
Chapter 11

Simultaneous Single-Cell Profiling of the Transcriptome
and Accessible Chromatin Using SHARE-seq

Samuel H. Kim, Georgi K. Marinov, S. Tansu Bagdatli, Soon Il Higashino,
Zohar Shipony, Anshul Kundaje, and William J. Greenleaf

Abstract

The ability to analyze the transcriptomic and epigenomic states of individual single cells has in recent years
transformed our ability to measure and understand biological processes. Recent advancements have focused
on increasing sensitivity and throughput to provide richer and deeper biological insights at the cellular level.
The next frontier is the development of multiomic methods capable of analyzing multiple features from the
same cell, such as the simultaneous measurement of the transcriptome and the chromatin accessibility of
candidate regulatory elements. In this chapter, we discuss and describe SHARE-seq (Simultaneous high-
throughput ATAC, and RNA expression with sequencing) for carrying out simultaneous chromatin
accessibility and transcriptome measurements in single cells, together with the experimental and analytical
considerations for achieving optimal results.
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1 Introduction

The basic unit of biological organization is the individual cell. In
combination with the surrounding cellular microenvironments
within the context of a multicellular organism, each cell integrates
across internal and external stimuli to maintain or alter its state for
biological function. Understanding the cellular state at the single-
cell resolution, therefore, is critical to defining the regulatory pro-
cesses driving health and disease. A key advancement toward under-
standing cellular states has been in the development of
transcriptomic methods. With the advent of high-throughput
sequencing methods in the late 2000s, RNA-seq was developed
to profile transcriptomes at base-pair resolutions [1–4]. Subse-
quently, the molecular biology approaches that enabled ever
improved RNA-seq sensitivity have led to the development of
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single-cell RNA-seq (scRNA-seq) to measure transcriptomes at the
single-cell level. The first scRNA-seq methods [5–8] were very low
throughput, only able to measure a few cells at a time. Further
technical advancements utilized microfluidics- and plate-based
approaches to increase throughput to the 102–103 range [9, 10],
while droplet- and bead-based methods later boosted it to the 104–
105 range [11–14]. However, the approach that holds the most
promise for ultra-high-throughput single-cell measurements is
combinatorial indexing. The core concept of these approaches is
to dynamically assign barcodes through multiple rounds of splitting
and pooling cells to create a combinatorial set of barcodes that can
be used to uniquely identify each cell. Specifically, a set of cells can
be split into a 96- or 384-well plates, each well given a specific
barcode, and then pooled back together to be randomly split into
another set of plates. Iteratively performing these split–pool rounds
with an optimal number of input cells, barcodes, and the number of
rounds of barcoding, one can create a sufficient diversity of bar-
codes to uniquely assign each cell to a combination of barcodes. In
comparison to physical isolation of each cell in a droplet or a well,
combinatorial indexing provides a scalable platform for single-cell
measurements. This is the basis of all “sci” (single-cell combinato-
rial indexing) methods, such as sci-RNA-seq [15] and SPLiT-
seq [16].

While scRNA-seq measures the current amount of transcripts
in a given cell, it does not provide insight into how that transcrip-
tional state is achieved and maintained through regulation.
Mapping active cis-regulatory elements (cREs) provides key insight
to address this need. A common property of active cREs, originally
recognized more than four decades ago [17–19], is that they are
depleted of nucleosomes and exhibit an open, “accessible” confor-
mation. This property has been the basis for numerous methods
that have been developed over the years to profile these elements
[20], which rely on the preferential enzymatic cleavage or labeling
of open chromatin regions. ATAC-seq [21, 22] (Assay for Trans-
posase-Accessible Chromatin using sequencing) has emerged as
the most versatile instance of such assays. ATAC-seq takes advan-
tage of the preferential insertion of a hyperactive Tn5 [23] trans-
posase, preloaded with sequencing adapters, into open chromatin.
Tn5 had been previously adapted and successfully used for the
generation of high-throughput sequencing libraries from
low-input DNA samples [24]. The realization that it can also be
used to tag open chromatin regions with ready-for-amplification
sequencing adapters in a single reaction allowed for chromatin
accessibility profiling to be carried out in bulk on very low-input
samples (typically 50,000 cells, but also down to just a few thou-
sand [21]), and eventually in single cells, in the form of scATAC-
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seq, in the mid-2010s[25]. As with scRNA-seq, the throughput of
scATAC-seq has also been dramatically increased over the years,
using combinatorial indexing (sciATAC-seq [26–28]), microwell
plates (μATAC-seq [29]), droplet-based methods [30], and com-
binations of combinatorial indexing and droplets (dsciATAC-seq
[31]).

Techniques such as scRNA-seq and scATAC-seq have provided
unprecedented insights into the diversity of cell types, their devel-
opmental dynamics, and cellular responses to external stimuli in a
wide variety of context. However, the ideal measurements would
provide information about all relevant aspects of the state from the
same cell. To this end, a variety of single-cell multiomic methods,
measuring multiple such modalities in the same individual cells,
have been under active development in recent years. These include
methods for sequencing the genomes and transcriptomes of single
cells (G & T-seq [32], PRDD-seq [33], DNTR-seq [34], sci-L3-
RNA/DNA [35], TARGET-seq [36], and others), for sequencing
methylomes and transcriptomes (scTrio-seq [37], scMT-seq [38],
and scM & T-seq [39]), for mapping accessible chromatin and
methylomes (e.g., scNOMe-seq [40]), for measuring proteins and
transcripts (REAP-seq [41], CITE-seq [42], QBC [43], inCITE-
seq [44], iNS-seq [45], using methylation-based labeling of open
chromatin to map accessible DNA and transcripts (COOL-seq
[46], scNMT-seq [47], scNOMeRe-seq [48], snmC2T-seq [49]),
mapping protein occupancy and transcriptomes (CoTECH [50],
Paired-Tag [51], scDam & T-seq [52]), for quantifying proteins
levels and mapping open chromatin (PHAGE-ATAC [53], ASAP-
seq [54]), for quantifying proteins and transcriptome levels and
mapping open chromatin (DOGMA-seq [54], TEA-seq [55]), and
others [56].

As regulatory elements and RNA levels are the two perhaps
most informative modalities, joint scATAC-seq + scRNA-seq meth-
ods are the most sought after multiomic assays. A number of these
have been developed in recent years—sci-CAR-seq [57], Paired-seq
[58], ASTAR-seq [59], SNARE-seq [60], SHARE-seq [61], and
others. The ideal such assay should capture as many of the tran-
scripts present in each cell as possible and also as many of the open
chromatin regions in the nucleus, with high specificity and little
noise. The SHARE-seq assay, which is based on the combinatorial
indexing described above, provides high-quality and high-
throughput transcriptome and accessible chromatin measurements
in the same single cells.

In this chapter, we describe in detail the SHARE-seq procedure
and discuss the key optimization points and considerations for the
generation of high-quality scATAC+scRNA-seq datasets.



� � � � � � � � � � � � � �

190 Samuel H. Kim et al.

2 Materials

2.1 DNA Oligos and

Primers

All oligonucleotides can be obtained through IDT. The exact scale
and purification methods are listed below:

1. Round 1 linker (1 μmol scale, standard desalting):
CCGAGCCCACGAGACTCGGACGATCATGGG

2. Round 2 linker (1 μmol scale, standard desalting):
CAAGTATGCAGCGCGCTCAAGCACGTGGAT

3. Round 3 linker (1 μmol scale, standard desalting):
AGTCGTACGCCGATGCGAAACATCGGCCAC

4. Round 1 blocking (1 μmol scale, standard desalting):
CCCATGATCGTCCGAGTCTCGTGGGCTCGG

5. Round 2 blocking (1 μmol scale, standard desalting):
ATCCACGTGCTTGAGCGCGCTGCATACTTG

6. Round 3 blocking (1 μmol scale, standard desalting):
GTGGCCGATGTTTCGCATCGGCGTACGACT

7. Read 1 (100 nmol scale, HPLC purified):
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG

8. Template Switching Oligo (TSO) (100nmol scale, HPLC
purified):
AAGCAGTGGTATCAACGCAGAGTGAATrGrG+G

9. RNA PCR primer (100 nmol scale, standard desalting):
AAGCAGTGGTATCAACGCAGAGT

10. P7 primer (100 nmol scale, standard desalting):
CAAGCAGAAGACGGCATACGAGAT

11. Phosphorylated Read2 (100 nmol scale, HPLC purified):
/5Phos/GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG—

12. Reverse transcription primer (RT primer) (100 nmol scale,
HPLC purified)
/5Phos/GTCTCGTGGGCTCGGAGATGTGTATAAGAGA-
CAGNNNNNNNNNN/iBiodT/TTTTTTTTTTTTTTVN

13. Blocked_ME_Comp (100 nmol scale, HPLC purified):
/5Phos/C T G T C T C T T A T A C A /3ddC/

14. Pool–split ligation Plate R1 (see Note 4:
/5Phos/CGCGCTGCATACTTG[8-bp-barcode]
CCCATGATCGTCCGA

15. Pool–split ligation Plate R2 (see Note 4:
/5Phos/CATCGGCGTACGACT[8-bp-barcode]
ATCCACGTGCTTGAG

16. Pool–split ligation Plate R3 (see Note 4:
CAAGCAGAAGACGGCATACGAGAT[8-bp-barcode]
GTGGCCGATGTTTCG
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17. PCR Library indexing primers plate:
AATGATACGGCGACCACCGAGATCTACAC[8bp-index]
TCGTCGGCAGCGTCAGATGTGTAT

