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Review 

Systems biology approaches to unravel lymphocyte 
subsets and function 
YeEun Kim1,2, William J Greenleaf3 and Sean C Bendall2   

Single-cell technologies have revealed the extensive 
heterogeneity and complexity of the immune system. Systems 
biology approaches in immunology have taken advantage of 
the high-parameter, high-throughput data and analyzed 
immune cell types in a ‘bottom-up’ data-driven method. This 
approach has discovered previously unrecognized cell types 
and functions. Especially for human immunology, in which 
experimental manipulations are challenging, systems approach 
has become a successful means to investigate physiologically 
relevant contexts. This review focuses on the recent findings in 
lymphocyte biology, from their development, differentiation into 
subsets, and heterogeneity in their functions, enabled by these 
systems approaches. Furthermore, we review examples of the 
application of findings from systems approach studies and 
discuss how now to leave the rich dataset in the curse of high 
dimensionality. 
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Introduction 
The immune system is comprised of diverse sets of cells 
with distinct yet versatile functions that interact with 
each other to exert sophisticated immune responses. For 
example, the powerful effect of vaccines we are wit-
nessing against COVID is mediated by B cells that se-
crete antigen-specific antibodies, but the effective 
production of antibody production requires activated 

CD4+ helper T cells. CD4 T-helper cells, on the other 
hand, require antigen-presenting cells, such as dendritic 
cells. Depending on how they were stimulated, CD4 T 
cells differentiate into different subsets with distinct 
cytokine profiles, which shape various immune re-
sponses. What we call an immune response at an orga-
nismal level is actually this intricate coordination of all 
these diverse cell types. Thus, to comprehend physio-
logically relevant immune responses, it is critical to un-
derstand the diversity of immune cells in the act and 
their interactions with each other. Systems immunology 
is the attempt to understand the immune system as a 
whole and has successfully broadened the spectrum of 
immunological understanding [1]. One type of the most 
popular tools in systems immunology is single-cell ana-
lysis, the earliest form of which was flow cytometry. In 
the hematopoietic immune systems, cells are con-
ventionally defined by their immunophenotype (i.e. 
CD3 as a T-cell marker, CD19 as a B-cell marker). At 
the same time, there are functional states assigned via 
their effector function (i.e. antigen presentation, pha-
gocytosis, and cytokine production). To capture both the 
diversity of cell types and states in a complex immune 
system, there is an inextricable link between single-cell 
techniques and the biological insights they can enable. 
Here, we review recent findings on lymphocyte differ-
entiation, subsets, and functions by these systems ap-
proaches with single-cell technologies (Figure 1). 

Systems analysis with single-cell 
technologies 
The most familiar and established single-cell technique 
immunologists have is the fluorescence-activated cell 
sorter (FACS) [2]. The concept of labeling cells with 
fluorescent-tagged monoclonal antibodies and then ana-
lyzing them one at a time in the flow cytometer was first 
described by Leonard Herzenberg in 1969 [2,3]. Fur-
thermore, the prospective isolation (or ‘sorting’) func-
tionality of FACS enables downstream functional 
experiments with the exact cells identified by their flow 
cytometric properties. Ever since then, immunologists 
have identified, prospectively isolated, and analyzed the 
functions of immune cell types that match with a specific 
immune phenotype or master regulator transcription 
factor (i.e. CD25+ FoxP3+ regulatory T cells). Con-
sidering the widespread usage of this powerful tool in the 
history of immunology research, it is not an overstatement 

]]]] 
]]]]]] 

www.sciencedirect.com Current Opinion in Immunology 2023, 82:102323 

http://www.sciencedirect.com/science/journal/09527915
mailto:bendall@stanford.edu
https://doi.org/10.1016/j.coi.2023.102323
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coi.2023.102323&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coi.2023.102323&domain=pdf


to say that modern immunology is based on the flow cy-
tometry. Still, the limitation in the parameterization of 
these experiments (i.e. multiplexing) meant that most 
applications were still ‘top-down’, where cell populations 
of interest and their compositions were predetermined 
before the experiment. 

