative predictions from RNA arrays
Even though the data coming from RNA arrays are already being used 
to build and evaluate quantitative models of RNA structure and func-
tion30,36,77, there is room for improvement in terms of making these 

models even more predictive and better at elucidating the underlying 
physical mechanisms of the molecular interactions. To achieve this, we 
anticipate that a combination of deep learning models, optimization 
algorithms such as directed evolution and active learning, and more 
detailed physical mechanistic models will be required.

Deep learning
Accurate prediction of protein structure enabled by deep learning 
algorithms such as AlphaFold78 and RoseTTAFold79 represents a major 
breakthrough in structural biology. Deep learning applied to RNA struc-
ture and function is also an active field of research in which progress 
has been made in the prediction of RNA secondary structure80–86, RNA 
tertiary structure87 and RNA–protein binding88–91. However, several 
problems remain to be solved in the field of RNA structure prediction. 
Current implementations of deep learning models for the prediction 
of RNA tertiary structure rely on high-resolution structural data as 
deposited in the Protein Data Bank13,80,90. The quality and applicability 
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of such models is thus limited both by the availability of data and by the 
fact that classically obtained structures do not capture the dynamic 
nature of RNA. We believe that a high-throughput method such as the 
RNA array is an exciting possible way to solve these issues, whereby 
deep learning methods could be trained on data coming from these 
high-throughput experiments. Deep learning models trained with a 
physics-informed machine learning approach92, whereby the model is 
constrained to adhere to different underlying physical mechanisms or 
principles, seem to be particularly promising. Deep learning models 
can also be used as ‘oracles’ by carrying out in silico experiments with 
a trained deep learning model93 to test different mechanistic hypoth-
eses (Fig. 7). Finally, the DNA, RNA and protein array technologies can 
provide standardized large-scale data sets for the bioinformatics and 
machine learning community.

Directed evolution and active learning
Directed evolution is a method, most commonly used in protein engi-
neering, to optimize the function (fitness) of a molecule by subjecting 
it to iterative rounds of mutagenesis and screening94. The best vari-
ants in each round are used as the starting point for the next round 
until the functional goal has been achieved. Examples of directed 
evolution include optimizing the activity, specificity and stability of 
enzymes95,96 and, more recently, optimizing whole metabolic pathways 
and genomes97,98. Machine learning approaches have been applied to 
help navigate the fitness landscape of the molecule being optimized, 
thus reducing the experimental burden of screening variants99. These 
computational tools take the fitness of variants in the current round of 
evolution as input and from this input predict which region in the vari-
ant sequence space offers the greatest likelihood of increased fitness 
and thus should be screened in the next round99. To our knowledge, 
directed evolution has not yet been applied to high-throughput bio-
chemical screening of variants on sequencing chips, but we believe 
that such an application is likely in the near future. For example, an 
RNA array could be used to optimize the binding affinity of an RNA of 
interest. To improve model predictions, active learning algorithms100–102 
could also use the previously available experimental data to iteratively 
suggest regions of RNA sequence space to further sample, such that 
areas of the sequence space that are likely to be more informative for 
model refinement are sampled more than those areas that are likely to 
be less informative. We envision that mechanistic physical modelling, 
deep learning models and optimization algorithms such as directed 
evolution and active learning can be integrated with feedback between 
the methodologies92,99 to design, interpret and model experiments on 
RNA arrays (Fig. 7).

Future directions
The main outstanding challenges for carrying out high-throughput bio-
chemical measurements on sequencing arrays include how to optimally 
design libraries to span the sampled sequence space to provide the most 
relevant information, and how to use the data coming from these experi-
ments to build accurate predictive models. So far, most model imple-
mentations are semi-empirical, coarse-grained models that incorporate 
some physical basis in terms of how researchers think the interac-
tions work at the molecular level, often with additive terms depend-
ent on sequence features and sometimes extra empirical terms to  
account for non-additivity. When tested, these models can often 
describe the large-scale variations observed in the experimental data. 
However, we believe that much room for improvement exists in terms 
of building models that can learn underlying mechanistic principles, 

as well as predicting all of the nuances and details of the experimental 
data. As discussed in this Review, we believe that these challenges will 
be solved with a combination of deep learning modelling, directed 
evolution, kinetic mechanistic modelling, structural and atomistic 
simulations, and more informative experiments with a readout of intra-
molecular states through FRET and fluorescence quenching, ideally at 
the level of single molecules.