An example set of 96 barcodes are listed below:

AACGTGAT AAGGTACA CACTTCGA GATAGACA TGGAACAA ATCATTCC

AAACATCG ACACAGAA CAGCGTTA GCCACATA TGGCTTCA ATTGGCTC

ATGCCTAA ACAGCAGA CATACCAA GCGAGTAA TGGTGGTA CAAGGAGC

AGTGGTCA ACCTCCAA CCAGTTCA GCTAACGA TTCACGCA CACCTTAC

ACCACTGT ACGCTCGA CCGAAGTA GCTCGGTA AACTCACC CCATCCTC

ACATTGGC ACGTATCA CCGTGAGA GGAGAACA AAGAGATC CCGACAAC

CAGATCTG ACTATGCA CCTCCTGA GGTGCGAA AAGGACAC CCTAATCC

CATCAAGT AGAGTCAA CGAACTTA GTACGCAA AATCCGTC CCTCTATC

CGCTGATC AGATCGCA CGACTGGA GTCGTAGA AATGTTGC CGACACAC

ACAAGCTA AGCAGGAA CGCATACA GTCTGTCA ACACGACC CGGATTGC

CTGTAGCC AGTCACTA CTCAATGA GTGTTCTA ACAGATTC CTAAGGTC

AGTACAAG ATCCTGTA CTGAGCCA TAGGATGA AGATGTAC GAACAGGC

AACAACCA ATTGAGGA CTGGCATA TATCAGCA AGCACCTC GACAGTGC

AACCGAGA CAACCACA GAATCTGA TCCGTCTA AGCCATGC GAGTTAGC

AACGCTTA GACTAGTA CAAGACTA TCTTCACA AGGCTAAC GATGAATC

AAGACGGA CAATGGAA GAGCTGAA TGAAGAGA ATAGCGAC GCCAAGAC

2.2 General

Reagents

1. Eppendorf ThermoMixer C (96-well plate adapter)

2. Tabletop centrifuge

3. Swing bucket centrifuge with temperature control

4. Thermal cycler

5. Cold room

6. qPCR machine (QuantStudio 3)

7. Qubit fluorometer or equivalent

8. E-gel electrophoresis system (Thermo Fisher Scientific)

9. TapeStation (Agilent) or equivalent, e.g., BioAnalyzer
(Agilent).

10. Multichannel pipettes or liquid handling instruments

11. gentleMACS Dissociator (Miltenyi Biotec)

12. Automated cell counter, e.g., Countess 3 (Thermo Fisher Sci-
entific) or equivalent.

2.3 General

Equipment

1. 1× PBS buffer solution (Thermo Fisher Scientific, Cat
#10010049)

2. Bovine Albumin Fraction V (7.5% solution) (Thermo Fisher
Scientific, Cat #15260037)

3. Trypan Blue Stain (0.4%) (Thermo Fisher Scientific, Cat
#T10282)
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4. Enzymatic RI (Qiagen, Cat #Y9240L)

5. SUPERase RI (Thermo Fisher Scientific, Cat #AM2696)

6. Lucigen RI (Lucigen Cat # 30281-2)

7. Protector RI (Sigma Aldrich Cat # 3335399001)

8. 16% FA (Thermo Fisher Scientific, Cat # 28906)

9. Glycine (Sigma Aldrich, Cat #50049)

10. 1 M Tris HCl pH 7.5 (Thermo Fisher Scientific, Cat
#15567027)

11. 1 M Tris HCl pH 8.0 (Thermo Fisher Scientific, Cat
#15568025)

12. 5 M NaCl (Thermo Fisher Scientific, Cat #AM9760G)

13. 1 M MgCl2 (Sigma Aldrich, Cat #63069)

14. 1 M CaCl2 (Sigma Aldrich, Cat #21115-100ML)

15. DMF (Dimethyl Formamide) (Sigma, Cat #227056)

16. 0.2 M Tris-acetate pH 7.8 (Bioworld, Cat #40120265-2)

17. 5 M Potassium acetate (Sigma Aldrich, Cat #95843-100ML-F)

18. 1 MMagnesium acetate (Sigma Aldrich, Cat #63052-100ML)

19. 10% NP-40 (Thermo Fisher Scientific, Cat #28324)

20. Buffer EB (Qiagen, Cat #19086)

21. PEG 6000 (Sigma Aldrich, Cat #528877)

22. Maxima H Minus Reverse Transcriptase with buffer (Thermo
Fisher Scientific, Cat #EP075)

23. 10 mM dNTPs (NEB, Cat #N0447L)

24. T4 DNA Ligase (NEB, Cat #M0202L)

25. Additional 10× T4 Ligase buffer (NEB, Cat #B0202S)

26. Proteinase K (20 mg/mL) (NEB, Cat #P8107S)

27. 20% SDS (VWR, Cat #97062+440)

28. 100 mM PMSF/IPA (Sigma Aldrich, Cat # P7626)

29. cOmplete Protease Inhibitor Cocktail (Sigma Aldrich, Cat #
11697498001)

30. 0.5 M EDTA (Sigma Aldrich, Cat #AM9260G)

31. Tween-20 (Sigma Aldrich, Cat #P9416-100ML)

32. Digitonin (Promega, Cat #G9441)

33. MyOne C1 Dynabeads (Thermo Fisher Scientific, Cat
#65001)

34. Ficoll PM-400 (20%) (Sigma Aldrich, Cat #F5415-25ML)

35. KAPA HiFi 2× mix (Fisher Scientific, Cat #NC0295239)

36. SPRIselect beads (Beckman Coulter, Cat #B23318)
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37. 100% EtOH

38. 100 mM DTT (Thermo Fisher Scientific, Cat #707265ML)

39. NEBnext 2× Mix (NEB, Cat #M0541L)

40. Glycerol (Thermo Fisher Scientific, Cat #15514011)

41. TD buffer from Nextera kit

42. SYBR Green I Nucleic Acid Gel Stain (Thermo Fisher Scien-
tific, Cat #S7563)

43. EVAGreen Dye, 20x in water (Biotium, Cat #31000)

44. Nuclease-free H2O

45. 96-well plates (Eppendorf, Cat #0030129300) (preferably low
protein and DNA binding; see Note 5)

46. 1.5-mL microcentrifuge tubes, preferably low protein and
DNA binding (see Note 5)

47. 2-mL, 15-mL, and 50-mL tubes

48. gentleMACS M-Tubes (Miltenyi Biotec, Cat #130-093-236)

49. 30 μm Sterile single-pack CellTrics filters (Sysmex, Cat #04-
004-2326)

50. 200-μL PCR tubes

51. Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, Cat #
Q32851)

52. TapeStation D1000 and D5000 tape and reagents (Agilent)

53. Tn5 transposase (see Note 1)

54. MinElute PCR Purification Kit (Qiagen Cat# 28004/28006),
ZymoDNAClean and Concentrator Kit (Zymo Cat# D4013/
D4014), or equivalent

2.4 Buffers and

Reagents

Make all buffers using ultrapure molecular biology-grade ddH2O:

1. 2.5M Glycine (50 mL)

9.375 g Glycine (powder)

1× PBS up to 50 mL

Filter through a 0.22 μM filter. Store at room temperature.

2. Tissue Dissociation (MACS) buffer

10 mM Tris-HCl pH 8.0

5 mM CaCl2

5 mM EDTA

3 mM MgAc

0.6 mM DTT

cOmplete Protease Inhibitor

Make fresh every time.



194 Samuel H. Kim et al.

3. Nuclei Isolation Buffer (NIB)

10 mM Tris-HCl pH 7.4

10 mM NaCl

3 mM MgCl2

0.1% IGEPAL CA-630

Store at 4 ∘C.

4. 2× TD buffer

20 mM Tris-HCl pH 7.6

10 mM MgCl2

20% Dimethyl Formamide

Store at -20∘C.

5. PEG 6000 50%
Mix equal mass of PEG6000 and H2O, heat to 65 ∘C) for
4 min, and then cool down to room temperature.

6. 2× RCB buffer

100 mM Tris pH 8.0

100 mM NaCl

0.40% SDS

Store at room temperature.

7. 2× BW buffer

10 mM Tris pH 8.0

2 M NaCl

1 mM EDTA

Store at 4 ∘C.

8. 1× B & W-T Buffer

5 mM Tris pH 8.0

1 M NaCl

0.5 mM EDTA

0.05% Tween-20

Store at 4 ∘C.

9. Oligo resuspension buffer (IDTE)

10 mM Tris pH 8.0

0.1 mM EDTA

Store at room temperature.

10. Oligo annealing buffer (STE)

10 mM Tris pH 8.0

50 mM NaCl

1 mM EDTA

Store at room temperature.
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11. Dilution buffer

50% glycerol

50 mM Tris pH 7.5

100 mM NaCl

0.1 mM EDTA

0.1% NP-40

Store at -20∘C.

