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and m6A-CpG-GpC-SMAC-Seq
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Abstract

A hallmark feature of active cis-regulatory elements (CREs) in eukaryotes is their nucleosomal depletion
and, accordingly, higher accessibility to enzymatic treatment. This property has been the basis of a number
of sequencing-based assays for genome-wide identification and tracking the activity of CREs across
different biological conditions, such as DNAse-seq, ATAC-seq, NOMeseq, and others. However, the
fragmentation of DNA inherent to many of these assays and the limited read length of short-read
sequencing platforms have so far not allowed the simultaneous measurement of the chromatin accessibility
state of CREs located distally from each other. The combination of labeling accessible DNA with DNA
modifications and nanopore sequencing has made it possible to develop such assays. Here, we provide a
detailed protocol for carrying out the SMAC-seq assay (Single-Molecule long-read Accessible Chromatin
mapping sequencing), in its m6A-SMAC-seq and m6A-CpG-GpC-SMAC-seq variants, together with
methods for data processing and analysis, and discuss key experimental and analytical considerations for
working with SMAC-seq datasets.

Key words Chromatin accessibility, SMAC-seq, Nanopore sequencing, DNA modifications, m6A,
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1 Introduction

Chromatin accessibility is a key feature of the regulation of gene
expression and many other aspects of chromatin biology in eukar-
yotes. Nearly all eukaryote genomes are packaged by nucleosomes,
with each nucleosome being a dimer of two tetramers composed of
the four core nucleosomal histones H3, H4, H2A and H2B. Pack-
aging by nucleosomes has a generally inhibitory effect on RNA
polymerase activity and to the occupancy of DNA by regulatory
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proteins. Accordingly, active regulatory regions in the genome are
characterized by depleted nucleosomal occupancy and increased
chromatin accessibility. This has turned out to be a highly useful
property enabling the identification of candidate cis-regulatory
elements and the tracking of their activity across cell types and
conditions.

Mapping accessible chromatin relies on the preferential enzy-
matic action of various reagents whose access to DNA is occluded
by the presence of nucleosomes. Four decades ago it was initially
recognized that active cREs are hypersensitive to cleavage by
DNase enzymes [1–3]. DNase hypersensitivity remained the pri-
mary approach for mapping cREs well into the genomic era, being
first coupled to microarrays [4–6], and eventually high-throughput
massively parallel sequencing [7–9].

The advent of high-throughput sequencing enabled the devel-
opment of numerous novel strategies for mapping active CREs.
ATAC-seq [10], which relies on the preferential insertion of the
Tn5 transposase enzyme into open chromatin, has emerged as the
most convenient, versatile, and widely used method for studying
the chromatin state of the eukaryotic cell, including down to single
cell level [11, 12].

Other methods have also been developed, using restriction
enzymes [13], nicking enzymes [14], small molecules [15], viral
integration [16], and others.

All of these methods share two common features—they involve
fragmentation of DNA and they enrich for accessible DNA during
sequencing library generation. Consequently, it is first, not possible
to enumerate accessibility states within the cellular population, that
is, how often is a given CRE accessible, and second, there is no way
to study the relationship between the chromatin states of distant
regulatory elements, as the linkage between them is lost during
fragmentation.

An alternative strategy to cleavage-based methods is to label
accessible DNA with methyltransferase enzymes, then read out
methylation states using high-throughput sequencing. This is the
basic idea behind the NOMe-seq assay [17] and its later dSMF
extension [18]. NOMe-seq uses the GpC methyltransferase M.
CviPI to label accessible DNA at GpC positions. Genomic DNA
is then subjected to bisulfite readout, providing single-molecule
and fractional methylation (and thus accessibility) maps genome-
wide. OnlyM.CviPI can be used in mammalian genomes due to the
presence of endogenous CpG methylation, and only the m5C
modification can be utilized as this is what can be read out with
base pair resolution using short-read sequencing. This presents a
limitation, as GpC nucleotides are only found once every�25 bp in
a mammalian genome. In organisms such as Drosophila that do not
have endogenous methylation, both a GpC and a CpG methyl-
transferase (M.SssI) can be used, increasing resolution to �10 bp
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on average, in the form of the dSMF assay. This has allowed the
enumeration of protein occupancy states at unprecedented resolu-
tion at a single-molecule level [18]. Yet short-read approaches of
this kind are still quite limited in their capabilities.

First, these resolution values are averages. In reality genomes
contains some quite large stretches with no informative positions
(Fig. 1), and not much can be done to address that limitation as
long as m5C in GpC/CpG contexts is the only available
modification.

Second, it is only possible to analyze fragments no longer than
600 bp due to read-length limitations of short-read sequencers.
Even this has been very difficult to achieve, as DNAmethylation has
traditionally been mapped using bisulfite sequencing, and bisulfite
treatment severely degrades DNA to lengths considerably shorter
than 600 bp. The introduction of the EM-seq method [19] as an
alternative to bisulfite conversion has largely eliminated the degra-
dation issue, but short reads are still short reads, making it impos-
sible to study chromatin states on the scale of many kilobases along
the chromatin fiber.

With the advent of long read sequencing technologies, and
especially nanopore sequencing, these limitations have been over-
come. Nanopore sequencing is capable of reading out arbitrary
DNA modifications [20, 21], and of doing so along the length of
DNA molecules tens of kilobases long, allowing for the simulta-
neous capture of the chromatin states of CREs located far apart.
This has enabled the development of a qualitatively new class of
functional genomic assays [22–24].

The MeSMLR-seq [23] and nanoNOMe [24] assays have
adapted the NOMe-seq approach to nanopore sequencing, using
a GpC methyltransferase to label accessible DNA, then reading it
out using nanopore sequencing. However, while this approach
preserves long-range contiguity, it still suffers from the limitations
imposed by the density of informative modification positions in the
genome (Fig. 1).

In contrast, SMAC-seq [22] uses dense modifications, found
once every few nucleotides in the genome. Accessible DNA is
enzymatically labeled using a methyltransferase enzyme
(or multiple such enzymes), high molecular weight (HMW) DNA
is isolated, then subjected to nanopore sequencing, which allows
for the direct detection of DNA modifications and thus the assem-
bly of an accessibility map at the single molecule level and on
multikilobase scales (Fig. 2). In addition, the dense modifications
that SMAC-seq is based on also provide information about nucleo-
some occupancy/positioning [25] and even transcription factor
footprints [26, 27]. Finally, the long reads provided by nanopore
sequencing allow chromatin accessibility and nucleosome position-
ing to be profiled within repetitive regions of the genome that are
otherwise not uniquely mappable using short reads.
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Here, we describe an m6A-SMAC-seq protocol based on the
m6A (N6Methyladenosine) methyltransferase EcoGII [28], which
labels A bases nonspecifically in all contexts (seeNote 1) as well as a
m6A-CpGGpC-SMAC-seq protocol, which uses multiple modifi-
cations (m6A and m5C modifications in CpG and GpC contexts)
and which can be used in organisms without endogenous DNA
methylation. We also describe basic data processing and analysis
procedures for working with SMAC-seq datasets.