Single-cell mass cytometry, also known as Cytometry by 
Time-of-flight (CyTOF), is a direct successor of flow 
cytometry with metal-isotope-tagged antibodies [4,5], 
instead of fluorescence-tagged antibodies. By measuring 
the metal-isotope-specific mass-to-charge ratio (m/z), 
mass cytometry increases the number of parameters 
measured by the cell to over 50 per cell on millions of 
cells per experiment [5,6]. Inheriting many aspects of 
flow cytometry (sample processing, staining, similar 
machine operations, data structure format, etc.), the in-
creased number of parameters enabled a smooth transi-
tion of flow cytometry users into a systems approach with 
this tool. The technical advantages of mass cytometry 
and comparison with flow cytometry have been de-
scribed well in other reviews [6,7]. Overall, this in-
creased parameterization facilitates a more ‘bottom-up’, 
data-driven understanding of each experiment where 
previously unanticipated cell states and populations 
could be discovered and organized through un-
anticipated combinations of the molecular features 
measured. 

With higher parameterization, but also higher cost-per- 
cell and therefore relatively lower cell number, single- 
cell sequencing has become more common and acces-
sible to all fields of biology. Ever since its first appear-
ance in 2009 [8], we have experienced a burst of 
different methods and throughput in single-cell RNA 
sequencing (scRNA-seq) in the last decade [9]. The 
recent publication of Tabula Sapiens [10] with nearly 
500 000 cells from 24 tissues and organs, and similarly 
Tabula Muris a few years earlier [11], highlights the 
widespread application of scRNA-seq in different tissues 
as well as the abundance of public resources that can be 
utilized in a systems approach. Following the wide-
spread impact of scRNA-seq in immunology research  
[12–14], technologies to analyze other modalities, such 
as chromatin accessibility [15,16], histone modifications  
[17], chromatin conformation [18], and so on, have also 
become available as high-throughput single-cell assays. 
More recently, new methods that combine measure-
ments of multiple modalities, including RNA, protein 
epitopes, chromatin accessibility, spatial information, 
and more, have developed rapidly. Multimodal tech-
nologies and spatial information provide novel opportu-
nities to study complex regulatory mechanisms and 
cell–cell interactions, as reviewed elsewhere [19,20]. For 
the scope of this article, we will focus on the biological 
findings on lymphocytes made with CyTOF and single- 
cell sequencing methods. 

Figure 1  
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Summary of lymphoid subsets and functions reviewed in this article. This article reviews the recent systems approach studies on lymphopoiesis in 
bone marrow and thymus and cell subtypes and functions of ILC, B cell, and T cell.   
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Single-cell techniques highlight the 
continuum of adult human hematopoiesis 
The bottom-up, data-driven interpretation of next-gen-
eration single-cell datasets, has enabled researchers to 
investigate systems that are traditionally difficult to ex-
perimentally manipulate, such as human hematopoiesis 
bone marrow cells. Such approaches now allow the 
construction of dynamic models of cellular differentia-
tion processes from an otherwise static sample because 
virtually all cell types and states are present at any one 
time and can be organized in silico. While the concept of 
hematopoiesis and hematopoietic stem and progenitors 
has been defined both in mice and humans, human bone 
marrow is not nearly accessible to intervene or experi-
ment in its native condition compared with mouse 
models. Hence, with the advances in single-cell tech-
nologies, multiple groups have investigated human bone 
marrow hematopoiesis and demonstrated the molecular 
phenotypic continuum of hematopoietic progenitors in 
protein [5], RNA [21,22], and chromatin accessibility  
[23] landscapes. Such collection of high-throughput and 
high-dimensional data that span the whole develop-
mental trajectory provided opportunities for the devel-
opment of trajectory inference (TI) algorithms — often 
referred to as pseudotime analysis. In these computa-
tional techniques, cells are ordered by similarity in high- 
dimensional (RNA, protein, chromatin accessibility, etc.) 
space, with the aim of recapitulating the natural differ-
entiation process in vivo [24]. Among multiple TI algo-
rithms developed recently [24,25], one of the early 
exemplary uses of TI was a study with B lymphopoiesis 
in human bone marrow [26]. In this study, the authors 
developed a TI algorithm, Wanderlust, to recreate the B- 
lymphopoiesis pseudotime based on a single-cell mass 
cytometry analysis of bone marrow progenitors. Across 
pseudotime, there were specific coordination points at 
which multiple developmentally crucial events, such as 
the IL-7/STAT5 checkpoint, lead to the im-
munoglobulin gene rearrangement event. Moreover, the 
developmental trajectory of human B lymphopoiesis 
established in this paper became the basis for analyzing 
disease samples in another study with B-cell precursor 
acute lymphoblastic leukemia (ALL) [27]. Good et al. 
took a machine learning approach to assign B-leukemic 
blasts to the closest normal B-cell developmental po-
pulation and identified developmentally dependent 
predictors of relapse that significantly enhance the risk 
prediction at diagnosis in ALL [27]. Similar approaches 
of utilizing normal single-cell hematopoietic data to 
analyze malignant leukemic samples have been used 
with RNA expression or chromatin accessibility data as 
well [28,29]. 