2.5 Software

Packages

1. Bowtie [62] (http://bowtie-bio.sourceforge.net/index.
shtml).

2. SAMtools [63]: http://www.htslib.org/

3. PicardTools https://broadinstitute.github.io/picard/

4. UCSC Genome Browser [64, 65] utilities: http://
hgdownload.cse.ucsc.edu/admin/exe/

5. STAR [66] https://github.com/alexdobin/STAR

6. R: https://www.r-project.org/

7. Python (version 2.7 or higher) https://www.python.org/

8. ArchR [67]: https://www.archrproject.com/

9. Seurat [68]: https://satijalab.org/seurat/

10. Additional scripts: https://github.com/georgimarinov/Geo
rgiScripts. Contains python scripts used in the examples shown
below; some of the scripts depend on having pysam (https://
pysam.readthedocs.io/en/latest/index.html) and pyBigWig
(https://github.com/deeptools/pyBigWig) installed.

3 Methods

The general outline of the SHARE-seq assay is shown in Fig. 1. The
first of the two basic ideas behind SHARE-seq and other pool–split-
based assays is to label molecules originating from each cell with a
unique combination of barcodes that are added serially and ran-
domly by pooling cells and then randomly redistributing them
across subsequent sets of barcodes, thus ensuring that statistically
each cell can be identified through a unique combination of bar-
codes. The second is the separation of chromatin and transcriptome
molecules through the use of a biotinylated reverse transcription
(RT) primer, which can then be used for a streptavidin pulldown of
the transcriptome.

In brief, before the beginning of a SHARE-seq experiment, the
needed barcode plates and transposases are prepared and stored.
The experiment itself begins with the isolation of nuclei from cells
in culture or from tissues (see Note 2. Nuclei are then crosslinked,
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Fig. 1 Outline of the SHARE-seq assay. Nuclei are isolated from cells or tissues and crosslinked. Transposition
is then carried out on chromatin, followed by reverse transcription with a biotinylated RT primer. Three pool–
split rounds of hybridization of barcode oligos are then performed. Hybridized barcodes are then ligated, and
crosslinks are reversed. The ATAC and RNA portions are separated by streptavidin pulldown. The ATAC is
directly amplified, and the RNA is subjected to cDNA amplification, tagmentation, and final library amplification
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usually lightly (see Note 3). Transposition is then carried out,
followed by reverse transcription using a biotinylated RT primer
containing a random unique molecular identifier (UMI). Three
rounds of pool–split hybridization and blocking are then carried
out, after which the hybridized oligos are ligated into single mole-
cules to each other and to the transposed chromatin fragments and
reverse transcribed mRNA. Crosslinks are then reversed, and strep-
tavidin pulldown is used to separate the chromatin from the tran-
scriptome. ATAC libraries are directly amplified from the
supernatant. The transcriptome is first amplified on-beads into
cDNAs, which are then tagmented into sequenceable fragments
and PCR-amplified into final libraries.

The resulting library structures for ATAC and RNA are shown
in Fig. 2. ATAC libraries contain three barcodes, while RNA
libraries also include the UMI. Note that with many Illumina-
based sequencing readouts, the first barcode to be read is actually
the third one added during the pool–split procedure.

3.1 Determining the

Optimal Cell Number

It is important to carefully track the number of cells going into the
SHARE-seq assays and being retained at each key step of the
procedure. Pool–split assays rely on the statistical uniqueness of
barcode combinations through which cells pass, which in turn
means that having too many cells entering the pool–split procedure
will lead to an unacceptably high rate of doublets (two or more cells
with the same barcode). In the same time, some of the reactions
have an efficiency-imposed limit on the number of cells that can
enter them and need to be distributed into parallel reactions for
optimal results. This applies to the initial transposition and reverse
transcription reactions, as well as to the final amplification, where
the existing protocol is optimized for libraries of size�20,000 cells,
which means that after the final pooling cells are split into separate
subpools of that size and processed into individual sublibraries.

Figure 3 shows the theoretical number of detected cells and
doublet rate for different pool–split setups with three rounds,
accounting for a certain level of cell loss during repeated handling.
Based on these calculations and empirical experience, we usually
start the pool–split rounds with �5×105 cells for a 96 × 96 ×
96 pool–split experiment.

5’ AATGATACGGCGACCACCGAGATCTACACTAGATCGCTCGTCGTCGGCAGCGTCAGATGTGTATAAGAGACAG...CTGTCTCTTATACA     CCGAGCCCACGAGACTCGGACGATCATGGG        CAAGTATGCAGCGCGCTCAAGCACGTGGAT        AGTCGTACGCCGATGCGAAACATCGGCCAC
ACATATTCTCTGTC...GACAGAGAATATGTGTAGAGGCTCGGGTGCTCTGAGCCTGCTAGTACCCTAGTGCAAGTTCATACGTCGCGCGAGTTCGTGCACCTATAGTGCAATCAGCATGCGGCTACGCTTTGTAGCCGGTGTAGTGCAATAGAGCATACGGCAGAAGACGAAC 5’

5’ AATGATACGGCGACCACCGAGATCTACACTAGATCGCTCGTCGTCGGCAGCGTCAGATGTGTATAAGAGACAG...  AAAAAAAAAAAAAAA                             CCGAGCCCACGAGACTCGGACGATCATGGG        CAAGTATGCAGCGCGCTCAAGCACGTGGAT        AGTCGTACGCCGATGCGAAACATCGGCCAC
ACATATTCTCTGTC...NVTTTTTTTTTTTTTTTNNNNNNNNNNGACAGAGAATATGTGTAGAGGCTCGGGTGCTCTGAGCCTGCTAGTACCCTAGTGCAAGTTCATACGTCGCGCGAGTTCGTGCACCTATAGTGCAATCAGCATGCGGCTACGCTTTGTAGCCGGTGTAGTGCAATAGAGCATACGGCAGAAGACGAAC 5’

ATAC

RNA

P5

P5 UMI

P7

P7

R3 BCR2 BCR1 BC

R3 BCR2 BCR1 BC

R3 linkerR2 linkerR1 linker

R3 linkerR2 linkerR1 linker

Read 1

Read 1

Read 2

Read 2

Fig. 2 Structure of final SHARE-seq libraries. ATAC (top) and RNA (bottom). Dots represent the actual library
insert
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Fig. 3 Combinatorial indexing and SHARE-seq’s throughput. Shown is the number of cells that can be detected
at a given doublet rate; the pool–split process was simulated as a random Poisson loading at a 50% loss of
cells during each pool–split round

3.2 Annealing of

Oligo Plates

In this step, barcode containing oligonucleotides for each round of
split–pool is annealed and distributed into 96-well plates prior to
the actual assay. These plates can be stored at-20∘C indefinitely. It
is advisable for the purposes of time saving to prepare sufficiently
many such plates in advance to support multiple experiments. It is
critical to thaw these plates to room temperature prior to use.

See Note 4.

1. Dilute Round 1 linker oligos (120 μL at 1 mM concentration)
with 11,880 μL STE buffer.

2. Mix 90 μL diluted Round 1 linker oligo with 10 μL Round
1 oligo (at 100 μM) in the wells of a multiwell plate.

3. Dilute Round 2 linker oligos (120 μL at 1 mM concentration)
with 9480 μL STE buffer.

4. Mix 88 μL diluted Round 2 linker oligo with 12 μL Round
2 oligo (at 100 μM) in the wells of a multiwell plate.

5. Dilute Round 3 linker oligos (144 μL at 1 mM concentration)
with 9360 μL STE buffer.

6. Mix 86 μL diluted Round 3 linker oligo with 14 μL Round
3 oligo (at 100 μM) in the wells of a multiwell plate.

7. Anneal the Round 1, Round 2, and Round 3 plates as follows in
a thermocycler:
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2 min at 95 ∘C

Slow ramp at -1∘C per minute to 20 ∘C

2 min at 20 ∘C

Indefinitely at 4 ∘C

8. Check if there has been significant water evaporation for wells
situated at the corners. If yes, add water to equalize volumes.

9. Aliquot 10 μL of the annealed oligos to new plates. This should
be enough for 9 experiments. Store these plates at -20∘C.

3.3 Anneal Adapter

Oligos

In this step, Tn5 adapters are prepared for both transposition of
chromatin and tagmentation during cDNA library preparation:

1. Dilute the Phosphorylated Read2, Read1, and Blocked ME
Comp oligos to a 100 μM concentration with the IDTE buffer.

2. Prepare the transposition adapter mix in a PCR tube as follows:

6.5 μL 100 μM Phosphorylated Read2 oligo

6.5 μL 100 μM Read1 oligo

13 μL 100 μM Blocked ME Comp oligo

0.26 μL 1 M Tris pH 8.0

0.26 μL 5 M NaCl

3. Prepare the tagmentation adapter mix in a PCR tube as follows:

13 μL 100 μM Read1 oligo

13 μL 100 μM Blocked ME Comp oligo

0.26 μL 1 M Tris pH 8.0

0.26 μL 5 M NaCl

4. Anneal oligos as follows in a thermocycler:

2 min at 85 ∘C

Slow ramp at -1∘C per minute to 20 ∘C

2 min at 20 ∘C

Indefinitely at 4 ∘C

5. Heat glycerol to 65 ∘C, and then equilibrate to room
temperature.

6. Mix 25 μL glycerol with 25 μL of annealed oligo.

The annealed adapters can be immediately used or stored at -
20∘C.

3.4 Transposome

Assembly

In this step, Tn5 transposomes are assembled together with the
annealed adapter oligos:

1. Assemble Tn5 transposomes by mixing the following
components:
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0.625×N 1× home-made Tn5

0.625×N dilution buffer

1.25×N annealed transposition adapter with glycerol

Total volume: 2.5×N

2. Incubate at room temperature for 30 min.
The assembled transposome can be stored at-20∘C for up

to 2 weeks.