Determining the sequence–structure–function relationship for 
other molecular interactions (such as protein–DNA and protein– 
protein) is fundamentally similar to that for RNA. Thus, studying this 
problem for RNA, where the combinatorial sequence–structure– 
function space is smaller than that for proteins, is probably a good 
place to start, and we anticipate that the same approaches as discussed 
here should also apply to the more complex interactions of proteins.

Published online: xx xx xxxx

References
1. Tinoco, I. Jr & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999).
2. Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural 

dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489  
(2019).  
A comprehensive review that covers how the structural dynamics of RNA control 
cellular functions.

3. Al-Hashimi, H. M. & Walter, N. G. RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 
18, 321–329 (2008).

4. Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly 
to regulate bacterial gene expression. Nature 419, 952–956 (2002).

5. Mironov, A. S. et al. Sensing small molecules by nascent RNA: a mechanism to control 
transcription in bacteria. Cell 111, 747–756 (2002).

6. Batey, R. T., Gilbert, S. D. & Montange, R. K. Structure of a natural guanine-responsive 
riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004).

7. Flores, J. K. & Ataide, S. F. Structural changes of RNA in complex with proteins in the SRP. 
Front. Mol. Biosci. 5, 7 (2018).

8. Shi, H. et al. Rapid and accurate determination of atomistic RNA dynamic ensemble 
models using NMR and structure prediction. Nat. Commun. 11, 5531 (2020).

9. Vicens, Q. & Kieft, J. S. Thoughts on how to think (and talk) about RNA structure. Proc. 
Natl Acad. Sci. USA 119, e2112677119 (2022).

10. Westhof, E. & Patel, D. J. Nucleic acids. From self-assembly to induced-fit recognition. 
Curr. Opin. Struct. Biol. 7, 305–309 (1997).

11. Sussman, J. L., Holbrook, S. R., Warrant, R. W., Church, G. M. & Kim, S. H. Crystal structure 
of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. Mol. Biol. 123, 
607–630 (1978).

12. Fürtig, B., Richter, C., Wöhnert, J. & Schwalbe, H. NMR spectroscopy of RNA. 
Chembiochem 4, 936–962 (2003).

13. Leontis, N. B. & Zirbel, C. L. in RNA 3D Structure Analysis and Prediction (eds Leontis, N. 
& Westhof, E.) 281–298 (Springer Berlin Heidelberg, 2012).

14. Holley, R. W. et al. Structure of a ribonucleic acid. Science 147, 1462–1465 (1965).
15. Peattie, D. A. & Gilbert, W. Chemical probes for higher-order structure in RNA. 

Proc. Natl Acad. Sci. USA 77, 4679–4682 (1980).
16. Wang, X. D. & Padgett, R. A. Hydroxyl radical ‘footprinting’ of RNA: application to 

pre-mRNA splicing complexes. Proc. Natl Acad. Sci. USA 86, 7795–7799 (1989).
17. Latham, J. A. & Cech, T. R. Defining the inside and outside of a catalytic RNA molecule. 

Science 245, 276–282 (1989).
18. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing 

of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 
701–705 (2014).

19. Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing 
in vivo. Nat. Methods 14, 75–82 (2017).

20. Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl 
acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, 
versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).

21. Van Damme, R. et al. Chemical reversible crosslinking enables measurement of RNA 
3D distances and alternative conformations in cells. Nat. Commun. 13, 911 (2022).

22. Hafner, M. et al. CLIP and complementary methods. Nat. Rev. Methods Prim. 1, 1–23 
(2021).

23. Weidmann, C. A., Mustoe, A. M., Jariwala, P. B., Calabrese, J. M. & Weeks, K. M. Analysis 
of RNA–protein networks with RNP-MaP defines functional hubs on RNA. Nat. Biotechnol. 
39, 347–356 (2020).

24. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA 
target sites by PAR-CLIP. Cell 141, 129–141 (2010).

25. Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. 
Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00546-w (2022).

https://doi.org/10.1038/s41576-022-00546-w


Nature Reviews Genetics

Review article

26. Nutiu, R. et al. Direct measurement of DNA affinity landscapes on a high-throughput 
sequencing instrument. Nat. Biotechnol. 29, 659–664 (2011).  
This paper reports the first implementation of a high-throughput biophysical 
measurement on a sequencing chip, involving binding of the yeast transcription factor 
GCn4 to a library of DNA sites.

27. Tome, J. M. et al. Comprehensive analysis of RNA-protein interactions by high-
throughput sequencing-RNA affinity profiling. Nat. Methods 11, 683–688 (2014).  
This paper reports one of the first implementations of high-throughput biophysical 
measurements on sequencing chips for RNA, involving the binding of GFP and NELF-E 
to RNA aptamers.

28. Buenrostro, J. D. et al. Quantitative analysis of RNA-protein interactions on a massively 
parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol. 32, 
562–568 (2014).  
This paper reports one of the first implementations of high-throughput biophysical 
measurements on sequencing chips for RNA, involving binding of the coat protein 
of MS2 bacteriophage to RNA hairpins.

29. Layton, C. J., McMahon, P. L. & Greenleaf, W. J. Large-scale, quantitative protein assays 
on a high-throughput DNA sequencing chip. Mol. Cell 73, 1075–1082.e4 (2019).

30. Yesselman, J. D. et al. Sequence-dependent RNA helix conformational preferences 
predictably impact tertiary structure formation. Proc. Natl Acad. Sci. USA 116, 
16847–16855 (2019).  
In this paper, the authors study RNA–RNA binding using tectoRNAs on the RNA 
array and construct a structure-based model that can predict experimental binding 
energies.

31. She, R. et al. Comprehensive and quantitative mapping of RNA–protein interactions 
across a transcribed eukaryotic genome. Proc. Natl Acad. Sci. USA 114, 3619–3624 (2017).

32. Li, Z. et al. DNB-based on-chip motif finding: a high-throughput method to profile 
different types of protein-DNA interactions. Sci. Adv. 6, eabb3350 (2020).

33. Ozer, A. et al. Quantitative assessment of RNA-protein interactions with high-throughput 
sequencing–RNA affinity profiling. Nat. Protoc. 10, 1212–1233 (2015).

34. Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling 
reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

35. Denny, S. K. et al. High-throughput investigation of diverse junction elements in RNA 
tertiary folding. Cell 174, 377–390.e20 (2018).

36. Jarmoskaite, I. et al. A quantitative and predictive model for RNA binding by human 
Pumilio proteins. Mol. Cell 74, 966–981.e18 (2019).

37. Wu, M. J., Andreasson, J. O. L., Kladwang, W., Greenleaf, W. & Das, R. Automated design 
of diverse stand-alone riboswitches. ACS Synth. Biol. 8, 1838–1846 (2019).

38. Becker, W. R. et al. High-throughput analysis reveals rules for target RNA binding and 
cleavage by AGO2. Mol. Cell 75, 741–755.e11 (2019).

39. Becker, W. R. et al. Quantitative high-throughput tests of ubiquitous RNA secondary 
structure prediction algorithms via RNA/protein binding. Preprint at bioRxiv 
https://doi.org/10.1101/571588 (2019).

40. Andreasson, J. O. L., Savinov, A., Block, S. M. & Greenleaf, W. J. Comprehensive 
sequence-to-function mapping of cofactor-dependent RNA catalysis in the glmS 
ribozyme. Nat. Commun. 11, 1663 (2020).

41. Bonilla, S. L. et al. High-throughput dissection of the thermodynamic and conformational 
properties of a ubiquitous class of RNA tertiary contact motifs. Proc. Natl Acad. Sci. USA 
118, e2109085118 (2021).

42. Andreasson, J. O. L. et al. Crowdsourced RNA design discovers diverse, reversible, 
efficient, self-contained molecular switches. Proc. Natl Acad. Sci. USA 119, e2112979119 
(2022).

43. Jung, C. et al. Massively parallel biophysical analysis of CRISPR-Cas complexes on next 
generation sequencing chips. Cell 170, 35–47.e13 (2017).