Along with the single-cell RNA-seq and TIs, novel 
methods for lineage tracing have evolved rapidly over 
the last decade [30]. Especially the combination of 
single-cell RNA-seq as a readout of lineage barcodes 

empowered scientists to compare the ground- truth tra-
jectory by the lineage barcode to the trajectory inferred 
from the transcriptome of single cells [31]. Applying this 
method in hematopoiesis, Weinreb et al. revealed cell 
fate biases are made clonally early in differentiation, and 
also that clonally distinct hematopoietic progenitors can 
converge into a similar transcriptome, such as the 
monocyte development in the mouse steady-state he-
matopoiesis [32]. These methods and findings signify 
how the systems' approaches using single-cell methods 
are evolving to expand our knowledge. 

T lymphopoiesis in human thymus examined 
by advanced tools 
Another human hematopoietic organ that has been lar-
gely inaccessible for experimental manipulation is the 
thymus, in which later T-cell development takes place. 
While the complex steps of thymopoiesis have been 
studied extensively owing to mouse models [33], the 
translation of paradigms to human systems has been 
challenging, in part due to the scarcity of human thymus 
samples. Thus, recent scRNA-seq studies of human 
thymocytes [34–36] have considerably filled the knowl-
edge gap in the field. By assaying single-cell tran-
scriptome from more than 250 000 prenatal and postnatal 
thymic cells, Park et al. established a framework of 
human thymus development. Among 50 different cell 
states identified in the human thymus, including fibro-
blasts and epithelial cells, existed unconventional T 
cells were first reported in human thymus, such as 
CD8αα+ T cells, Natural Killer T (NKT)-like cells, and 
TH17-like cells [34]. Another approach used by Le et al. 
and Lavaert et al. was to enrich the most premature 
precursors, earliest thymic progenitors (ETPs), by en-
riching for CD34+ cells in the thymus via FACS to study 
T-lineage developmental progression. Both groups uti-
lized high-dimensional scRNA-seq data to define the 
developmental states of thymocytes and showed that the 
overall trajectory and expression of core regulatory genes 
are conserved between mouse and human thymopoiesis  
[35–37]. In particular, both studies identified a pro-
genitor population expressing the Interlukin-3 (IL-3) 
receptor subunit CD123 that is transcriptionally primed 
for plasmacytoid dendritic cells in the thymus CD34+ 
compartment [35,36]. One remaining question is how 
these putative ETPs are connected to other cells in the 
hematopoietic hierarchy. While the fetal liver lympho-
myeloid progenitors [38] seemed to bear the closest 
transcriptomic profile compared with the fetal thymic 
ETPs [34], the bone marrow counterpart remains am-
biguous. 