3.5 Tissue

Dissociation

Here, we describe an example tissue dissociation protocol that has
worked successfully in our hands for several human embryonic
tissues. However, users should be aware that generally each tissue
requires separate optimization of dissociation conditions, and it is
likely that a different protocol will have to be adapted in most
situations.

1. Set swing bucket centrifuge to 4 ∘C Fast Temp and thaw
1M DTT.

2. Transfer tissue samples onto dry ice.

3. Prepare MACS buffer (2 mL for each sample) as described
above. Make sure the buffer is cold on ice.

4. Add 10 μL Protector RNase Inhibitor for each 1 mL in Gen-
tleMACSM-tubes. Add 1 mL of MACS buffer to each Gentle-
MACS M-tube and chill on ice.

5. Transfer 30–50 mg of tissue into each GentleMACS M-tube
containing 1 mL MACS buffer.

6. Allow the tissue to thaw in buffer. Transition to a cold room.

7. Homogenize using a Protein_01_01 dissociation protocol
on a GentleMACS Tissue Dissociator instrument.

8. Filter the homogenate through 30 μm CellTrics filter into a
2mL DNA LoBind tube by pipetting directly onto the top of
the filter and gently tapping to allow flow.

9. Wash the GentleMACS M-tube with 1 mL MACS buffer and
filter the wash again through the 30 μm CellTrics filter.

10. Spin down the homogenate in a swing bucket centrifuge at
500 g for 5 min at 4 ∘C (ramp up and down both at 3/9).

11. Remove and discard supernatant.

12. Resuspend in 1mL PBS-2RI.

13. Count cells/nuclei and proceed with a desired number of
cells/nuclei.

3.6 Fixation of Cells

in Culture and of

Dissociated Nuclei

from Tissue

The next step, if starting with a dissociated tissue, is to fix the
nuclei. This is also the first step if starting with cells in culture.
The procedure used is generally the same, with the difference that
with nuclei the first step is directly the fixation:
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1. Prepare PBS-2RI Buffer ( 4 mL) by mixing the following:

4 mL 1× PBS

21.4 μL 7.5% BSA

10 μL Enzymatic RI

5 μL SUPERase RI

Keep on ice.

2. Prepare NIB-RI Buffer ( 8 mL) by mixing the following:

8 mL NIB

20 μL Enzymatic RI

20 μL SUPERase RI

Keep on ice.

3. Spin down cells at 500 g.

4. Wash cells with 0.5 ml PBS-2RI.

5. Count cells with Trypan blue.

6. Resuspend cells with cold PBS-2RI at a concentration of
1 × 106 cells/mL.

7. For each 1 mL of cells in PBS-2RI, add 66.7 μL of 1.6% FA
(final concentration 0.1% FA) for cells or 66.7 μL of 3.2% FA
for tissues. Mix and incubate at room temperature for 5 min.

8. Quench the reaction by adding to each 1 mL of cells in
PBS-2RI the following:

56.1 μL 2.5 M Glycine

50 μL 1M Tris pH 8.0

13.3 μL of 7.5% BSA

Mix well and incubate on ice for 5 min.

9. Spin down at 500 g. Remove supernatant, and add 0.5 mL
PBS-2RI without disturbing the cell pellet.

10. Prepare RSB-RI by mixing the following:

2.5 μL 1 M Tris-HCl pH 7.5

0.5 μL 5 M NaCl

0.75 μL 1 M MgCl2

2.5 μL 10% Tween-20

2.5 μL 10% NP-40

2.5 μL 1% Digitonin

33.3 μL 7.5% BSA

0.25 μL 1 M DTT

204 μL Ultrapure water

1.25 μL Enzymatic RI
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11. Spin down again at 500 g. Remove supernatant, and resuspend
cells in 100 μL RSB-RI and incubate on ice for 3 min.

12. Prepare RSB-T by mixing the following:

25 μL 1 M Tris-HCl pH 7.5

5 μL 5 M NaCl

7.5 μL 1 M MgCl2

25 μL 10% Tween-20

333.3 μL 7.5% BSA

2.5 μL 1 M DTT

2089.5 μL Ultrapure water

12.5 μL Enzymatic RI

13. Pipette 1 mL of RSB-T to cells and mix. Spin down at 500 g for
5 min.

3.7 ATAC Reaction In this step, transposition of the entire sample is performed by
splitting it into 10,000–20,000 cells in 50-μL reactions each in a
96-well plate. The smaller volume and the number of cells per
reaction improve the quality of transposition.

The cell lysis conditions described here are adapted from the
omniATAC bulk ATAC protocol [22] (see Note 7):

1. Prepare PBS-RI by mixing the following:

800 μL PBS

2 μL Enzymatic RI

2. After the last centrifugation, remove supernatant and resus-
pend the cells with PBS-RI to 2×106 cells/mL.

3. Prepare 2× TB buffer (sufficient for 96 reactions) by mixing the
following:

874.5 μL 0.2 M Tris-acetate

70 μL 5 M Potassium acetate

53 μL 1 M Magnesium acetate

53 μL 10% Tween-20

53 μL 1% Digitonin

848 μL 100% DMF

698.5 μL H2O

4. Prepare 1× TB buffer according to the number of reactions
N to be carried out. N=1 corresponds to 104 input cells.

25×N 2× TB

16.45×N H2O
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0.2×N PIC

0.85×N Enzymatic RI

Total volume: 42.5×N.

5. Aliquot 5×NμL of the diluted cells to a new tube, e.g., for
10× 105 cells, N=10, so aliquot 50 μL cells to a new tube.

6. Add 42.5×NμL 1× TB to sample.

7. Add 2.5×NμL of assembled Tn5 to sample. Mix well.

8. Aliquot 50 μL of sample in the wells of a 96- or 384-well plate.

9. Seal the plate and incubate with shaking at 500 rpm for 30 min
at 37 ∘C.

10. Pool the reactions and spin down at 500 g.

11. Add 0.5 mL NIB-RI without disturbing the pellet and spin
down again at 500 g.

12. Resuspend the cells in 60 μL EB.

3.8 Reverse

Transcription

In this step, reverse transcription is performed in situ. The condi-
tions are optimized for 1×105 cells entering each 50-μL reaction:

1. Prepare the reverse transcription (RT)mix (sufficient for 6 reac-
tions) as follows:

70 μL 5× RT buffer

2.19 μL Enzymatics RNase Inhibitor

4.38 μL SUPERase RI

17.5 μL dNTPs

35 μL RT Primer

10.94 μL H2O

105 μL 50% PEG

35 μL Maxima H Minus Reverse Transcriptase (add right
before RT reaction)

Total volume: 280 μL.
2. Add 240 μL RT mix to 60 μL cells in EB.

3. Aliquot 50 μL to 6 PCR wells.

4. Start thawing the oligo plates, while the RT is ongoing.

5. Run the reverse transcription reaction in a thermocycler as
follows:

50 ∘C for 10 min

8 ∘C for 12 s

15 ∘C for 45 s

20 ∘C for 45 s
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30 ∘C for 30 s

42 ∘C for 2 min

50 ∘C for 3 min

50 ∘C for 5 min

6. Pool samples and mix with 500 μL NIB-RI.

7. Spin down at 500 g.

8. Wash with 1000 μL NIB.

9. Spin down at 500 g.

10. Resuspend with 1152 μL NIB-RI.

3.9 Hybridization–
Ligation and Pool–Split

In this step, cells/nuclei are iteratively split into individual wells to
dynamically create a combinatorial index statistically unique to each
cell. All handling is performed at room temperature so make abso-
lutely sure that oligo plates have been fully thawed before
proceeding.

If different samples are multiplexed in a single run, they can be
individually identified based on the first-round barcodes. If such a
strategy is deployed, each sample needs to be processed through
transposition and reverse transcription separately and then loaded
into specified positions in the first-round plate(s).

1. Prepare 3456 μL hybridization buffer as follows:

2761.9 μL H2O

576 μL 10× T4 ligase buffer

14.4 μL SUPERase RI 20 U/μL
46.08 μL Enzymatics RI 40 U/μL
57.60 μL 10% NP40

2. Mix 1152 μL of sample with 3456 μL hybridization buffer.
Keep the sample at RT.

3. Aliquot 40 μL of mixture to a Round 1 plate.

4. Mix and shake at 300 rpm for 30 min at RT.

5. Prepare 1152 μL Blocking Oligo 1 mix as follows:

253.4 μL 100 μM Round 1 blocking oligo

211.2 μL 10× T4 DNA Ligase buffer

687.4 μL H2O

6. Add 10 μL Blocking Oligo 1 mix to each well.

7. Mix and shake at 300 rpm for 30 min at RT.

8. Pool samples from all wells.

9. Aliquot 50 μL of mixture to a Round 2 plate.

10. Mix and shake at 300 rpm for 30 min at RT.
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11. Prepare 1152 μL Blocking Oligo 2 mix as follows:

304.1 μL 100 μM Round 2 blocking oligo

211.2 μL 10× T4 DNA Ligase buffer

636.7 μL H2O

12. Add 10 μL Blocking Oligo 2 mix to each well.

13. Mix and shake at 300 rpm for 30 min at RT.

14. Pool samples from all wells.

15. Aliquot 60 μL of mixture to a Round 2 plate.

16. Mix and shake at 300 rpm for 30 min at RT.

17. Prepare 1152 μL Blocking Oligo 3 mix as follows:

265.0 μL 100 μM Round 3 blocking oligo

11.5 μL 10% NP-40

875.5 μL H2O

18. Add 10 μL Blocking Oligo 1 mix to each well.

19. Mix and shake at 300 rpm for 30 min at RT.

20. Pool samples from all wells.

21. Spin down at 500 g 5 min.

22. Wash with 1 mL NIB-RI.

23. Spin down at 500 g 5 min.

24. Resuspend in 80 μL NIB-RI.

25. Prepare 320 μL Ligation mix as follows:

3.2 μL Enzymatics RI

1.00 μL SUPERase RI

40 μL 10× T4 DNA Ligase Ligation buffer

20 μL T4 DNA Ligase 400 U/μL
251.8 μL H2O

4 μL 10% NP40

26. Mix sample with the 320 μL Ligation mix.

27. Aliquot 8× 50 μL in PCR tubes.

28. Shake at 300 rpm for 30 min at RT.

29. Pool samples from all tubes.

30. Spin down at 500 g 5 min.

31. Wash with 1 mL NIB-RI.

32. Spin down at 500 g 5 min.

33. Resuspend in 400 μL NIB-RI.

34. Count the number of nuclei.
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Note: If fewer cells are preferred per sub-library, count cells to
desired concentration and add more NIB to make the volume up to
50 μL per sub-library.