44. Jones, S. K. Jr et al. Massively parallel kinetic profiling of natural and engineered CRISPR 
nucleases. Nat. Biotechnol. 39, 84–93 (2021).

45. Denny, S. K. & Greenleaf, W. J. Linking RNA sequence, structure, and function on 
massively parallel high-throughput sequencers. Cold Spring Harb. Perspect. Biol. 11, 
a032300 (2019).

46. Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).
47. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes 

small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).
48. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: principles of RNA 

packing. Science 273, 1678–1685 (1996).
49. Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene 

expression without proteins. Nat. Rev. Genet. 8, 776–790 (2007).
50. Glisovic, T., Bachorik, J. L., Yong, J. & Dreyfuss, G. RNA-binding proteins and post-

transcriptional gene regulation. FEBS Lett. 582, 1977–1986 (2008).
51. Sadée, C. et al. A comprehensive thermodynamic model for RNA binding by the 

Saccharomyces cerevisiae Pumilio protein PUF4. Nat. Commun. 13, 4522 (2022).
52. Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and 

applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).
53. Boyle, E. A. et al. High-throughput biochemical profiling reveals sequence determinants 

of dCas9 off-target binding and unbinding. Proc. Natl Acad. Sci. USA 114, 5461–5466 
(2017).

54. Ober-Reynolds, B. et al. High-throughput biochemical profiling reveals functional 
adaptation of a bacterial Argonaute. Mol. Cell 82, 1329–1342.e8 (2022).

55. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian 
cells. Nat. Biotechnol. 32, 670–676 (2014).

56. Marklund, E. et al. Sequence specificity in DNA binding is mainly governed by 
association. Science 375, 442–445 (2022).

57. Eslami-Mossallam, B. et al. A kinetic model predicts SpCas9 activity, improves off-target 
classification, and reveals the physical basis of targeting fidelity. Nat. Commun. 13, 1367 
(2022).  
References 56 and 57 (Marklund et al. and Eslami-Mossallam et al.) show how high-
throughput data on binding, unbinding and cleavage of DNA by Cas9 can be used to 
gain microscopic mechanistic insights and build kinetic mechanistic models.

58. Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 
32, 170–173 (2011).

59. Soukup, G. A. & Breaker, R. R. Engineering precision RNA molecular switches. Proc. Natl 
Acad. Sci. USA 96, 3584–3589 (1999).

60. Suess, B., Fink, B., Berens, C., Stentz, R. & Hillen, W. A theophylline responsive riboswitch 
based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 32, 
1610–1614 (2004).

61. Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 437, 
55–75 (1948).

62. Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. USA 
58, 719–726 (1967).

63. Ha, T. Single-molecule fluorescence resonance energy transfer. Methods 25, 78–86 
(2001).

64. Muschielok, A. et al. A nano-positioning system for macromolecular structural analysis. 
Nat. Methods 5, 965–971 (2008).

65. Lerner, E. et al. Toward dynamic structural biology: two decades of single-molecule 
Förster resonance energy transfer. Science 359, eaan1133 (2018).

66. Chauvier, A. et al. Monitoring RNA dynamics in native transcriptional complexes. 
Proc. Natl Acad. Sci. USA 118, e2106564118 (2021).

67. Winz, M.-L., Samanta, A., Benzinger, D. & Jäschke, A. Site-specific terminal and internal 
labeling of RNA by poly(A) polymerase tailing and copper-catalyzed or copper-free 
strain-promoted click chemistry. Nucleic Acids Res. 40, e78 (2012).

68. Betzig, E. & Chichester, R. J. Single molecules observed by near-field scanning optical 
microscopy. Science 262, 1422–1425 (1993).

69. Ha, T. et al. Probing the interaction between two single molecules: fluorescence 
resonance energy transfer between a single donor and a single acceptor. 
Proc. Natl Acad. Sci. USA 93, 6264–6268 (1996).

70. Zhuang, X. et al. A single-molecule study of RNA catalysis and folding. Science 288, 
2048–2051 (2000).

71. Shema, E. et al. Single-molecule decoding of combinatorially modified nucleosomes. 
Science 352, 717–721 (2016).  
This paper shows the first implementation of high-throughput, single-molecule 
sequencing by synthesis combined with screening of binding, which is used to study 
nucleosome modifications in a DNA library of the mouse genome.