2 Materials

SMAC-seq uses standard laboratory reagents with the exception of
the m6A methyltransferase in the m6A version of the assay (see
Note 2). Other versions of the assay involving different modifica-
tions may also require custom reagents.

2.1 SMAC-Seq

Buffers and Reagents

1. Nuclei Lysis Buffer: 10 mM Tris–HCl pH 7.4, 10 mM NaCl,
3 mM MgCl2, 0.1 mM EDTA, 0.5% NP-40.

2. Nuclei Wash Buffer. This is the same as the Lysis Buffer except
for the absence of NP-40: 10 mM Tris pH 7.4, 10 mM NaCl,
3 mM MgCl2, 0.1 mM EDTA.

3. M.CviPI Reaction Buffer: 50 mM Tris-HCl pH 8.5, 50 mM
NaCl, 10 mM DTT,
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Fig. 1 Overview of the SMAC-seq experimental protocol. Chromatin is treated with m6A and optionally also
with CpG and GpC 5mC methyltransferases, which preferentially methylate DNA bases within accessible
chromatin. HMW DNA is then isolated and subjected to nanopore sequencing. After read mapping and
identifying modified bases, the accessibility state within individual chromatin fibers can be reconstructed
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4. CutSmart Reaction buffer: 1� CutSmart buffer, 0.3 M
sucrose.

5. Stop Buffer: 20 mM Tris pH 8.5, 600 mM NaCl, 1% SDS,
10 mM EDTA.

6. Sorbitol Buffer: 1.4M Sorbitol, 40 mMHEPES-KOH pH 7.5,
0.5 mM MgCl2.

7. 100 T Zymolase

8. M.CviPI methyltransferase.

9. EcoGII methyltransferase (see Note 2).

10. M.SssI methyltransferase.

EcoGII (m6A)
M.CviPI (GpC 5mC)

M.SssI (CpG 5mC)

- HMW DNA extrac�on
- nanopore sequencing
- methyla�on-aware base calling

Single-Molecule long-range Accessibility of Chroma�n footprints

Fig. 2 Impact of the use of dense modifications on the theoretical resolution of methylation-based chromatin
accessibility assays. (a and b) Theoretical average resolution of the SMAC-seq assay for different modification
sequence contexts in the S. cerevisiae and H. sapiens genomes. (c and d) Limitations of using GpC m5C
modifications alone due to the nonuniform distribution of GpC dinucleotides in the genome, which results in
many large regions without any informative positions
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11. 32 mM S-adenosylmethionine (SAM)

12. Sucrose solution (prepare a highly concentrated solution, e.g.,
2 M).

13. Molecular biology-grade 1 M MgCl2 solution.

2.2 DNA Isolation

and Size Selection

1. HMW DNA. We have most often used the MagAttract HMW
DNA Kit (Qiagen), but other approaches for isolating HMW
can also be applied, such as the NEB Monarch Genomic DNA
Purification Kit, the Nanobind CBB Big DNA Kit, and others.

2. Size selection. Several solutions now also exist for HMW size
selection that eliminates shorter fragments. We have used the
Short Read Eliminator Kit (Circulomics) with fairly consistent
levels of success, but equivalent approaches are also applicable.

2.3 Nanopore

Sequencing Flow Cells

and Reagents

Nanopore and SMAC-seq data can be generated using any of the
Oxford Nanopore Technologies (ONT) platforms (Flongle, Min-
ION, GridION, or PromethION). Which one to use is a decision
to be made on the basis of the desired output, which in turn is
determined by the needed coverage based on genome size, the
properties of the genome studied, and so on (see Notes 4 and 5).
ONT offers a variety of library preparation options, the two main
ones relevant to SMAC-seq being the following.

1. The Ligation Sequencing Kits are to be used if maximum read
length is desired. These require �1000 ng of input
HMW DNA.

2. The Rapid Barcoding Kit uses a transposases to simultaneously
fragment DNA and attach adapters to the resulting pieces.
Thus it will yield shorter molecules (� �10 kbp) but it allows
the pooling of multiple samples in the same run (which is useful
if, for example, working with an organism with a small genome
and on a PromethION) and works with smaller amount of
input HMW DNA (�400 ng).

Which kit is to be used depends on what the optimal choice is
with respect to the particular research question and experimental
system.

2.4 General

Materials

and Equipment

1. 1.5-mL microcentrifuge tubes, preferably low protein and
DNA binding (see Note 6).

2. 2 mL, 15 mL and 50 mL tubes.

3. Magnetic stands for 1.5 mL and 2 mL tubes.

4. Thermomixer.

5. Molecular biology-grade 200 proof EtOH.

6. Tabletop centrifuge.

7. Nuclease-free H2O.
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8. 1� PBS.

9. AMPure beads.

10. QuBit fluorometer (ThermoFisher Scientific) or equivalent.

11. QuBit dsDNA HS kit (ThermoFisher Scientific).

12. TapeStation (Agilent) or equivalent.

13. TapeStation Genomic DNA Reagents (Agilent).

14. TapeStation Genomic DNA Screentape (Agilent).

2.5 Computational

Resources

The computational analyses described are designed to run on stan-
dard Linux systems through the UNIX command line. The maxi-
mal memory usage depends on the size of the datasets but is usually
less than �50 GB. However, note that nanopore sequencing data-
sets can occupy very large amounts of disk space (i.e., many tera-
bytes), thus it is advisable to use a computing system with ample
storage (see Note 7).

2.6 Genomic

Sequence

and Annotation Files

1. A FASTA file containing the GRCh38 version of the human
genome can be downloaded from the UCSC Genome Browser
at http://hgdownload.soe.ucsc.edu/goldenPath/hg38/
bigZips/hg38.fa.gz. Genome files can also be obtained from
ENSEMBL (http://ensemblgenomes.org/) and from the
NCBI website (http://www.ncbi.nlm.nih.gov/assembly/).
However, it has to be noted that in the case of the human
genome, reference FASTA files available in public repositories
contain alternative haplotype contigs, that is, alternative ver-
sions of sequences already present in the assembly. These alter-
native haplotypes should be removed from reference files
before use. The ENCODE Project [29] provides such filtered
files from its portal at https://www.encodeproject.org/data-
standards/reference-sequences/. The sacCer3 version of the
Saccharomyces cerevisiae genome can be obtained from
http://hgdownload.cse.ucsc.edu/goldenPath/sacCer3/
bigZips/sacCer3.fa.gz

2. Genome annotations in GTF format can be obtained from
UCSC, ENSEMBL, NCBI or ENCODE.

2.7 Software

Packages

1. UCSC Genome Browser [30, 31] utilities: http://
hgdownload.cse.ucsc.edu/admin/exe/.

2. R: https://www.r-project.org/.

3. Python (version 2.7 or higher) https://www.python.org/.

4. TGL Kmeans: https://github.com/tanaylab/tglkmeans.

5. SciPy: https://www.scipy.org/.

6. Matplotlib: https://matplotlib.org/.
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7. Minimap2 [32] (version 2.17) https://github.com/lh3/
minimap2.