3.10 Reverse

Crosslinking

In this step, cells are reverse crosslinked to release DNA from the
bound proteins so that the ATAC libraries can be amplified. As the
crosslinking is relatively gentle (at 0.1 or 0.2%), a milder reverse
crosslinking condition of 1 h incubation at 55 ∘C is generally
sufficient.

Further reverse crosslinking optimization might be needed if
the crosslinking protocol has been modified:

1. For each N of 50-μL sub-library, add the following:

50 μL 2× RCB

2 μL Proteinase K

1 μL SUPERase RI

2. Incubate at 55 ∘C for 1 h.

3. Add 5 μL 100 mM PMSF/IPA.

4. Incubate at room temperature for 10 min.

Note: this is an optional stopping point. The reverse cross-
linked product can be stored at -80∘C for a few days.

3.11 Pulldown In this step, the cDNA is separated from the transposition products
by pulling down on the biotin that is part of the reverse transcrip-
tion primer. The supernatant constitutes the transposition products
and is processed separately from the cDNA:

1. Prepare 1× B & W-T/RI buffer by mixing the following:

400× (N+1) μL 1× B & W-T buffer

4× (N +1) μL SUPERase RI

2. Prepare 1× B & W/RI buffer by mixing the following:

100× (N+1) μL 1× BW buffer

2× (N +1) μL SUPERase RI

3. Prepare 1× STE/RI buffer by mixing the following:

200× (N+1) μL 1× STE buffer

N+ 1 μL SUPERase RI

4. In a fresh tube, mix 10×NμL MyOne C1 Dynabeads with
100×NμL 1× B & W-T.

5. Separate on a magnetic rack and remove supernatant.

6. Wash twice with 100×NμL B & W-T without RI.

7. Wash once with 100×NμL B & W-T/RI.

8. Resuspend beads in 100×NμL 2× B & W/RI.
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9. Add 100 μL beads to each sample.

10. Incubate at room temperature on a rotator for 60 min.

11. Place the tube on a magnetic rack.

12. Transfer the supernatant (which contains chromatin frag-
ments) to a new tube for ATAC library preparation. The
ATAC fragments are stable for a few hours at room tempera-
ture and can be processed concurrently or after cDNA library
construction is complete.

13. Wash cDNA/RNA-bound beads three times with 100 μL 1× B
& W-T/RI.

14. Wash with 100 μL 1× STE/RI without resuspending beads.

3.12 ATAC Library

Preparation

In this step, ATAC fragments are purified and amplified into a final
library ready for sequencing:

1. Clean up the ATAC part of the sample using ZymoDNAClean
and Concentrate. Elute in 11 μL EB buffer, and then elute
again with additional 11 μL EB buffer (a total of 22 μL E
buffer).

2. Prepare ATAC PCR Master Mix by mixing the following:

225 μL 2× NEBnext Master Mix

9 μL P7 primer 25 μM
27 μL H2O

3. Mix the following:

29 μL ATAC PCR Master Mix

1 μL of 25 μM Adapter 1 Primer (from the PCR Library
indexing primers plate)

4. Run PCR for 5 cycles as follows:

72 ∘C for 5 min

98 ∘C for 30 s

98 ∘C for 10 s

65 ∘C for 30 s

72 ∘C for 30 s

5. Determine additional cycles using qPCR. Add 5 μL of the
pre-amplified reaction to 10 μL qPCR Master Mix for a total
qPCR reaction of 15 μL as follows:

5 μL NEBnext Master Mix

0.2 μL 25 μM Adapter 1.1

0.2 μL 25 μM P7
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0.9 μL 10x SYBR Green

3.7 μL H2O

6. Assess the amplification profiles and determine the required
number of additional cycles to amplify. Please refer to Figure 2
in Buenrostro et al. [25].

7. Carry out final amplification by placing the remaining 45 μL in
a thermocycler and running the following program:

98 ∘C for 10 s

65 ∘C for 30 s

72 ∘C for 30 s

where Nadd is the number of additional cycles.

8. Clean up the final library using Zymo DNA Clean & Concen-
trate, eluting in 15 μL.

3.13 RNA Library

Preparation Step 1.

Template Switching

In this step, RNA library generation is initiated by carrying out
template switching on the pulled down cDNA:

1. Prepare the Template switch mix by mixing the following:

11.25 μL H2O

125 μL 50% PEG 6000

90 μL 5× Maxima RT buffer

90 μL Ficoll PM-400 (20%)

45 μL 10 mM dNTPs

45 μL RNase inhibitor (Lucigen)

11.25 μL 100 μM TSO oligo

22.5 μL Maxima RT Rnase H Minus (add last right before
reaction)

2. Remove all supernatant. Be careful to avoid drying the beads.

3. Resuspend beads in 50 μL Template switch mix.

4. Incubate samples for 30 min at room temperature with
rotation.

5. Incubate samples for 90 min at 42 ∘C at 300 rpm. Resuspend
every 30 min by pipetting up and down.

3.14 RNA Library

Preparation Step 2.

Amplification of cDNA

The next step is to amplify the individual cDNA molecules.

1. Prepare cDNA PCR Mix by mixing the following:

247.5 μL KAPA HiFi 2× mix

7.92 μL 25 μM RNA PCR primer

7.92 μL 25 μM P7 primer

231.7 μL H2O
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2. Mix samples with 100 μL H2O.

3. Separate beads on magnet. Wash with 200 μL STE without
resuspending the beads.

4. Mix beads with 55 μL cDNA PCR Mix and transfer to PCR
tubes/plates.

5. Run PCR as follows:

95 ∘C for 3 min

98 ∘C for 20 s

65 ∘C for 45 s

72 ∘C for 3 min

6. Determine additional cycles using qPCR. Add 2.5 μL of the
pre-amplified reaction to 7.5 μL qPCR Master Mix in a total
qPCR reaction of 10 μL as follows:

3.75 μL KAPA HiFi 2× mix

0.12 μL 25 μM RNA PCR primer

0.12 μL 25 μM P7 primer

0.5 μL 20x EVAgreen

3.01 μL H2O

7. Determine additional cycles as described above for ATAC
libraries.

98 ∘C for 20 s

65 ∘C for 45 s

72 ∘C for 3 min

8. Purify using SPRI beads. Mix the reaction with 0.8× volume of
SPRI beads and incubate at room temperature for 10 min.
Separate the beads on magnet and wash twice with 200 μL
freshly prepared 70% EtOH. Make sure to remove all liquid,
and elute in 20 μL.

9. Optional: check size of the cDNA using the D5000
TapeStation.

3.15 RNA Library

Preparation Step 3.

Tagmentation

The next step is to tagment the amplified cDNA, which will prepare
it for the final library amplification step:

1. Quantify cDNA concentration using Qubit.

2. Dilute cDNA to a concentration of 5 ng/μL for tagmentation.
Note: Expect more than 50 ng cDNA. If cDNA amount is

low, it can get away with tagmenting 20 ng cDNA; in this case,
adjust the volume of H2O and cDNA accordingly.
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3. Prepare tagmentation transposome by mixing the following:

11.25 μL 1× Tn5

11.25 μL Dilution Buffer

22.5 μL annealed tagmentation adapter with glycerol

4. Mix the following:

10 μL 5 ng/μL cDNA

10 μL H2O

25 μL 2× TD buffer

5 μL assembled Tn5

5. Incubate for 5 min at 55 ∘C.

6. Purify tagmented library using the Zymo kit (use 250 μL bind-
ing buffer). Elute twice with 11 μL EB (a total of 22 μL).

3.16 RNA Library

Preparation Step 4.

Final Amplification

Final libraries are generated by PCR.

1. Prepare post-tagmentation PCR mix by mixing the following:

20 μL sample

25 μL 2× NEB Next Master Mix

1 μL 25 μM P7 primer

1 μL 25 μMAdapter 1 Primer (from the PCR Library indexing
primers plate)

3 μL H2O

2. Run PCR as follows:

72 ∘C for 5 min

98 ∘C for 10 s

65 ∘C for 30 s

72 ∘C for 60 s

3.17 Library

Quantification and

Evaluation of Library

Quality

Before libraries can be sequenced, they need to be properly quanti-
fied and be subjected to quality evaluation. This is done by first,
evaluation of the insert distribution, and second, quantification:

1. Examination of library size distribution. This step can be car-
ried out using several different instruments, such as a TapeSta-
tion or a BioAnalyzer. We prefer to use a TapeStation (with the
D1000 or HS D1000 kits) due to flexibility, ease of use, and
rapid turnaround time.