72. Severins, I., Joo, C. & van Noort, J. Exploring molecular biology in sequence space:  
the road to next-generation single-molecule biophysics. Mol. Cell 82, 1788–1805  
(2022).  
This review summarizes the previous applications of high-throughput biophysical 
measurements on sequencing chips, and discusses in detail how the technology 
can be extended to carry out single-molecule experiments.

73. Magde, D., Elson, E. & Webb, W. W. Thermodynamic fluctuations in a reacting 
system — measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 
29, 705 (1972).

74. Yu, L. et al. A comprehensive review of fluorescence correlation spectroscopy. 
Front. Phys. 9, 644450 (2021).

75. Zheng, Q. et al. Ultra-stable organic fluorophores for single-molecule research. 
Chem. Soc. Rev. 43, 1044–1056 (2014).

76. Marklund, E. et al. DNA surface exploration and operator bypassing during target search. 
Nature 583, 858–861 (2020).

77. Wayment-Steele, H. K. et al. RNA secondary structure packages evaluated and improved 
by high-throughput experiments. Nat. Methods 19, 1234–1242 (2022).

78. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 
583–589 (2021).

79. Baek, M. et al. Accurate prediction of protein structures and interactions using 
a three-track neural network. Science 373, 871–876 (2021).

80. Yu, H., Qi, Y. & Ding, Y. Deep learning in RNA structure studies. Front. Mol. Biosci. 9, 
869601 (2022).

81. Singh, J., Hanson, J., Paliwal, K. & Zhou, Y. RNA secondary structure prediction using an 
ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun. 
10, 5407 (2019).

82. Zhang, H. et al. A new method of RNA secondary structure prediction based on 
convolutional neural network and dynamic programming. Front. Genet. 10, 467 (2019).

83. Wang, L. et al. DMfold: a novel method to predict RNA secondary structure with 
pseudoknots based on deep learning and improved base pair maximization principle. 
Front. Genet. 10, 143 (2019).

84. Calonaci, N., Jones, A., Cuturello, F., Sattler, M. & Bussi, G. Machine learning a model 
for RNA structure prediction. Nar. Genom. Bioinform. 2, lqaa090 (2020).

85. Sato, K., Akiyama, M. & Sakakibara, Y. RNA secondary structure prediction using deep 
learning with thermodynamic integration. Nat. Commun. 12, 941 (2021).

86. Fu, L. et al. UFold: fast and accurate RNA secondary structure prediction with deep 
learning. Nucleic Acids Res. 50, e14 (2022).

https://doi.org/10.1101/571588


Nature Reviews Genetics

Review article

87. Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 
1047–1051 (2021).  
In this paper, the authors apply deep learning to build a model that can predict the 
tertiary structure of RNAs after being trained on high-resolution structural data.

88. Wei, J., Chen, S., Zong, L., Gao, X. & Li, Y. Protein–RNA interaction prediction with deep 
learning: structure matters. Brief. Bioinform. 23, bbab540 (2021).

89. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities 
of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–838 (2015).

90. Lam, J. H. et al. A deep learning framework to predict binding preference of RNA 
constituents on protein surface. Nat. Commun. 10, 4941 (2019).

91. Trabelsi, A., Chaabane, M. & Ben-Hur, A. Comprehensive evaluation of deep learning 
architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics 
35, i269–i277 (2019).

92. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 
(2021).

93. Avsec, Ž. et al. Base-resolution models of transcription-factor binding reveal soft motif 
syntax. Nat. Genet. 53, 354–366 (2021).

94. Arnold, F. H. Design by directed evolution. Acc. Chem. Res. 31, 125–131 (1998).
95. Arnold, F. H. Combinatorial and computational challenges for biocatalyst design. Nature 

409, 253–257 (2001).
96. Zhao, H., Chockalingam, K. & Chen, Z. Directed evolution of enzymes and pathways for 

industrial biocatalysis. Curr. Opin. Biotechnol. 13, 104–110 (2002).
97. Wang, Y., Yu, X. & Zhao, H. Biosystems design by directed evolution. AIChE J. 66, e16716 

(2020).
98. Tan, Z. L. et al. In vivo continuous evolution of metabolic pathways for chemical 

production. Microb. Cell Fact. 18, 82 (2019).
99. Wittmann, B. J., Johnston, K. E., Wu, Z. & Arnold, F. H. Advances in machine learning for 

directed evolution. Curr. Opin. Struct. Biol. 69, 11–18 (2021).  
This review covers how machine learning has been applied to assist in the navigation 
of large sequence spaces during directed evolution.