T-cell heterogeneities explained at the single- 
cell level 
Even for T cells, likely the most-studied cell type in 
immunology, the heterogeneity across different tissue 
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sites and activation states has been a difficult topic to 
tackle. For example, T- cell exhaustion has been de-
scribed for decades, but the term has been used broadly 
for a heterogeneous population of exhausted or dys-
functional T cells [39–41]. Alongside the seminal papers 
in the field that identified Thymocyte selection-asso-
ciated high mobility group box factor (TOX) as the ex-
haustion marker via more traditional methods [42,43], 
numerous studies utilized scRNA-seq to analyze the 
heterogeneity of T-cell responses and discovered key 
gene regulation programs led by TOX [44] and T cell 
factor-1 (TCF-1) [45], driving these cell states. Espe-
cially the expression of TOX and the epigenetic land-
scape driven by TOX is demonstrated to be the crucial 
difference between other memory and effector T cells 
versus exhausted T cells [42–44,46,47]. The study of 
exhausted T cells using similar approaches has been 
extended to the context of chronic infection, cancer, and 
cancer immunotherapy with single-cell technologies  
[48–51] whose findings can be reviewed elsewhere  
[40,41]. Moreover, the VDJ sequencing of T cell re-
ceptors (TCRs) has enabled clonal lineage tracing of T 
cells in single-cell sequencing approaches. In the context 
of T-cell exhaustion, TCR sequencing was successfully 
applied in the basal cell carcinoma samples with 
checkpoint blockade to show novel clonotypes of T-cell 
expansion upon anti-Programmed cell death protein 1 
(PD-1) treatment [52]. Another recent study with TCR 
sequencing showed that TCR signaling avidity corre-
lated with different subsets of exhausted T cells in 
mouse Lymphocytic Choriomeningitis Virus (LCMV) 
models or human tumor-infiltrating lymphocytes [53]. 

Another crucial aspect of T cells that is frequently as-
sociated with their functional states is the cellular me-
tabolism [54,55]. While the significance of metabolic 
regulation for different T- cell populations has been 
recognized previously [56,57], the bottom-up approaches 
to utilize the metabolic states of T cells to investigate 
their functional states at the single-cell level are fairly 
new. Recently, protein-based single-cell studies that 
specifically targeted the metabolic wiring of CD8 T cells 
reported metabolic states in accordance with functional 
states at the single-cell level [58,59]. These two studies 
utilized mass cytometry to quantify the protein expres-
sions of regulators that served as surrogates to the overall 
activity of the respective pathway they resided in [58]. 
Specifically, Hartman et al. demonstrated that, more 
precisely than the broader expression of exhausted T- 
cell phenotypes CD39 and PD1, the metabolic- state 
indicators specifically corroborate the exhausted cell 
states, particularly within the tumor microenvironment  
[58]. Further discussions on T-cell immunometabolism 
can be found in other review articles [60,61]. 

To reinforce recent advances, researchers have proposed 
an updated T-cell atlas. Szabo et al., for instance, have 

described the tissue-specific signatures and CD4 or CD8 
cell-type-specific activation states over 50 000 human T 
cells based on their transcriptomic profiles [62]. Ortho-
gonally, Wang et al. have compared classical T-cell 
subsets by surface markers to T-cell populations defined 
by scRNA-seq profiles [63]. While these studies suggest 
more complex T-cell subtypes than conventionally de-
fined, the authors conducted comparison with sorted 
populations to bridge the gap with what T-cell biologists 
currently use and what is observed in single-cell ana-
lyses. Moreover, the promise of data-driven bottom-up 
analysis of complex single-cell datasets is on full display 
where we are now able to differentiate all cellular T-cell 
diversity within an immune tissue in one analytical pass. 

B-cell classification revisited with a systems 
approach 
Compared with a plethora of T-cell studies with systems 
approaches, there have been limited attempts to sys-
tematically investigate the functional states of human B 
cells. In most cases, B-cell classification has been based 
on their maturation status, antibody repertoire, and an-
tigen-experience states [64]. As an example, single-cell 
sequencing combined with VDJ sequencing was utilized 
to study the B-cell maturation trajectory during antibody 
class switching in tonsils [65]. Although antibody pro-
duction is exclusively a B-cell-specific function, the 
other functions of B cells, such as antigen presenta-
tion and cytokine production, as well as tissue-specific 
B-cell subsets, should not be neglected. In this regard, a 
recent mass cytometry study screened for the expression 
of 351 surface molecules on human B cells in 4 lymphoid 
tissues (bone marrow, peripheral blood, tonsil, and 
lymph node) [66]. In this, Glass et al. identified 12 dif-
ferent populations of human B cells and interrogated 
their functions via subset-specific protein expression 
profiles. Among the 12 populations exists a 
CD19hiCD11c+ memory population that exhibited ac-
tive metabolic and transcriptional state and a CD39+ 

tonsil-resident population [66]. Moreover, the authors 
defined the gating schemes, CD45RB to the definition 
of early B-cell memory, for populations identified from 
their study. [66] Studies such as this, that connect high- 
dimensional multiomic datasets to ‘human-inter-
pretable’ cell populations in low-dimensional space, 
provide a valuable resource for more focused studies 
to come. 