2. Quantification of library concentration. For most high-
throughput sequencing applications, this step is standardly
carried out using a Qubit fluorometer. While this works well
for libraries with a unimodal fragment-length distribution,
ATAC libraries typically exhibit a multimodal fragment
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distribution and also often contain fragments of length higher
than what can be sequenced on standard Illumina instruments.
As a result, effective library concentrations often differ from
apparent library concentrations measured using Qubit, and the
optimal way for estimating effective library concentration
is qPCR.

3. Estimation of effective library concentration using qPCR.
Standard Illumina library quantification kits can be used to
quantify the concentration of the library that will be able to
be sequenced. Products fromNEB or KAPA are appropriate for
this use.

3.18 Sequencing The protocol described here generates libraries designed to be
sequenced on Illumina sequencers, the most widely available of
which is the NextSeq. On a NextSeq, SHARE-seq libraries are
sequenced as follows using a 150-cycle kit:

For the RNA libraries, use a 50 bp ×10 bp× 99 bp ×8 b
configuration (Read 1 × Read 2 × Index1 × Index2, respectively).

For the ATAC libraries, use a 30 bp ×30 bp× 99 bp×8 b
configuration (Read 1 × Read 2 × Index1 × Index2, respectively).

For RNA, the 10bp of Read 2 captures the UMI, and the 50 bp
captures the actual RNA sequence.

For ATAC, fragments are sequenced in a 2× 30 bp format.
The 8 bp of Index 2 captures the library barcode (if more than

one library is sequenced in a single run). The 99 bp of Index
1 captures the pool–split barcodes.

For other Illumina instruments, different configurations can be
used. For example, using a 200-cycle kit on NovaSeq, run ATAC
libraries in 55 bp ×55 bp ×99 bp ×8 bp configuration and RNA
libraries in a 100 bp ×10 bp× 99 bp× 8 bp configuration.

An important consideration to take into account before
sequencing is that the standard Illumina run recipes do not allow
for the 99-bp index read configuration that is necessary for
SHARE-seq libraries. This necessitates the creation of custom
recipes in which the limits on the length of the index reads are
increased accordingly. However, different methods for creating
these custom recipes are necessary depending on the Illumina
instrument used and the versions of the control software that the
machine is equipped with; resolving this issues may on occasions
require seeking help from Illumina’s customer support service.

4 Computational Processing

At present there is no standard tool for analyzing pool–split-based
multiomics datasets. The pipeline presented here is the one we have
been using in our practice. Its objective is to take the raw SHARE-
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ATAC FASTQ RNA FASTQ

barcode assignment

UMI assignment

RNA alignment

gene quantification

downstream analysis 
(Seurat)

ATAC alignment

filtering and 
deduplication

cell assignment

downstream analysis 
(ArchR)

joint scATAC/RNA 
analyses

Fig. 4 Outline of the SHARE-seq computational processing procedures. As a first step, cell barcodes are
annotated for all reads in both ATAC and RNA FASTQ files. Subsequently, UMIs are consolidated and assigned
to reads in the RNA set. RNA reads are then aligned against the genome, and gene expression is quantified in
single cells, resulting in a final data matrix that can be analyzed in Seurat (or other scRNA-seq) tools. ATAC
reads are aligned against the genome, filtered (removing mitochondria-mapping reads), and deduplicated
within each barcode. Alignments are then annotated with their cell barcodes and can be used as input for
further analysis in ArchR. Further joint analysis of the ATAC and RNA can be carried out downstream

seq reads and to produce object that can be used for further analysis
with established tools for scRNA-seq/scATAC-seq processing such
as Seurat and ArchR (e.g., sparse matrices and BAM files). The
outline of the processing is shown in Fig. 4. For both ATAC and
RNA, reads are first assigned their cellular barcodes. RNA reads are
additionally annotated with the sequenced UMIs. RNA reads are
aligned against the genome, a quantification is carried out for each
gene in each cell, and a final sparse matrix is created. For ATAC,
reads are mapped against the genome, then filtered, and dedupli-
cated within each cell, and a final BAM file with cellular barcodes
appended to each alignment is created.

4.1 RNA 1. As a first step in the RNA processing, annotated barcodes for
each read pair, using the SHARE-seq-barcode-annotate.
py script.

python SHARE-seq-barcode-annotate.py

BC1file fieldID pos1 lenBC1 BC2file

fieldID2 pos2 lenBC2 BC3file fieldID3

pos3 lenBC3 [-BCedit N] [-revcompBC]
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The script is flexible and can be used to assign barcodes to
almost any kind of pool–split experiment in which the indexes
are in Index Read 1. It takes as input files containing the
barcodes for each round of pool–split and the column positions
of the barcode sequences in each file (0-based), their position in
Index Read 1 (0-based), their length, and their orientation (use
the [-revcompBC] option if the sequences are reverse com-
plement, depending on the exact format of the sequencing).
Use the [-BCedit] option to increase/decrease the strin-
gency of matching barcode sequences to the master list (the
default value is 1). In this case, the barcode files are in the
following format:

#WellPosition Name Sequence

A1 Round1_01 AACGTGAT

B1 Round1_02 AAACATCG

C1 Round1_03 ATGCCTAA

[...]

And barcodes are assigned in a single step as follows:

python PEFastqToTabDelimited.py RNA.end1.fastq.gz

RNA.end2.fastq.gz | python SHARE-seq-barcode-annotate.py

Plate_R1.tsv 2 15 8 Plate_R2.tsv 2 53 8 Plate_R3.tsv

2 91 8 -revcompBC

| PEFastqToTabDelimited-reverse.py -

RNA.barcodes_annotated

This will produce FASTQ files with headers looking as
follows:

@[readID]:::[GTTAGCCT+TAGTCTTG+TACCGAGC] 1:N:0:

TGGGGNCACAGAGCCAAACCATATCAGCTG

+

AAAAA#EEEEEAEEEEEEEEEEEEEEEEEE

In which barcode combinations have been appended to the
read headers, with nan if no matching barcode was found due
to sequencing errors or other issues, e.g.:

@[readID]:::[GACGGATT+GATAGAGG+nan] 1:N:0:

ACCAANCTGTGCACAAGCGTGAATCAACCT

+

6AAAA#E/EEEEEEEEEAEEEEEEEEEEEE

Note that it is considerably faster to split the FASTQ files
into smaller pieces and process them in parallel.
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2. Compress the output files:

gzip RNA.barcodes_annotated.barcodes_annotated.end1.fastq

gzip RNA.barcodes_annotated.barcodes_annotated.end1.fastq

3. Annotated UMIs using the SHARE-seq-RNA-UMI-Add.py
script, which is also flexible and can read UMIs of different
lengths in each read in the pair:

python SHARE-seq-RNA-UMI-Add.py UMIlen read1|read2

As follows:

python PEFastqToTabDelimited.py

RNA.barcodes_annotated.end1.fastq.gz

RNA.barcodes_annotated.end2.fastq.gz |

python SHARE-seq-RNA-UMI-Add.py 10 read2 |

python PEFastqToTabDelimited-reverse.py -

RNA.barcodes_annotated.RNA_UMI

This step will append the UMI sequence to the cell bar-
codes in the read ID:

@[readID]:::[TGACCACT+GGTCGTGT+TGCTGATA+TTTATGATAG]

CCTCTNGCTCAGCCTATATACCGCCATCTTCAGCAAACCCTGATGAAGGC

+

AAAAA#EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE/EEEEEEEEEEEEE

4. Compress the output files:

gzip RNA.barcodes_annotated.RNA_UMI.end1.fastq

gzip RNA.barcodes_annotated.RNA_UMI.end2.fastq

5. Merge the individual files:

cat RNA_�.barcodes_annotated.RNA_UMI.end1.fastq >

RNA.barcodes_annotated.RNA_UMI.end1.fastq.gz

cat RNA_�.barcodes_annotated.RNA_UMI.end2.fastq >

RNA.barcodes_annotated.RNA_UMI.end2.fastq.gz

6. Align the Read 1 FASTQ file against the genome using STAR
as follows (the commands given here use the standard
ENCODE Project Consortium[69] STAR settings):

STAR --limitSjdbInsertNsj 10000000 --genomeDir genome/STAR

--outFileNamePrefix RNA.end1.STAR/

--readFilesIn RNA.barcodes_annotated.RNA_UMI.end1.fastq.gz
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--runThreadN 20 --outSAMunmapped Within --outFilterType

BySJout --outSAMattributes NH HI AS NM MD

--outFilterMultimapNmax 50 --outSAMstrandField intronMotif

--outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax

0.04 --alignIntronMin 10 --alignIntronMax 1000000

--alignMatesGapMax 1000000 --alignSJoverhangMin 8

--alignSJDBoverhangMin 1 --sjdbScore 1 --readFilesCommand

zcat --outSAMtype BAM SortedByCoordinate --outWigStrand

Stranded --twopassMode Basic --twopass1readsN -1

--limitBAMsortRAM 500000000000

7. Index the output BAM file:

samtools index

RNA.end1.STAR/Aligned.sortedByCoord.out.bam

8. Calculate global mapping statistics:

python SAMstats.py

RNA.end1.STAR/Aligned.sortedByCoord.out.bam

SAMstats-RNA.end1.STAR.hg38

-bam genome.chrom.sizes samtools

This script will output the number of mapped reads in
various categories (uniquely mapping, spliced, etc.) as well as
the molecular complexity of the alignment.