100. Settles, B. Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6, 1–114 (2012).
101. Smith, J. S., Nebgen, B., Lubbers, N., Isayev, O. & Roitberg, A. E. Less is more: sampling 

chemical space with active learning. J. Chem. Phys. 148, 241733 (2018).
102. Sverchkov, Y. & Craven, M. A review of active learning approaches to experimental 

design for uncovering biological networks. PLoS Comput. Biol. 13, e1005466 (2017).
103. Ennifar, E., Walter, P., Ehresmann, B., Ehresmann, C. & Dumas, P. Crystal structures 

of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. 
Nat. Struct. Biol. 8, 1064–1068 (2001).

104. Okada, K. et al. Solution structure of a GAAG tetraloop in helix 6 of SRP RNA from 
Pyrococcus furiosus. Nucleosides Nucleotides Nucleic Acids 25, 383–395 (2006).

105. Kim, N.-K. et al. Solution structure and dynamics of the wild-type pseudoknot of human 
telomerase RNA. J. Mol. Biol. 384, 1249–1261 (2008).

106. Kuglstatter, A., Oubridge, C. & Nagai, K. Induced structural changes of 7SL RNA 
during the assembly of human signal recognition particle. Nat. Struct. Biol. 9, 740–744 
(2002).

107. Stoddard, C. D. et al. Free state conformational sampling of the SAM-I riboswitch 
aptamer domain. Structure 18, 787–797 (2010).

108. Collie, G. W., Haider, S. M., Neidle, S. & Parkinson, G. N. A crystallographic and modelling 
study of a human telomeric RNA (TERRA) quadruplex. Nucleic Acids Res. 38, 5569–5580 
(2010).

Acknowledgements
The authors thank E. Sharma for discussions. This work was supported in part by NIH 
grants R01GM111990, P50HG007735, R01HG009909, P01GM066275, UM1HG009436 and 
R01GM121487 to W.J.G. W.J.G. acknowledges support as a Chan Zuckerberg Investigator. 
E.M. was supported by the Swedish Research Council grant 2020-06459.

Author contributions
All authors researched, discussed, wrote and edited the manuscript.

Competing interests
W.J.G. is a consultant and equity holder for 10x Genomics, Guardant Health, Quantapore 
and Ultima Genomics, and cofounder of Protillion Biosciences. The other authors declare 
no competing interests.

Additional information
Correspondence should be addressed to William J. Greenleaf.

Peer review information Nature Reviews Genetics thanks M. Depken and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to 
this article under a publishing agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© Springer Nature Limited 2023

http://www.nature.com/reprints

	High-throughput biochemistry in RNA sequence space: predicting structure and function
	Introduction
	Methodologies
	Biochemistry on sequencing chips
	Measuring thermodynamic and kinetic parameters

	Previous applications of RNA arrays
	RNA–RNA interactions
	RNA–protein interactions
	RNA-guided protein interactions
	RNA–small molecule interactions

	Further development of RNA arrays
	Probing intramolecular states by FRET
	Single-molecule measurements
	Scaling-up the throughput of sequencing chips
	Distributable software and hardware

	Quantitative predictions from RNA arrays
	Deep learning
	Directed evolution and active learning

	Future directions
	Acknowledgements
	Fig. 1 Diversity of RNA secondary and tertiary structures.
	Fig. 2 Using next-generation sequencing chips for high-throughput biochemical measurements.
	Fig. 3 Predicting experimental parameters from RNA sequence information.
	Fig. 4 Structural modelling to predict RNA–RNA binding energies verified with RNA array binding data.
	Fig. 5 Thermodynamic and kinetic models for RNA–protein interaction and RNA-guided protein binding.
	Fig. 6 Single-molecule experiments carried out across a large sequence space.
	Fig. 7 Feedback between experimental data, mechanistic modelling and deep learning methods.