8. Tombo [33] (version 1.5) https://nanoporetech.github.io/
tombo/.

9. Albacore https://nanoporetech.com/.

10. Megalodon https://github.com/nanoporetech/megalodon.

11. Guppy https://nanoporetech.com/.

12. Rerio https://github.com/nanoporetech/rerio.

13. tabix: http://www.htslib.org/doc/tabix.html (see Note 8).

14. Additional scripts: https://github.com/georgimarinov/
SMAC-seq-scripts. Contains python scripts for processing
and post-processing of SMACseq data used in the examples
shown below.

3 Methods

The principle behind the assay and the typical SMAC-seq experi-
mental procedure are outlined in Fig. 2. SMAC-seq consists of the
following basic steps:

1. Nuclei isolation.

2. Enzymatic treatment of chromatin.

3. HMW DNA extraction.

4. Nanopore sequencing.

5. Read mapping and calling modified basis.

6. Aggregate and single-molecule accessibility analysis.

We provide several slightly different protocols for working with
yeast (see Note 12) as well as with mammalian and fly cells.

3.1 Nuclei Isolation

(Budding Yeast)

Start with 2.5 � 108 yeast cells (the equivalent to 1 � 106 human
cells).

1. Spin cells for 1 min at 13000 rpm. Remove supernatant.

2. Wash cells with 100 μL Sorbitol Buffer.

3. Spin cells 1 min at 13000 rpm. Remove supernatant.

4. Resuspend pellet in 200 μL Sorbitol Buffer + 10 mM
DTT + 0.5 mg/mL 100T Zymolase.

5. Incubate for 5 min at 30 �C, shaking 300 rpm.

6. Centrifuge for 2 min at 5000 rpm. Remove supernatant.

7. Add 100 μL SB buffer (no DTT) and resuspend gently.
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8. Centrifuge for 2 min at 5000 rpm. Remove supernatant.

9. Add 100 μL ice-cold lysis buffer.

10. Incubate on ice for 10 min.

11. Spin down at 5000 rpm for 5 min at 4 �C.

12. Wash with 100 μL cold wash buffer.

13. Spin at 5000 rpm for 5 min at 4 �C.

14. Resuspend in M.CviPI Reaction Buffer (100 μL).

3.2 Enzymatic

Treatment of

Chromatin for m6A-

GpC-CpGSMAC-Seq

(Budding Yeast)

1. Add 200 U of M.CviPI and 200 U of EcoGII.

2. Add SAM to a final concentration of 0.6 mM, and sucrose to a
final concentration of 300 mM.

3. Incubate at 30 �C for 7.5 min.

4. Add 128 pmol SAM (¼ 4 μL 32 mM solution) and another
100 U of both enzymes.

5. Incubate at 30 �C for 7.5 min.

6. Add 60 U of M.SssI.

7. Add 128 pmol SAM (¼ 4 μL 32 mM solution) (see Note 3).

8. Add MgCl2 to a final concentration of 10 mM.

9. Incubate at 30 �C for 7.5 min.

10. Stop reaction by adding an equal volume of Stop Buffer.

3.3 Nuclei Isolation

for Human, Drosophila,

and Other Cells

Without Cell Walls

Start with 1� 106 diploid human cells. Scale accordingly according
to genome size, variations in cell ploidy, the aimed-for amount of
sequencing (see Note 9).

1. Wash cells with 1� PBS.

2. Centrifuge for 5 min at 500 � g at 4 �C. Remove supernatant.

3. Resuspend cells in 200 μL ice-cold Nuclei Lysis Buffer.

4. Incubate on ice for 10 min.

5. Centrifuge for 5 min at 500 � g at 4 �C. Remove supernatant.

6. Resuspend nuclei in 200 μL cold Nuclei Wash Buffer.

7. Centrifuge for 5 min at 500 � g at 4 �C. Remove supernatant.

8. Resuspend nuclei in 200 μL CutSmart Reaction buffer.

3.4 Enzymatic

Treatment

of Chromatin

for m6A-SMAC-Seq

(Human Cells)

1. Add 200 U of EcoGII.

2. Add SAM at 0.6 mM and sucrose at 300 mM.

3. Incubate at 37 �C for 10 min.

4. Stop reaction by adding SDS to a concentration of 0.2%.
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3.5 Enzymatic

Treatment of

Chromatin for m6A-

GpC-CpGSMAC-Seq

(Drosophila Cells)

1. Add 200 U of M.CviPI and 200 U of EcoGII.

2. Add SAM at a final concentration of 0.6 mM and sucrose at a
final concentration of 300 mM.

3. Incubate at 30 �C for 7.5 min.

4. Add 128 pmol SAM (¼ 4 μL 32 mM solution) and another
100 U of both enzymes.

5. Incubate at 30 �C for 7.5 min.

6. Add 60 U of M.SssI.

7. Add 128 pmol SAM.

8. Add MgCl2 at 10 mM.

9. Incubate at 30 �C for 7.5 min.

10. Stop reaction by adding SDS to a concentration of 0.2%.

3.6 HMW DNA

Isolation

Here we describe HMWDNA using the QiagenMagAttract HMW
DNA Kit. Many other kits/protocols can also be used with similar
success.

1. Add 20 μL Proteinase K into a 2 mL tube.

2. Add 200 μL of sample.

3. Add 4 μL RNase A solution and 150 μL Buffer AL. Mix by
vortexing.

4. Incubate at room temperature for 30 min.

5. Add 15 μL MagAttract Suspension G beads.

6. Add 280 μL Buffer MB and incubate at room temperature for
3 min at 1400 rpm in a Thermomixer.

7. Separate the beads on a magnetic stand, carefully and
completely remove the supernatant.

8. Add 700 μL Buffer MW1 and incubate at room temperature
for 1 min at 1400 rpm in a Thermomixer.

9. Separate the beads on a magnetic stand, carefully and
completely remove the supernatant.

10. Add 700 μL Buffer MW1 and incubate at room temperature
for 1 min at 1400 rpm in a Thermomixer.

11. Separate the beads on a magnetic stand, carefully and
completely remove the supernatant.

12. Add 700 μL Buffer PE and incubate at room temperature for
1 min at 1400 rpm in a Thermomixer.

13. Separate the beads on a magnetic stand, carefully and
completely remove the supernatant.

14. Add 700 μL Buffer PE and incubate at room temperature for
1 min at 1400 rpm in a Thermomixer.
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15. Separate the beads on a magnetic stand, carefully and
completely remove the supernatant.

