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Human genetic studies can reveal the genes that cause dis-
ease and identify new therapeutic targets. Genome-wide 
association studies (GWAS) have identified thousands of 

disease-associated genetic variants1; however, determining their 
functional consequences has been difficult. Initial efforts have 
focused on mapping the cis-regulatory effects of these variants2. 
However, in many cases, identifying the genes that are altered in cis 
does not elucidate the disease etiology. Many cis-regulated genes are 
likely not directly involved in a disease-relevant process, but instead 
trans-regulate other genes that are directly involved3–5. Therefore, 
mapping trans-regulatory connections is crucial to identifying the 
most salient disease genes.

Only a few studies have successfully untangled the trans- 
regulatory impact of disease-associated variants6–8. In these studies, 
identifying the trans-regulated genes of a given single nucleotide 
polymorphism (SNP) enabled understanding of how each variant 
affects disease risk. These examples support the utility of map-
ping trans-regulatory connections, but measuring trans-regulation 
is proving harder than measuring cis-regulation, and is a largely 
unsolved problem.

Mapping trans-regulation using trans-eQTLs (expression quan-
titative trait loci) is difficult as trans-eQTLs generally have small 
effects and therefore require large sample sizes to detect5,9. An 
alternative approach is to perturb a gene experimentally and mea-
sure the effects on expression of other genes. These regulatory  

relationships are likely cell-type-specific so must be mapped in 
disease-relevant cells10. To perform mechanistic studies in cells 
relevant for immune-mediated diseases, we have pioneered the 
use of CRISPR in primary human T cells using Cas9 ribonucleo-
proteins (RNPs) and SLICE (sgRNA lentiviral infection with Cas9 
electroporation)11,12. Here, we focus on CD4+ T cells as autoimmune 
disease-associated SNPs are highly enriched in active chromatin in 
these cells13–16.

Methods such as Perturb-seq use CRISPR to knock out a selected 
set of genes and measure changes in gene expression17–20. We pre-
viously used these methods to perturb genes of interest and iden-
tify their downstream targets in human T cells12,21. We refer to this 
approach as ‘downstream mapping’, as it identifies genes that are 
downstream of the knocked-out genes in a transcriptional net-
work. However, such methods require a priori knowledge of the 
regulatory genes to select for disruption. In contrast, ‘upstream 
mapping’ would enable us to start with genes of interest and unbi-
asedly discover the upstream regulators that control their expres-
sion. Upstream mapping could be used to identify the regulators of 
known disease genes and infer how disease-associated genetic vari-
ants that cis-regulate the upstream genes likely also trans-regulate 
the downstream disease genes.

Here, we identified the upstream regulators of three key immune 
gene products: IL2RA (also known as CD25), IL-2 and CTLA4.  
IL-2 is an important cytokine that binds to the high affinity IL-2 
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receptor IL2RA to promote T cell proliferation and survival22,23. 
CTLA4 limits T cell activation by inhibiting CD28-costimulation 
from CD80/CD86 on antigen-presenting cells24. We mapped the 
regulatory network around these genes as their proper expression is 
critical for immune homeostasis and their disruption is associated 
with numerous complex and Mendelian immune diseases25–33.

After identifying upstream regulators, we performed down-
stream mapping by individually knocking out 24 of the regulators 
and measuring genome-wide changes in chromatin accessibility and 
gene expression. Combining upstream and downstream mapping 
enabled us to generate a comprehensive map of trans-regulatory 
connections in primary human cells (Fig. 1a). Furthermore, these 
data provided insights into the regulatory architecture of human 
gene networks, revealing a highly interconnected network that con-
tains extensive feedback loops, and is enriched for immune disease 
variants and genes. Our results provide a roadmap for identify-
ing networks of disease-associated genes by starting with several 
important seed genes and then prioritizing variants that disrupt 
components of these networks.

Results
Discovery of upstream regulators of IL2RA, IL-2 and CTLA4. As 
an initial step to understand the complete wiring of human T cells, 
we first sought to measure a fraction of the global network centered 
around three important immune gene products—IL2RA, IL-2 and 
CTLA4—that play critical roles in T cells and are implicated in 
multiple autoimmune diseases (Fig. 1b). We hypothesized that, by 
building out the network around these genes, we could identify cen-
tral components of the immune regulatory network.