Innate lymphoid cells: newest members of the 
family 
Over the last decade and a half, immunologists continue 
to discover new Natural Killer (NK)-like lymphoid cell 
types (i.e. non-T and -B) that exhibit distinct cytokine 
production profiles [67,68]. They were soon given a 
uniform nomenclature as different groups of innate 
lymphoid cells (ILCs) based on the absence of 
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rearranged antigen receptors [69] and classified together 
with already well-known NK cells and lymphoid tissue 
inducer, due to their phenotypic similarities and 
common developmental progenitors [67]. As their critical 
roles in tissue homeostasis are emphasized, recent ILC 
studies highlight the tissue-specific transcriptomic pro-
grams that suggest tissue microenvironment-derived 
priming during ILC differentiation [70–73]. 

On the other hand, NK cells, the quintessential ILC, 
have historically been characterized as circulating cells 
in peripheral blood. Nonetheless, NK cells in periph-
eral blood already show a vast diversity of NK receptor 
expression phenotypes, as demonstrated in the single- 
cell mass cytometry study by Horowitz et al.. In this 
study, the authors concluded that the combinatorial 
expression of NK receptors could lead to an estimated 
30 000 NK cell phenotypic populations in an individual  
[74]. Subsequently, various groups have utilized 
scRNA-seq to further describe NK cell diversity in 
mice and humans [75–77], in which tissue-specific NK 
subsets and differentiation trajectories were suggested. 
Considering their ability as a frontline defense against 
viruses and cancer, we anticipate a deeper under-
standing of NK cells to benefit the emerging NK cell- 
based immunotherapies [78,79]. 

Discussions — implications of immune 
heterogeneity 
Single-cell studies have highlighted the immense di-
versity of cell types within the immune system where 
previously thought of as discrete cell populations contain 
new molecular phenotypes that are often continuously 
connected to one another. Still, systems approach stu-
dies rely on computational clustering algorithms to de-
fine populations, whose granularity can be set manually 
by a parameter. Hence, the old, but still valid, debate 
between ‘lumpers and splitters’ is back. How granular 
should one be in defining a cell type? Where is the bar 
between the plasticity of an immune cell and a distinct 
cell type? Single-cell studies without specific biological 
questions or functionally assayable endpoints could end 
up with broad but shallow analyses lacking meaningful 
insights. 

To provide worthwhile knowledge to the field, a systems 
approach should be incorporated into the research as a 
means, not a goal. It is fundamental that studies on cell 
types and functional subsets need to be linked to spe-
cific definitions such that a ‘novel’ population can be the 
subject of follow-up studies. In any given modality, ei-
ther a cell-type-specific phenotype or cell-type-specific 
signature matrix should be defined to minimize ambi-
guity and/or subjectivity and enable more mechanistic 
studies and validation of causal relationships (Figure 2). 
Researchers should also consider the implication of a 

Figure 2  
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Example of high-dimensional data from a systems study translated into 
low-dimensional space and applied for follow-up studies. (Top) High- 
dimensional data from a systems approach are often analyzed with 
dimensional reduction algorithms or heatmaps. Based on this rich 
dataset, researchers often find a target population of interest (marked by 
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population in healthy and diseased context before 
claiming a new cell type to understand its role in 
homeostasis versus response to disruption. 

Albeit complicated, a well-designed, purpose-driven 
systems approach can provide the most profound and 
transferable information in multiple layers. It is un-
deniable that the burst of new technological advances 
and the systems approach studies utilizing them are 
contributing to understanding the immune system more 
rapidly than ever. 
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