9. Calculate read distribution relative to the genome annotation:

python SAM_reads_in_genes3_BAM.py annotation.gtf

RNA.end1.STAR/Aligned.sortedByCoord.out.bam

genome.chrom.sizes

sam_reads_genes-RNA.end1.STAR -nomulti

This script will output the fraction of exonic, intronic, and
intergenic reads. This is important information for single-cell
assays for evaluating to what extent the cytoplasm (which is
enriched for exonic reads relative to the nucleus) is captured in
the final libraries.

10. Make a RPM-normalized (Reads Per Million mapped reads)
global coverage track:

python makewigglefromBAM-NH.py title

RNA.end1.STAR/Aligned.sortedByCoord.out.bam

genome.chrom.sizes

RNA.end1.STAR/Aligned.sortedByCoord.out.wig -RPM
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11. Evaluate read coverage along transcripts:

python gene_coverage_wig_gtf.py annotation.gtf

RNA.end1.STAR/Aligned.sortedByCoord.out.wig

1000 coverage-RNA -normalize -singlemodelgenes

This script run with these settings will output the average
read profile over all genes with only a single transcript anno-
tated (in order to avoid confounding by the presence of multi-
ple isoforms) and ≥1000 bp in length. Use a simple annotation
with few isoforms, such as refSeq to get as many genes meeting
these requirements as possible.

12. Calculate UMI counts per gene and per cell barcode combina-
tion using the SHARE-seq_RNA_counts.py. For faster pro-
cessing, run this on each chromosome in parallel, as follows
(shown is chr1):

python SHARE-seq_RNA_counts.py

RNA.end1.STAR/Aligned.sortedByCoord.out.bam

annotation.gtf.chr1 genome.chrom.sizes

RNA.SHARE-seq_RNA_counts.chr1 -UMIedit 1

The [-UMIedit] option can be used to tweak the level of
UMI collapsing (in this case UMIs within an edit distance of
1 from each other will be collapsed into a single UMI).

13. Calculate per-cell statistics by merging the individual outputs
using the SHARE-seq-RNA-BC-sum-across-files.py
script as follows:

python SHARE-seq-RNA-BC-sum-across-files.py

list_of_per_chromosome_outputs

RNA.SHARE-seq_RNA_counts.UMIs_per_cell

This will output a file in the following format:

#BC1+BC2+BC3 rank3 UMIs3 Aligned Positions genes

GCCAATGT+CAGATCTG+TAACGCTG 1 64660 171969 8369

GTTGTCGG+TAAGCGTT+GATCAGCG 2 47079 123008 7864

TGACCACT+GGTCGTGT+TGCTGATA 3 45034 109960 7652

which shows the number of UMIs and the number of
detected genes for each cell barcode combination.

14. Extract cell barcode combinations above a desired threshold,
e.g., ≥500 UMIs into a separate file.
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15. Create final sparse matrix format files that can be used as input
to Seurat for further analysis with the SHARE-seq-RNA-
UMIs-sum-across-files.py script:

python SHARE-seq-RNA-UMIs-sum-across-files.py

list_of_per_chromosome_outputs

RNA.SHARE-seq_RNA_counts.UMIs_per_cell.min500 0

RNA.SHARE-seq_RNA_counts.UMIs_per_cell.min500.sparse

-sparse

4.2 ATAC The first steps of the ATAC processing are analogous to those of the
RNA pipeline:

1. First, annotate cellular barcodes:

python PEFastqToTabDelimited.py

ATAC.end1.fastq.gz ATAC.end2.fastq.gz |

python SHARE-seq-barcode-annotate.py

Plate_R1.tsv 2 15 8 Plate_R2.tsv 2 53 8 Plate_R3.tsv 2

91 8 -revcompBC |

PEFastqToTabDelimited-reverse.py -

ATAC.barcodes_annotated

Note as before that it is considerably faster to split the
FASTQ files into smaller pieces and process them in parallel.

2. Compress the output files:

gzip ATAC.barcodes_annotated.end1.fastq

gzip ATAC.barcodes_annotated.end1.fastq

3. Merge the individual files:

cat ATAC_�.barcodes_annotated.end1.fastq >

ATAC.barcodes_annotated.end1.fastq.gz

cat ATAC_�.barcodes_annotated.end2.fastq >

ATAC.barcodes_annotated.end2.fastq.gz

4. Align reads against the mitochondrial genome with Bowtie as
follows:

python PEFastqToTabDelimited.py

ATAC.barcodes_annotated.end1.fastq.gz

ATAC.barcodes_annotated.end2.fastq.gz -trim 30 30 |

bowtie bowtie-indexes/chrM -p 20 -v 2 -a -t --best

--strata -q -X 1000 --sam --12 - |

samtools view -F4 -bT genome.fa - |

samtools sort - ATAC.2x30mers.chrM
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This step is for the purpose of evaluating the extent of
mitochondrial contamination in the overall library.

5. Align reads against the full genome with Bowtie and filter out
mitochondrial reads as follows:

python PEFastqToTabDelimited.py

ATAC.barcodes_annotated.end1.fastq.gz

ATAC.barcodes_annotated.end2.fastq.gz

-trim 30 30 | bowtie bowtie-indexes/genome

-p 20 -v 2 -k 2 -m 1 -t --best --strata -q

-X 1000 --sam --12 - | egrep -v chrM |

samtools view -F4 -bT genome.fa - | samtools sort -

ATAC.2x30mers.unique.nochrM

Adjust accordingly if working a genome in which the mito-
chondrial chromosome/contigs are named differently or there
are multiple contigs to be filtered out (e.g., in plants where
there is also a plastid in addition to the mitochondrion).

6. Index the resulting BAM files.

samtools index ATAC.2x30mers.unique.nochrM.bam

samtools index ATAC.2x30mers.chrM.bam

7. Calculate mapping statistics for the two sets of alignments.

python SAMstats.py ATAC.2x30mers.chrM.bam

SAMstats-ATAC.2x30mers.chrM

-bam genome.chrom.sizes samtools

-paired -noNHinfo

python SAMstats.py ATAC.2x30mers.unique.nochrM.bam

SAMstats-ATAC.2x30mers.unique.nochrM

-bam genome.chrom.sizes samtools

-paired -uniqueBAM

8. Calculate the mitochondrial reads fraction MRF as follows:

MRF =
|RM |

|RM | + |RN | ð1Þ

where RM is the total number of reads that map to the
mitochondrial genome andRN is the number of reads that map
to the nuclear genome after filtering out mito-mapping reads.

9. Evaluate the fragment size distribution over the nuclear
genome:
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python PEInsertDistFromBAM.py

ATAC.2x30mers.unique.nochrM.bam

genome.chrom.sizes

ATAC.2x30mers.unique.nochrM.InsLen

-uniqueBAM -normalize

10. Create a normalized genome coverage track:

python makewigglefromBAM-NH.py title

ATAC.2x30mers.unique.nochrM.bam

genome.chrom.sizes ATAC.2x30mers.unique.nochrM.wig

-notitle -RPM -uniqueBAM

11. Create a BigWig file using the wigToBigWig program from
the UCSC Genome Browser utilities suite.

wigToBigWig ATAC.2x30mers.unique.nochrM.wig

genome.chrom.sizes

ATAC.2x30mers.unique.nochrM.bigWig

12. Calculate the global TSS enrichment. TheTSS enrichmentTSSE
is themost informative ATAC-seq and is based on generating an
average readdistribution profile around annotated transcription
start sites for protein coding genes and then calculating the ratio
between the number of reads in the immediate neighborhoodof
the TSS and the number of reads falling in the regions on the
flanksof theTSSpeak.The advantageof theTSSEmetric is that it
is an internal to the datasetmeasure independent of peak calling.
We use a TSS window of ±100 bp and a TSS flank distance of
2000 bp, i.e., TSSE is calculated as follows:

TSSE =
|R ∈ [TSS ± 100]|

|R ∈ [TSS − 2050, TSS − 1950]| + |R ∈ [TSS + 1950, TSS + 2050]|

(2)
First, generate the TSS metaprofile:

python signalAroundCoordinate-BW.py

annotation.TSS-0bp.bed 0 1 3 4000

ATAC.2x30mers.unique.nochrM.bigWig

ATAC.2x30mers.unique.nochrM.TSS_profile -normalize

Note that you need a BED file containing the start positions
and the strands of annotated TSSs in the genome, e.g.,

#chr TSS TSS strand geneName

chr1 1000 1000 + GENE1



220 Samuel H. Kim et al.

Second, calculate the TSS score:

python ATACTSSscore.py

ATAC.2x30mers.unique.nochrM.TSS_profile

100 2000 >> ATACTSSscore.txt

13. Deduplicate the BAM file. Note that this step is different from
the typical deduplication carried out in most high-throughput
sequencing pipelines, based on tools such as MarkDups in
picard. Here, we perform deduplication of fragments only
within the same cell barcode, i.e., for two fragments to be
collapsed, they need to have the same coordinates, orientation,
and cell barcode.

python SHARE-seq_ATAC_dedup.py

ATAC.2x30mers.unique.nochrM.bam

genome.chrom.sizes

ATAC.2x30mers.unique.nochrM.BC_dedup.bam

-addBC

Use the [-addBC] to append the cell barcodes to each
alignment as a BC tag, making these final files ready to use with
ArchR.