We combined SLICE, to knock out thousands of genes in a pool 
of primary human T cells, with fluorescence-activated cell sorting 
(FACS) to discover which factors are upstream regulators of these 
three gene products (Fig. 2a). Since we were interested in identi-
fying trans-regulatory genes, we built a 6,000 single guide RNA 
(sgRNA) library targeting 1,198 transcription factors plus addi-
tional candidate genes and controls (Supplementary Table 1)34,35. 
We isolated CD4+ CD25– T cells from healthy human blood donors, 
stimulated the cells, infected them with lentivirus containing the 
sgRNAs and a green fluorescent protein (GFP) reporter, and then 
electroporated Cas9 RNPs to generate a pool of knockout (KO) 
T cells (see Methods for optimized SLICE protocol). We stained 
for IL2RA, IL-2 and CTLA4 and used FACS to sort the cells based 
on the top and bottom 15% of expression of these three proteins 
(Fig. 2a and Extended Data Fig. 1a). We sequenced the sorted cells 
to determine which sgRNAs were differentially enriched and thus 
identified genes that regulate the levels of IL2RA, IL-2 and CTLA4.

We first validated SLICE editing efficiency (Supplementary 
Note). Next, we analyzed the results from the IL2RA, IL-2 and 
CTLA4 screens, which identified 51, 66 and 59 significant hits, 
respectively (Fig. 2c–e and Supplementary Tables 2 and 3). 
Significant hits were highly reproducible between biological donors, 
and distinct sgRNAs targeting the top genes had concordant effects 
(Fig. 2b). As expected, positive control sgRNAs targeting IL2RA, 
IL-2 or CTLA4 were highly enriched in the low FACS bin in their 
respective screens. We successfully detected JAK3, STAT5A and 
STAT5B as hits, which are known positive regulators of IL2RA  
(Fig. 2c)23,36,37. We also identified a number of new hits. For example, 
MED12 has not been implicated in IL-2 signaling, but we identified 
it as a regulator of both IL2RA and IL-2 (Fig. 2c,d). Together, these 
results provide a comprehensive picture of how IL2RA, IL-2 and 
CTLA4 levels are regulated in human T cells.

Many of the hits were shared among the screens, suggesting that 
IL2RA, IL-2 and CTLA4 are highly coregulated. Of the 117 gene 
hits identified among the screens, 39 were significant in two of the 
screens, and 10 were significant in all three (Fig. 2f). We analyzed 
whether the genes identified in multiple screens had concordant 

effects on IL2RA, IL-2 and CTLA4 levels. IL2RA promotes the fit-
ness and proliferation of T cells, while CTLA4 inhibits T cell activa-
tion22,24. Most genes that regulate both IL2RA and CTLA4 regulate 
them in the same direction, suggesting that this network may help 
balance the consequences of T cell activation (Extended Data 
Fig. 1f). However, several perturbations push IL2RA and CTLA4 
in opposite directions and may dictate whether the overarching 
immune response is activating or inhibitory. These genes could rep-
resent interesting clinical targets to either strongly activate or limit 
T cell stimulation.

Arrayed knockouts validate and characterize screen results. To 
validate and further characterize how the screen hits regulate IL2RA, 
IL-2 or CTLA4, we performed arrayed knockouts coupled with flow 
cytometry (Fig. 3a,b) (Supplementary Note). The arrayed knock-
out results were highly concordant with the pooled screen results, 
confirming the biological reproducibility of our findings and dem-
onstrating the power of the pooled screening approach (Fig. 3c and 
Extended Data Fig. 2a–d). We were particularly interested in the 
genes that coregulate IL2RA, IL-2 and CTLA4, as these genes might 
control important immune networks. The arrayed knockout data 
confirmed that many regulators coregulate IL2RA, IL-2 and CTLA4 
(Fig. 3d). This validated dataset provides a comprehensive func-
tional map of regulatory connections between key immune genes 
and their upstream regulators in human T cells.