16. Add 700 μL nuclear-free H2O by slowly pipetting on the side
of the tube opposite to the beads while on the magnetic stand.
Do not disturb the pellet, otherwise DNA loss can ensue.

17. Remove H2O, and repeat the H2O wash step.

18. Add an appropriate volume of Buffer AE, that is, 100–200 μL
(see Note 10).

19. Incubate at room temperature for 3 min at 1400 rpm in a
Thermomixer.

20. Separate the beads on a magnetic stand, carefully transfer the
supernatant to a new DNA lo-bind tube using a wide bore tip.

21. Measure DNA concentration using a Qubit dsDNA HS assay.

22. Evaluate the DNA size distribution profile on the TapeStation
using the gDNA screen tape and reagents.

23. Store the DNA at 4 �C (see Note 11).

3.7 DNA Size

Selection

Selection of very HMW DNA using the Circulomics Short Read
Eliminator Kit is described here. Use either the SRE or the SRE XL
version depending on the properties of the genome studied and the
input DNA size distribution. The SRE XL version will remove
fragments �40 kbp while the SRE one will eliminate fragments
�25 kbp.

1. Start with a total volume of 60 μL at DNA concentration
between 50 and 150 ng/μL in a 1.5 mL DNA lo-bind tube.

2. Add 60 μL of Buffer SRE or Buffer SRE XL. Mix by tapping.

3. Centrifuge at 10,000 � g for 30 min at room temperature.

4. Carefully remove the supernatant without disturbing the DNA
pellet (note that the pellet is not visible; always place the tube
with the hinge facing outward to ensure reliable positioning of
the pellet at the bottom of the tube).

5. Add 200 μL of 70% EtOH (make fresh immediately before
use). Do not tap or mix. Centrifuge at 10,000 � g for 2 min
at room temperature.

6. Carefully remove the supernatant without disturbing the DNA
pellet.

7. Repeat the 70% EtOH wash and centrifugation step.

8. Add at least 50 μL Buffer EB and incubate at room temperature
for 20 min (see Note 10).

9. Resuspend well by tapping.

10. Measure DNA concentration using a Qubit dsDNA HS assay.
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11. Evaluate the DNA size distribution profile on the TapeStation
using the gDNA screen tape and reagents.

12. Store the DNA at 4 �C (see Note 11).

Example TapeStation results for poor-quality, high-quality and
post-size selection HMW DNA are shown in Fig. 3.

3.8 Nanopore Library

Construction

and Sequencing

Carry out nanopore library construction and sequencing according
to the manufacturer’s instructions depending on the particular kit
and flow cell/sequencer being used.

3.9 Computational

Analysis

The basic processing of SMAC-seq data described here consists of
the following steps:

1. Initial base calling.

2. Read mapping.

3. Generating modification calls.

4. Compilation of basic data statistics.

5. Generation of aggregate modification scores.

6. Generation of averaged coverage tracks.

Analysis at the single molecule level can be subsequently
carried out.

The overall workflow is summarized in Fig. 4.

3.9.1 Read Mapping

and Modification Calling

There are two different ways to extract modifications. Historically,
SMAC-seq per-read modification calls were extracted using
Tombo, which is a non–model-based DNA modification caller for
any context. It is no longer updated and requires base calling using
the older and less accurate base calling software Albacore. The
state-of-art way to call modifications is Megalodon. Megalodon is
a command-line tool that combines base calling using Guppy with
modified base calling based on pretrained modification calling
models in the Rerio package, in which all-context m6A and 5mC
models are available. Because of the higher accuracy of these models
and the ease of use of Megalodon, this is at present the preferred
method for calling modifications.

Calling modifications with Tombo involves the following steps
(run these commands for each individual fast5 file in parallel to
speed up the process):

1. Base calling using Albacore. Tombo requires that reads are first
base-called using Albacore. Running Albacore requires the user
to specify the exact type of flow cell and the kit used to build the
library, as follows:

read_fast5_basecaller.py --flowcell {FLOW_CELL}

--kit {RUN_KIT} -i {FAST5_DIR}

-t {NUMBER_OF_THREADS} -s {OUTPUT_DIR}

-o fastq,fast5 --disable_filtering
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Fig. 3 HMW DNA isolation and size selection for long-read sequencing. It is of critical importance for the
success of SMAC-seq experiments (and many other long read-based assays) to use high quality HMW DNA as
input to sequencing. Numerous protocols exist for isolating HMW DNA and HMW DNA size selection. Shown
are TapeStation gDNA profiles for a DNA sample with poor size distribution (a), a DNA sample with good size
distribution (b), and a DNA sample after size selection using the Circulomics Short Read Eliminator Kit (c)
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2. Read preprocessing. Following base calling at the read level
using Albacore, Tombo maps every read to its corresponding
fast5 signal track, as follows:

tombo preprocess annotate_raw_with_fastqs

--processes {NUMBER_OF_THREADS} --overwrite

--fast5-basedir {FAST5_DIR}

--fastq-filenames {ALBACORE_PRODUCED_FAST5}

3. Tombo resquiggling. Next, the reads are mapped and nano-
pore signal is “resquiggled” against the reference genome as
follows (note that Tombo uses minimap2 to carry out the
mapping):

tombo resquiggle --ignore-read-locks

--processes {NUMBER_OF_THREADS} --overwrite

{FAST5_DIR} {REFERENCE_GENOME}

4. Tombo de novo modification calling. To call m6A and 5mC
modifications in all contexts we use the de novo mode of
Tombo as follows:

tombo detect_modifications de_novo

--statistics-file-basename {STATS_FILE_NAME}

--per-read-statistics-basename {MODS_FILE_NAME}

raw nanopore data

base calling

read mapping

modification detection 
(Tombo)

per-read modification extraction

Bayseian aggregation

coverage files single-molecule plots coaccessibility analysis

signal tracks footprints

read mapping and 
modification detection 

(Megalogon)
or

Fig. 4 Summary of the SMAC-seq analysis workflow. For Tombo processing, raw nanopore read traces are
first subjected to base calling, mapped to the reference genome, and modified bases are then identified after
“resquiggling” of the reads. The newer Megalodon-based processing combines these steps in one. Per-read
modification calls are then extracted, and converted into a common file format that allows for downstream
tasks to be carried out
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--processes {NUMBER_OF_THREADS}