14. Index the deduplicated BAM file:

samtools index ATAC.2x30mers.unique.nochrM.BC_dedup.bam

15. Calculate alignment stats for the deduplicated BAM file:

python SAMstats.py ATAC.2x30mers.unique.nochrM.BC_dedup.bam

SAMstats-ATAC.2x30mers.unique.nochrM.BC_dedup

-bam genome.chrom.sizes samtools -paired -uniqueBAM

16. Calculate fragment count and TSS enrichment statistics for
each cell barcode.

python SHARE-seq_ATAC_stats_per_cell.py

ATAC.2x30mers.unique.nochrM.BC_dedup.bam

genome.chrom.sizes annotation.TSS-0bp.bed 0 1 2000 200

ATAC.2x30mers.unique.nochrM.BC_dedup.per_cell_stats

This script will output a file containing information about
the number of fragments and TSS enrichment for each barcode
that can be used to filter barcodes for downstream analysis.

More sophisticated filtering, in addition to these simple
metrics, i.e., of doublet cells, can be performed in ArchR [67].
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5 Expected Results

5.1 Sequencing

Libraries

Figure 5 shows the typical fragment profiles for ATAC and RNA
SHARE-seq libraries. ATAC libraries are expected to show a
nucleosomal signature, with a prominent subnucleosomal, mono-
nucleosomal, and perhaps dinucleosomal peaks, shifted to the right
by the length of the adapters and barcodes added to the original
fragments. In contrast, RNA libraries are primarily unimodal in
length.

5.2 Species Mixing

Experiments

A customary experiment to be carried out when testing, adopting,
or developing any new single-cell protocol is the species mixing
experiment, in which cells from two different species, usually mouse
and human, are mixed together, and the extent of crosstalk/con-
tamination of individual barcodes or of doublet formation
(in which two cells are processed together with the same barcode)

Fig. 5 Typical fragment-length profiles of SHARE-seq libraries. (a) BioAnalyzer profile of a SHARE-seq ATAC
library. (b) BioAnalyzer profile of a SHARE-seq RNA library
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Fig. 6 Typical results from a species mixing SHARE-seq experiment. Human HEK293 and mouse embryonic
fibroblast (MEF) cells were mixed in equal proportions and carried through the SHARE-seq workflow. (a) ATAC
fragments per cell. (b) RNA UMIs per cell

is assessed based on how many reads in each barcode map to each
species. Ideally, all barcodes should feature reads coming from only
one of the two species. Doublet arise from loading of multiple cells
in the same droplets/wells (depending on the method used) or
from physical clumping of cells early in the protocol that then are
processed together throughout the rest of the procedure.

Figure 6 shows typical species mixing results for a SHARE-seq
experiment. We note that in our hands ATAC experiments usually
show virtually no crosstalk between barcodes and very few doub-
lets. On the other hand, pool–split RNA experiments in general
often exhibit a small fraction of reads resulting from “leakage,”
likely because of some cells opening up during cell handling and
releasing their content into the general reaction pool. This issue
does not significantly affect most analyses, but it should be kept in
mind in the cases in which it could be a confounding factor.

5.3 ATAC Post-

sequencing Quality

Evaluation

Figure 7 shows the key ATAC-seq bulk-level metrics. The fragment-
length distribution (Fig. 7a) usually shows strong subnucleosomal
and nucleosomal peaks as well as a weaker dinucleosomal one. High
TSS enrichment is desirable; in this case (Fig. 7b), it is very high (TSSE
≥25). See Note 8 for more details. Figure 7c shows the fraction of
mitochondrial reads in the human and mouse cells in the species
mixing experiment. Note that the fraction can vary greatly depending
on the properties of the cell type (cancer cell lines and highly meta-
bolically active cells tend to have more mitochondria [70]) and not
just on the experimental variation (which in this case is completely
minimized as the cells were processed together).
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Figure 8 shows the key scATACmetrics. One such metric is the
relationship between the number of fragments per cell barcode and
the TSS enrichment within each cell barcode (Fig. 8a). Another is
the curve of the number of fragments per cell barcode plotted
against the rank (by the number of fragments per cell barcode) of
the cell barcodes (Fig. 8b). Ideally, there should be a clear inflection
point between the cell barcodes with high fragment counts and the
cell barcodes with low fragment counts, indicating that a set of
high-quality cells have been captured and preserved intact through
the full pool–split procedure. A flatter, diagonal-like shape of that
curve can be indicative of loss of cell integrity during handling and
is potentially concerning regarding the biological interpretability of
the experiment if the lack of inflection is too extreme.
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Fig. 9 Basic evaluation of the bulk-level RNA-seq properties. (a) Read distribution along transcript lengths. (b)
Read distribution relative to the exonic, intronic, and intergenic genomic spaces

5.4 RNA Post-

sequencing Quality

Evaluation

Figure 9 shows the typical parameters to be evaluated for a bulk-
level RNA-seq dataset. One is the distribution of reads along tran-
scripts (Fig. 9a). SHARE-seq is not a 3’-tagging experiment the
way some scRNA-seq approaches are as it attaches UMIs to the 3’
end of transcripts, but cDNAs are tagmented at random after
cDNA amplification; thus the first reads of the RNA part of a
SHARE-seq dataset can be some distance away from the 3’ end.

Another is the distribution of reads relative to the annotation
(Fig. 9b). As is often observed in scRNA-seq datasets, SHARE-seq
RNA libraries contain a significant portion of reads originating
from introns, presumably from unspliced transcripts present in
the nucleus. This is likely due to the fact that the ATAC reaction
has to happen first in the workflow, and thus a substantial portion of
the cytoplasm is lost and the final libraries are enriched for nuclear
material.

Figure 10 shows the key metric for evaluating the success of the
RNA portion of a SHARE-seq experiment. As with ATAC above,
the curve of the number of UMIs per cell barcode plotted against
the rank (by the number of UMIs per cell barcode) of the cell
barcodes should ideally feature a clear inflection point between
the cell barcodes with high UMI counts and the cell barcodes
with low UMI counts (Fig. 10a). There should also be a concor-
dance between the cell barcodes with high ATAC fragment counts
and those with high UMI counts, i.e., the same cells are of high
quality in both modalities, and are thus usable for joint analysis
(Fig. 10b).
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5.5 Dimensionality

Reduction and Cell

Type/Cluster

Identification

Following initial data processing, clusters and cell types can be
identified using standard tools for that purpose such as Seurat
[68] and/or ArchR [67]. Figure 11 shows typical such output in
UMAP space for both the ATAC and RNA sides of a SHARE-seq
experiment from a human embryonic lung tissue sample.
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6 Notes

1. The details of the production of hyperactive transposition are
beyond the scope of this chapter. However, detailed instruc-
tions for how to carry it out can be found in Picelli et al.
2014 [71].

2. In this chapter, we presented one of many available protocols
for tissue dissociation and nuclei isolation that has worked in
our hands in some contexts. However, the variety of tissues and
their properties that can be encountered in different organisms
is vast, making it practically impossible to have one common
such protocol for all situations. Thus novel optimal procedures
for tissue dissociation often have to be empirically devised or
adapted.

3. The protocol we described here used light 0.1% FA crosslink-
ing. This does not mean that optimal results will be obtained in
all contexts with the same conditions, and crosslinking may
have to be optimized depending on the specifics of the experi-
mental system being studied.

4. The protocol described here is for a 96 × 96 × 96 indexing.
However, it can be expanded to more cycles and/or more
barcodes, e.g., to a 3-round 384 × 384 × 384 indexing, or
4-round or 5-round 96/384 × 96/384 × 96/384. Pick the
optimal design based on the availability of robotic liquids
handlers (it is generally not practical to carry out pipetting of
384-well plates by hand), the desired throughput, and other
considerations. Note that additional barcodes and linker would
have to be designed so that they are compatible with each other
and with further rounds of barcoding. Aim for as much dis-
tance in sequence space between the 8-bp barcodes (or increase
their length, if the sequencing format allows for it). The set of
8-bp barcodes can be identical throughout all rounds of
indexing.

5. Low-binding tubes are preferable for all reactions in order to
ensure maximum yields.

6. It is optimal in terms of effort to anneal a sufficient amount of
oligos for multiple experiments on many separate plates. These
can then be used immediately when cells/tissues become avail-
able, saving a considerable amount of experimental time.

7. The TB buffer described here is modified from the original
omniATAC protocol with the addition of acetate. In our expe-
rience, this provides superior results compared to the tradi-
tional buffer formulation.
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8. In our (and not only ours) experience, experiments in cell lines
always produce much higher quality ATAC datasets than those
obtained from tissues, especially frozen tissues. This is not
limited to SHARE-seq but is what has been observed by
numerous previous studies mapping chromatin accessibility in
tissue samples in contexts such as cancer, development, and
adult tissues [27, 28, 72, 73]. This is likely due to the extensive
handling and freezing and thawing of tissues leading to the
breaking up of nuclei and the release of unprotected free DNA
that is tagmented by Tn5, increasing the background frag-
ments and decreasing the signal to noise. Whether future pro-
tocol optimizations can resolve these issues or they are
fundamentally insurmountable is not known at present.
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