Mapping downstream target genes and CREs of IL2RA regu-
lators. In the second phase of the experiments, we switched to 
downstream mapping to identify other targets downstream of the 
regulators identified in the screens (Fig. 1a). Since many of the 
screen hits coregulate IL2RA, IL-2 and CTLA4, we thought that 
these regulators might control a broader, interconnected immune 
network. We focused on 24 regulators of IL2RA that had the largest 
effects on IL2RA levels in the validation dataset, including IL2RA 
itself. For controls, we used guide RNAs (gRNAs) targeting the 
safe harbor locus AAVS1. To identify downstream target genes and 
putative cis-regulatory elements (CREs) for each regulator, we per-
formed arrayed RNP knockouts in T cells from three human donors 
followed by bulk RNA-seq and ATAC-seq (Fig. 3a, Supplementary 
Table 4 and Supplementary Data 1 and 2). This approach enabled us 
to measure thousands of additional gene expression and chromatin 
changes compared with alternative single-cell sequencing methods.

We confirmed that the regulatory effects of knockouts can be 
ascertained from the sequencing data (Supplementary Note). The 
number of chromatin regions and genes affected by each knock-
out varied greatly. For example, FOXK1 knockout affected only 
548 ATAC-Seq peaks, while CBFB knockout affected 34,379 peaks 
(FDR-adjusted P < 0.05; Extended Data Fig. 3e). In the RNA-seq 
data, HIVEP2 knockout affected the expression of only 19 genes, 
while MED12 knockout affected the expression of 4,641 genes 
(FDR-adjusted P < 0.05; Extended Data Fig. 3d). While the num-
ber of significant changes in gene expression and chromatin acces-
sibility were roughly correlated, there were interesting exceptions: 
YY1 knockout results in many gene expression changes, but com-
paratively few chromatin accessibility changes. These data indicate 
that the knockout effects on chromatin and the transcriptome vary 
widely across regulators.

Individual regulators act at distinct IL2RA CREs. We next ana-
lyzed how knocking out each IL2RA regulator affected chromatin 
accessibility at the IL2RA locus and IL2RA expression. As expected, 
knocking out negative regulators of IL2RA tended to increase both 
IL2RA expression and chromatin accessibility (Fig. 4a). Conversely, 
knocking out positive regulators of IL2RA tended to decrease IL2RA 
expression and chromatin accessibility (Fig. 4a). We observed  
that knockouts had distinct effects on accessibility at different  
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noncoding elements in the locus (Fig. 4b). CBFB and TNFAIP3 
knockouts increased chromatin accessibility and IL2RA expres-
sion but affected different putative CREs. CBFB knockout broadly 
increased accessibility around an element in the first intron of 
IL2RA that was unaffected by TNFAIP3 knockout. TNFAIP3 
knockout increased accessibility at a 3′ element that was largely 

unchanged in the CBFB knockout. Similarly, IRF4 and STAT5B 
knockouts decreased chromatin accessibility and IL2RA expression 
but affected distinct putative CREs (Fig. 4b). These examples reveal 
how regulators act on distinct putative CREs to control the precise 
levels of IL2RA. Many of these regulators bind directly to the IL2RA 
locus (Extended Data Fig. 4). Furthermore, many of these altered 
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to identify the upstream regulators of key immune gene products. In step 2, we individually knocked out regulators identified in step 1 and measured 
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CREs overlap regions identified by a CRISPRa screen in Jurkat 
cells38, demonstrating that these regions are functionally capable 
of driving IL2RA expression (Extended Data Fig. 4). Broadly, these 
data demonstrate how genetic perturbations can be coupled with 
ATAC-seq and RNA-seq to understand how transcriptional path-
ways influence specific putative CREs and target gene expression.

IL2RA regulators form highly interconnected gene networks. 
Large perturbation studies have revealed the architecture of gene 
networks in bacteria and yeast39–41. However, as it has been diffi-
cult to perturb primary human cells efficiently, efforts to construct 
human gene networks have relied largely on observational coex-
pression data42–46. However, such data cannot reliably determine the 
directions of effects in gene networks. To overcome this limitation, 

we generated a large dataset to understand how perturbations affect 
chromatin regulation and gene expression in primary human cells.

We wondered whether the IL2RA regulators act independently 
or as part of an interconnected network. We first analyzed how each 
knockout affects the expression of the other IL2RA regulators. The 
loss of each regulator significantly altered the expression of between 
1 and 18 (median 9.5) out of 24 other IL2RA regulators (including 
IL2RA itself) (Fig. 5a and Supplementary Table 5). These changes 
are probably not all due to direct regulation but highlight the com-
plexity of human gene networks in which perturbing one regulator 
leads to a cascade of both direct and indirect effects on other regula-
tors that cumulatively contribute to altered phenotypes.