--multiprocess-region-size 2000000

--fast5-basedirs {FAST5_DIR}

3.9.2 Tombo Extraction Default Tombo outputs do not include information about modifi-
cation at the basepair single-molecule level. These need to be
extracted using the Tombo Python API using custom-written
scripts. Run the TomboSingleReadsExtract-tombo_de_novo-1.5.
py script in order to convert Tombo per_read_stats files into text
files. The script has multiple options for different sequence con-
texts, excluding certain sequence contexts, etc.:

python TomboSingleReadsExtract-tombo_de_novo-1.5.py tombo.

per_read_stats genome.fa outfile_prefix

[-m5C-only] [-m6A-only] [-CG-only] [-CG-CG-only]

[-GC-only] [-m6A-CG-only] [-m6A-GC-only]

[-m6A-GC-CG-only] [-doT] [-T-only]

[-generic bases(comma-separated)]

[-excludeContext string(...,stringN) radius]

[-excludeChr chr1[...,chrN]]

[-chrPrefix string]

Example for A positions:

python TomboSingleReadsExtract-tombo_de_novo.py

0.tombo.per_read_stats genome.fa 0.tombo.m6A-only

-m6A-only

Example for A, CpG and GpC positions:

python TomboSingleReadsExtract-tombo_de_novo.py

0.tombo.per_read_stats genome.fa 0.tombo.m6A-GC-CG-only

-m6A-GC-CG-only

Run the script for each individual tombo.
per_read_stats file.

3.9.3 Read Mapping

and Modification Calling

Using Megalodon

Megalodon is run in one step as follows:

megalodon {LOCATION_OF_FAST5_FILES}

--guppy-params "-d {PATH_TO_RERIO_MODELS}"

--guppy-config res_dna_r941_min_modbases-all-context_v001.

cfg

--outputs basecalls,mod_basecalls,per_read_mods

--reference {REFRENCE_GENOME}

--write-mods-text --output-directory {OUTPUT_DIR}

--guppy-server-path {LOCATION_OF_GUPPY_BIN}
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For the purposes of downstream single-molecule analysis the
--outputsbasecalls,mod_basecalls,per_read_mods and
--write-mods-text options need to be specified. These will
result in output of per-read modifications in a text format.

3.9.4 Megalodon

Per-Read Modification

Extraction

To extract the per-read modification, we run the following script:

python megalodon-to-single_line.py *.per_read_modified_ba-

se_calls.txt

*megalodon.reads.tsv

Run the script for each individual Megalodon file.

3.9.5 Merging

and Indexing

Merge the converted files into a single file, and sort by coordinates
in the same step:

cat *.reads.tsv | sort -k1,1 -k2,2n -k3,3n

| bgzip > merged.reads.tsv.bgz

Then tabix-index the file:

tabix -s 1 -b 2 -e 3 merged.reads.tsv.bgz

This will create a tabix-index —.bgz— file in the following
format, with one entry for each read:

1. Column 1: chromosome.

2. Column 2: left-most modified/informative position within
the read.

3. Column 3: right-most modified/informative position within
the read.

4. Column 4: . character (for legacy reasons).

5. Column 5: nanopore read ID.

6. Column 6: nan (for legacy reasons).

7. Column 7: comma-separated list of modified/informative
positions.

8. Column 8: comma-separated list of Tombo probabilities,
matching the order of the positions in Column 7.

3.9.6 Calculate Mapping

Statistics

Calculate read mapping statistics as follows:

python NanoporeTSVMappingStats.py

merged.reads.tsv.bgz

NanoporeTSVMappingStats-merged
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This will produce a short report with the total number of
mapped reads, the total number of mapped bases, the mean
mapped read length and the median read length.

3.9.7 Create

Coverage File

While the true strength of SMAC-seq lies in the single-molecule
analysis, SMAC-seq data can also be highly informative at an aggre-
gate level, which allows for CREs and positioned nucleosomes to be
discerned by visualization of average SMAC-seq profiles on a
genome browser. For the purpose of such analyses, a coverage file
in the style of the output from the popular bisulfite sequencing
analysis tool Bismark [34] is created, using the methylation-
reads-tsv-to_coverage.py script:

python methylation_reads_all.tsv threshold outfile

[-stranded +|-] [-minAbsLogLike float]

[-minAbsPValue float]

[-BayesianIntegration window(bp) step alpha beta pseudosam-

plesize] [-N6mAweight pseudosamplesize genome.fa]

[-saveNewSingleMoleculeFile filename]

Nanopore DNA modification data is not binary, instead it is
recorded as probabilities. It thus has to be binarized at some
threshold. We have found, through exploration of the parameter
space and comparison to known biological truths, that the most
intuitive threshold of 0.5 works optimally [22]. Example:

python methylation-reads-tsv-to_coverage.py

merged.reads.tsv.bgz 0.5 merged.cutoff_0.5.coverage

Convert the resulting plain text file to a .bgz file:

cat merged.cutoff_0.5.coverage |

bgzip > merged.cutoff_0.5.coverage.bgz

Then tabix-index it:

tabix -s 1 -b 2 -e 3 merged.cutoff_0.5.coverage.bgz

The format of the coverage file is as follows:

1. Column 1: chromosome.

2. Column 2: left-most position of the modified/informative
sequence context.

3. Column 3: right-most position of the modified/informative
sequence context.

4. Column 4: number reads in which the sequence context is
methylated.
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5. Column 5: number reads in which the sequence context is
unmethylated.

6. Column 6: total number of reads.

3.9.8 Bayesian

Integration

Even when using m6A, SMAC-seq still does not cover every single
nucleotide in the genome, and coverage varies substantially
between different locations depending on local sequence content
differences. In addition, base calling for ONT data is still far from
perfectly accurate (see Note 13), and detecting modifications is
particularly challenging. On the other hand, the biologically mean-
ingful length scale for DNA accessibility is not necessary the indi-
vidual basepair, but somewhat larger sequence contexts.

For these reasons we often use aggregate accessibility scores
over fixed-length windows, which combine information over all
available informative positions in the window, thus providing
more reliable, even if coarser-grained, views of accessibility pat-
terns. This is done using a simple Bayesian procedure, as follows.

For a given window of width w, specified by coordinates c,i,
i + w (where c is the chromosome, and i is the leftmost coordinate
of the window), and for all reads r ∈ Rc,i,i + w fully spanning the
window, we obtain all Tombo probabilities pr,(c,j) such that j ∈ [i,
i + w) for the assayed sequence contexts on the corresponding
genomic strand (see Note 14). We usually use a Beta prior B(α,β),
with α ¼ β ¼ 10, which is updated based on each probability pr,(c,j)
for all j ∈ [i,i + w) (but the prior can be easily changed if necessary,
see below), in order to obtain a final accessibility score pr,(c,i,i + w) for
read r and window c,i,i + w.

This Bayesian integration calculation is also carried out using
the same methylation-reads-tsv-to_coverage.py script.
For efficiency of calculation, compute it in parallel on the individual
converted tombo files, as follows (for a 10-bp context and (10,10)
prior):

python methylation-reads-tsv-to_coverage.py

0.tombo 0.5

0.tombo.all0.cutoff_0.5.coverage.BI_w10_a10_b10

-minAbsPValue 0.4 -BayesianIntegration 10 1 10 10 50

-saveNewSingleMoleculeFile

0.tombo.BI_w10_a10_b10.reads.tsv

Merge the Bayesian integration files:

cat *tombo.BI_w10_a10_b10.reads.tsv

| sort -k1,1 -k2,2n -k3,3n

| bgzip > merged.BI_w10_a10_b10.reads.tsv.bgz
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Then tabix-index the resulting .bgz file:

tabix -s 1 -b 2 -e 3 merged.BI_w10_a10_b10.reads.tsv.bgz

3.9.9 Filtering Fully

Methylated Reads

On occasions, we observe a population of reads that appear as fully
methylated across their whole length or over large segments of
it. They are most likely derived from dead cells or represent some
other undesired artefact. In order to remove such potentially arte-
factual reads, we obtain a “filtered” read set by removing all reads
containing a �1-kbp stretch that is �75% methylated (while also
filtering out reads shorter than 1 kb).

This operation can be carried out using the filterFully-
MethylatedReads.py script as follows:

python filterFullyMethylatedReads.py methylation_reads_all.

tsv WindowSize minFraction

[-keepShort] [-missingBasesFilter genome.fa basecontexts(com-

ma-separated) minFraction

[-doMBFSet]]

3.9.10 Create Genome

Browser Tracks

In order to create average-methylation (and thus accessibility)
tracks that can be visualized on a genome browser such the
UCSC or the WashU ones, use the following script:

python coverage_to_wig.py coverage.bgz window step chrField

MfieldID UfieldID chrom.sizes outprefix [-minCov N_reads]

where the M and the U fields indicate the column IDs of the
numbers of methylated and unmethylated reads, respectively, and
the window and step parameters specify the width and the stride
used for averaging the signal (i.e., window of 50 and step of
5 means that the average methylation level over 50 bp windows
tiling the genome every 5 bp will be outputted).

This script will output two bedGraph files—a coverage.wig
one (which contains the number of reads covering a position) and a
meth.wig one (which contains the fraction of methylated reads).
These can then be converted into bigWig files that can in turn be
displayed on a genome browser using the wigToBigWig program
from the UCSC utilities:

wigToBigWig meth.wig chrom.sizes meth.wig

where the chrom.sizes files contains one line per chromosomes
including the chromosome name and its length in bp
(tab-separated).

An example of an average SMAC-seq profile is shown in Fig. 5.
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3.9.11 Making Metaplots

Around a Position

A common analysis task is to generate a metaplot around a given set
of genomic features (such as TSSs, positioned nucleosomes, TF
binding motifs, and others). The coverage.bgz can be used to
make such metaplots, as follows, with a variety of parameters (win-
dow size, minimal coverage per position, different input file for-
mats, stranded or unstranded, and others):

python signalAroundPeaks-nano.py inputfilename chrFieldID

posField strandField radius window coverage.bgz outputfile-

name [-bismark.cov] [-bed] [-minCov N]

[-unstranded] [-narrowPeak]

Examples of such plots around yeast transcription starts sites
and human occupied CTCF motifs are shown in Fig. 6.

3.9.12 Making Single

Molecule Plots

One of the two key strengths of SMAC-seq is the ability to analyze
accessibility at the single molecule level. There are many ways to do
that, due to the nonbinary nature of raw nanopore data and of the
long length of nanopore reads, which allows for/requires analysis at
different resolution levels. Single molecule maps can be generated
using the continuous modification probability values or they can be
binarized.

The SMAC-footprints-from-methylation-reads-tsv-
tabix.py and SMAC-footprints-from-methylation-
reads-tsv-tabix-kmeans.py scripts can be used to generate
such plots. The first script will apply hierarchical clustering while
the second one will use k-means (in our experience, we obtain

Scale
chrXVI:

10 kb sacCer3

5,000 6,000 7,000 8,000 9,000 10,000 11,000 12,000 13,000 14,000 15,000 16,000 17,000 18,000 19,000 20,000 21,000 22,000 23,000

SMAC-seq g

H4S47C

DNase-seq

36mers unique mappability
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SAM3
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Fig. 5 Examples of average m6A-CpG-GpC-SMAC-seq profiles visualized on the UCSC Genome Browser.
Shown is a subtelomeric regions on chrXVI. SMAC-seq signal provides information both about accessible open
chromatin measures (peaks in DNAse-seq data) and positioned nucleosomes. The latter are shown here in the
form of H4S47C chemical nucleosome mapping [35], which maps the positions of dyads (SMAC-seq signal is
enriched on nucleosome linkers, thus the inverse relationship between the two). SMAC-seq, being a long-read
assay, also provides information about repetitive regions of the genome (in this case, telomeres, which are not
uniquely mappable with short reads as shown by the 36-mer unique mappability track)
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decidedly better results using the k-means approach). The com-
mands are otherwise the same. There is a wide variety of options
regarding the input list of region (which can be in any format), the
display (averaging over arbitrary number of basepairs), subsampling
of reads, color schemes, binarization or continuous display, and
others:

python methylation_reads_all.tsv peak_list chrFieldID

leftFieldID rightFieldID strandFieldID tabix_path outfile_-

prefix [-resize factor] [-subset N] [-label fieldID] [-minCov

fraction]

[-minPassingBases fraction] [-minReads N]

[-unstranded] [-minAbsLogLike float]

[-scatterPlot colorscheme minScore maxScore color|none]

[-window bp] [-readStrand +|-]

[-printMatrix] [-deleteMatrix] [-binarize threshold]’

The following command will generate binarized single mole-
cule maps retaining only reads that completely span the input set of
regions, averaging over 10 bp windows:

python SMAC-footprints-from-methylation-reads-tsv-tabix-

kmeans.py

SMAC-seq.reads.tsv.bgz regions.bed 0 1 2 3 tabix

SMAC-seq.regions.binary-0.5-gist_heat.10bp

-window 10 -minCov 1 -binarize 0.5

-scatterPlot gist_heat 0 1.1 w -unstranded

An example of such a single-molecule level visualization for
yeast m6ACpG-GpC-SMAC-seq data is shown in Fig. 7a.
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Fig. 6 Examples of average SMAC-seq metaprofiles over predefined genomic features. (a and b) Average
m6-CpG-GpC SMAC-seq profiles for the top 20% and bottom 20% of genes (ranked by expression levels) in
S. cerevisiae. Profiles are split by modification channel. (c) Average m6-SMAC-seq profile around CTCF ChIP-
seq peaks in the human GM12878 cell line. CTCF is known to strongly position nucleosomes in the vicinity of
its occupancy sites [36]. ChIP-seq peaks were obtained from the ENCODE Project Consortium [29]
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The following command will generate continuous-signal single
molecule maps retaining only reads that completely span the input
set of regions, averaging over 10 bp windows:

python SMAC-footprints-from-methylation-reads-tsv-tabix-

kmeans.py

SMAC-seq.reads.tsv.bgz regions.bed 0 1 2 3 tabix

SMAC-seq.regions.binary-0.5-RdYlBu.10bp

-window 10 -minCov 1

-scatterPlot RdYlBu 0 1 w -unstranded

An example of such a single-molecule level visualization for
yeast m6ACpG-GpC-SMAC-seq data is shown in Fig. 7b.

5S
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Fig. 7 Examples of single molecule m6A-CpG-GpC-SMAC-seq maps in S. cerevisiae. Shown is the yeast rDNA
locus, binarized (a) and as a continuous display (b). Yeast rDNA is organized into multicopy (�150) arrays,
consisting of �9.1 kb units, each containing a copy of the 35S precursor pre-rRNA, transcribed by Pol I, a 5S
RNA, transcribed by Pol III, and a replication origin ARS element, located in nontranscribed (NTS) regions of the
array. The rDNA chromatin structure adopts two distinct conformations [37, 38]—an inactive nucleosomal
state and an extremely highly transcriptionally active, largely devoid of nucleosomes (and thus highly
accessible) state. Note that 1000 reads were sampled at random for each plot, and that different samplings
are shown in (a) and (b)
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3.9.13 Calculating NMI

Matrices

Finally, another common analysis task when working with SMAC-
seq data is to estimate the degree of single-molecule coaccessibility
along the chromatin fiber.

To this end, we apply a Normalized Mutual Information as
follows. Each chromosome c is split into windows of size w. For
each such window (c,i,i + w), the maximum range to the right of it,
(c,j,j + w) such that the span (c,i,j + w) is covered by � M reads, is
identified. All reads spanning (c,j,j + w) are then extracted and
subsampled down to M reads (usually M ¼ 100). Accessibility
scores are then aggregated and binarized for all windows located
in the span (c,j,j + w), and for allM reads fully spanning it, resulting
in a local coaccessibility matrix LCM of size M � ( j + w � i)/w. A
Normalized Mutual Information (NMI) score for each pair of
columns LCMk and LCMl is then calculated as follows:

MI LCMk, LCMlð Þ ¼ p 0, 0ð Þ log 2

p 0, 0ð Þ
pk 0ð Þpl 0ð Þ

� �

þp 1, 1ð Þ log 2

p 1, 1ð Þ
pk 1ð Þpl 1ð Þ

� �

þp 0, 1ð Þ log 2

p 0, 1ð Þ
pk 0ð Þpl 1ð Þ

� �

þp 1, 0ð Þ log 2

p 1, 0ð Þ
pk 1ð Þpl 0ð Þ

� �
ð1Þ

While, in principle, mutual information cannot be negative,
NMI scores are normalized and rescaled in the interval (�1,1) so
that anticorrelated regions are given negative scores (this is done for
visualization and interpretation purposes):

NMI LCMk, LCMlð Þ ¼

MI LCMk, LCMlð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H LCMkð ÞH LCMlð Þp for p 0, 0ð Þ þ p 1, 1ð Þ � 0:5

� MI LCMk, LCMlð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H LCMkð ÞH LCMlð Þp for p 0, 0ð Þ þ p 1, 1ð Þ < 0:5

8>>><
>>>:

ð2Þ
where H refers to the entropy of each individual distribution.

To calculate NMI matrices, the SingleMoleculeCorrela-
tion-NMI-matrix.py script can be used:

python SingleMoleculeCorrelation-NMI-matrix.py

SMAC-seq.reads.tsv.bgz regions.bed chrFieldID leftField

rightFieldID minCoverage windowsize stepsize tabix_location

outfileprefix

[-subsample N] [-expectedMaxDist bp] [-label fieldID]
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Example:

python SingleMoleculeCorrelation-NMI-matrix.py

SMAC-seq.reads.tsv.bgz regions.bed 0 1 2 50 1 1200 tabix

NMI.min50cov.1bp.regions.SMAC-seq -expectedMaxDist 1500

If running genome-wide, split the genome into overlapping
bins for parallelization efficiency, for example, 50 kb in size with a
10 kb stride, and calculate a separate matrix for each, then take the
average NMI values for each pair of coordinates for downstream
analyses.

An example of the results of NMI analysis for yeast m6A-CpG-
GpCSMAC-seq data is shown in Fig. 8.

4 Notes

1. EcoGII deposits m6A modifications without a sequence pref-
erence, but it does not do so with perfect efficiency. It is not
conclusively established why, that is, whether the presence of
neighboring already modified bases prevents further methyla-
tion or whether perhaps the enzyme is highly nonprocessive
and stays bound to DNA for a prolonged period after comple-
tion of the reaction, thus occluding neighboring bases from
further enzymatic action. The methylation efficiency reported
by NEB is �50%; however, this is based on a relatively short
treatment (5 min). On the other hand, based on the original
more detailed study describing EcoGII [28], methylation effi-
ciency seems to be closer to 80% for a prolonged treatment of
about an hour. The incubation times during a SMAC-seq
experiment would place the expected efficiency somewhere in
between these values. Unfortunately, the most straightforward
imaginable experiment that would properly establish EcoGII
methylation efficiencies in the context of a nanopore-based
experiment—nanopore sequencing of naked DNA subjected
to EcoGII treatment—is not in fact possible because of the
strong bias of the Oxford Nanopore platform against fully
methylated templates, which simply do not sequence well and
are mostly discarded.

2. EcoGII is commercially available as a solution at relatively low
concentration, and if sufficiently many units of it are to be used,
the volume needed becomes too large and could interfere with
the labeling reaction. For these reasons, we are using a custom-
made highly concentrated EcoGII from NEB.

3. SAM is unstable. This is one of the reasons why it is added twice
to the reaction, and it is also why it should be handled carefully,
avoiding repeated freeze-thaw cycles.
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4. ONT offers multiple sequencing platforms, and it is advisable
to be familiar with the properties of each and the tradeoffs
between them. The MinION is the main ONT sequencing
platform, typically generating �10 Gbp data (although higher
throughput runs have also been observed in practice, up to
20 Gbp) and several million reads. In the context of SMAC-
seq, a single MinION is often sufficient to generate adequate
coverage over a small genome such as that of yeasts.

SEC22
YLR269C

DCS1

H4S47C chemical nucleosome mapping

NMI:
-0.10                   0                   0.10

Fig. 8 Example of m6A-CpG-GpC-SMAC-seq coaccessibility maps (measured in terms of NMI) in S. cerevisiae.
Shown is the promoter region of the DCS1 gene, together with chemical mapping nucleosome positioning data
(top), the single-molecule SMAC-seq map (middle), and the coaccessibility map (bottom)
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The Flongle is a miniaturized flow cell that also runs on the
MinION instrument, typically generating �100,000 reads. It
is not sufficient for production-scale runs, but as it is priced at
�1/9 of the cost of a MinION flow cell, it is ideal for testing
protocol, carrying out QC runs, etc.

The GridION can use either MinION or Flongle flow cells
and run five of them in parallel.

The PromethION is the high-throughput ONT sequencer.
It uses different flow cells, each of which can generate up to
�100 Gbp of data (and more than ten million reads), and can
run 48 such flow cells in parallel at the same time. Each such
flow cell is priced at more than twice the cost of a MinION flow
cell. To study larger and more complex eukaryotic genomes
using SMAC-seq, the throughput of the PromethION
becomes necessary, and often multiple such flow cells are
needed.

5. It is important to note that “coverage” means very different
things in the contexts of genome sequencing and SMAC-seq.
Usually, “coverage” refers to how many reads cover a given
position in the genome on average. However, the more rele-
vant metric for SMACseq is instead “coverage at length L,”
that is, how many reads cover two position spread apart at a
given instance. One of the main goals of SMAC-seq is to
capture the coordinated behavior of distal CREs and this is
only possible when sufficiently many single molecules contain-
ing both CREs have been sequenced. Across eukaryotes a clear
trend is observed—as genome size increases, CREs become
spread apart more and more. Thus, while 2 yeast promoters
are on average 1.5–2 kb apart, the distance between an
enhancer and its cognate promoter in a mammalian genome
is often tens of kilobases. Thus, the required sequencing
throughput to achieve the same effective “coverage at length
L” does not scale linearly once the fact that even with careful
size selection there are still many more shorter nanopore reads
than very long ones is taken into account.

6. Low-binding tubes are preferable in order to minimize
DNA loss.

7. The sheer volume of nanopore sequencing data presents a
different level of challenge in terms of computational infra-
structure compared to short-read sequencing. A single Pro-
methION flow cell can produce 100 Gbp of data within 48 h,
and a PromethION instrument can in principle run 48 such
flow cells in parallel.

However, base calls are far from the only information that
needs to be stored. For analysis of SMAC-seq datasets (and of
DNA modifications in general), the nanopore current signal
itself is what is most important, as it is used during the
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resquiggling and DNA modification detection steps. Thus, the
actual disk space footprint of such a flow cell is between one
and two orders of magnitude higher than storing the base calls
alone.

In addition, a separate challenge has historically been posed
by the number of files. This has changed with more recent
versions of the ONT processing software, but historically
ONT data has been stored in a large number of individual
small files, which could be so large that it reached the limit on
the number of files per use that many shared computational
clusters have in place, necessitating sequential processing of
datasets in batches and cleaning of files in between each.

8. The files containing single-molecule SMAC-seq information
can be huge in size, surpassing 1 TB on occasions. Random
access is critical for downstream analysis to be practical. The
workflows described here achieve this by using tabix indexing
of coordinate-sorted files.

9. Nanopore sequencing involves no amplification of DNA while
having strict constraints on the minimum amount of DNA that
is to be used as input to each sequencing run. A typical Pro-
methION run uses at least 1 μg of DNA, but if size selection is
to be applied prior to it, this corresponds to several times more
input DNA per run. A typical diploid human cell contains
�6 pg of DNA, thus 1 � 106 cells contain �6 μg of DNA.
Multiple PromethION runs are required to obtain good cov-
erage for a mammalian-sized genome, thus tens of micrograms
of DNA are needed as input to size selection and then sequenc-
ing. Scale up reactions accordingly based on the specifics of the
experiment with these considerations in mind.

10. Elution volumes are important for nanopore sequencing. All
ONT sequencing kits have a minimum requirement for the
amount of input DNA but also a maximum limit to the volume
in which it is contained. Concentrating DNA using beads will
result in significant losses while doing so by evaporation leads
to its degradation. Thus, it is best to have a large amount of
DNA in a small volume. However, there is a trade-off between
the elution volume and the efficiency of elution—larger elution
volumes lead to better overall yields. Thus, the optimal elution
volume is to be decided based on the number of cells used for
the SMAC-seq reaction and the exact ONT kits that are to be
used for sequencing.

11. HMW DNA is stable for a long time at 4 �C, but it is strongly
recommended not to freeze it at �20 �C or �80 �C as this will
likely result in fragmentation. Also, highly concentrated HWM
DNA can sometimes precipitate out of solution after pro-
longed storage so make sure to inspect tubes before use.
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Resuspend by tapping the tubes with your fingers, do not
pipette up and down as this is also thought to lead to HMW
DNA degradation. In addition, always transfer HMW DNA
using wide bore tips to prevent shearing.

12. Yeast (and fungal cells in general) have thick cell walls com-
prised of polysaccharides, lipids and chitin in various propor-
tions. They present a barrier to the access of most enzymes to
the nucleus, thus protocols tailored to such cells involve treat-
ment with zymolyase or chitinase enzymes [39], with the exact
details varying depending on the species studied.

13. Nanopore sequencing is a powerful tool for detecting DNA
modifications, but discerning modified bases from raw nano-
pore signal is not yet a fully resolved problem, especially for
methylation modifications, which do not provide a huge shift
in current signal relative to the unmodified base. Detection of
m6A is more challenging that detection of m5C, possibly
because a single methyl group changes the overall properties
of a purine base to a lesser extent than it does for a pyrimidine.
In addition, it should be noted that current implementations of
nanopore sequencing do not actually read out a single bases at
a time. Instead, they read several bases at a time and the
problem of base calling and modification detection is solved
not in the small space of bases but in the much larger space of
k-mers of size 5 or 6. Base calling errors are therefore at present
an unavoidable part of the reality of dealing with nanopore
datasets.

In our experience, the error rate for calling m6A at the level
of a single base within a single molecule in the context of
SMAC-seq is in the 20–25% range, while that for m5C is
somewhere around 15%. However, we expect the performance
to improve significantly in the future through a combination of
computational and experimental approaches.

14. Unlike CpG and GpC sequence contexts, which are symmetric,
and therefore bases that are to be modified are present at the
same position on both strand, m6A provides different informa-
tion on the forward and reverse strand, as it is not a symmetric
sequence context. This is a partial limitation of m6A-SMAC-
seq, because different profiles can be generated from the two
strands in some situations.
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