The transcription factor IRF4 exemplified the extensive connec-
tions between IL2RA regulators. IRF4 knockout significantly altered 
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the expression of 9 other regulators, while 15 other knockouts sig-
nificantly altered the expression of IRF4 (Fig. 5b). The number of 
connections between IRF4 and other regulators illustrates how even 
this subnetwork of 24 genes is highly interconnected and suggests 
that the full network is likely even more interconnected.

To understand the architecture of this network better, we ana-
lyzed the number of ‘outgoing’ and ‘incoming’ connections for 
each IL2RA regulator (Fig. 5c). Outgoing connections represent 
the number of other IL2RA regulators affected by a given knock-
out. Incoming connections represent the number of knockouts 
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that affect a given regulator. CBFB and ATXN7L3 had many out-
going connections, but few incoming connections, suggesting that 
they may serve as more upstream regulators. Conversely, HIVEP2 
and FOXP1 had many incoming connections, but very few outgo-
ing connections, revealing that they are relatively more targeted in 
regulating IL2RA. To gain further insight into regulator–regulator 
epistatic interactions, we performed combinatorial perturbations of 
five of the strongest regulators of IL2RA. Most combinatorial per-
turbations had roughly additive effects on IL2RA levels, suggesting 
that they operate through independent pathways (Extended Data 
Fig. 3f). The impact on IL2RA levels was dependent on the efficacy 
of the knockouts in the donors (Extended Data Fig. 3g). The combi-
natorial knockout data suggest that JAK3 and STAT5B are epistatic, 
consistent with the literature on the well-characterized JAK/STAT 
pathway37. Additionally, CBFB and IRF4 had a possible epistatic 
relationship, with CBFB knockout dampening the effect of IRF4 
knockout, suggesting an interesting future direction of investigation 
to explore the relationships between regulators.

Strikingly, IL2RA itself had a high number of both incoming 
and outgoing connections (Fig. 5c). The high number of incoming 
connections was expected given our experimental design, but the 
number of outgoing connections suggests that IL2RA is involved in 
extensive feedback loops. We analyzed how many IL2RA regulators 
were differentially expressed in the IL2RA knockout and observed 
numerous feedback loops between IL2RA regulators and IL2RA 
itself (Fig. 5d). We also identified feedback loops between IL2RA 
regulators. For example, knockout of GATA3 and ETS1 decreased 
each other’s expression (Fig. 5e). To determine whether this recipro-
cal regulation is direct, we analyzed public ETS1 and GATA3 chro-
matin immunoprecipitation sequencing (ChIP–seq)47,48 in human 
CD4+ T cells with our ETS1 and GATA3 knockout ATAC-seq data. 
In the GATA3 knockout ATAC-seq data, there was a specific loss 
of chromatin accessibility at a GATA3 ChIP–seq peak in the ETS1 
locus. Similarly, in the ETS1 knockout ATAC-seq data, there was a 
loss of chromatin accessibility at two ETS1 ChIP–seq peaks in the 
GATA3 locus. Together, these data suggest that ETS1 and GATA3 
directly control specific sites of chromatin accessibility at each oth-
er’s loci and regulate each other’s expression. To date, feedback loops 
likely have been underdetected in human gene networks because 
their identification requires the reciprocal perturbations performed 
in this study.

Coregulated gene sets are enriched for immune disease genes. 
Since the IL2RA regulators form a highly interconnected network, 
we were interested to know whether they coregulate genes with 
critical roles in T cells. We identified genes that are coregulated to 
different degrees on the basis of the number of knockout samples 
where the gene is differentially expressed (Fig. 6a). Most genes 
were differentially expressed in one to six knockouts, but hundreds 
of genes were differentially expressed in ten or more knockouts, 
indicating that they are highly coregulated by IL2RA regulators  
(Fig. 6b). These highly coregulated genes were significantly enriched 
for annotated immune genes (Fig. 6b). We were interested in 
whether the IL2RA regulators also coregulate either Mendelian or 

GWAS immune disease genes49–51. Strikingly, the IL2RA coregulated 
network was significantly enriched for Mendelian and GWAS dis-
ease genes (Fig. 6b). This finding suggests that key immune disease 
genes sit in a highly connected central network. To our knowledge, 
a highly connected network of disease genes has not been dem-
onstrated experimentally, but is consistent with recent theoretical 
models suggesting that peripheral regulatory connections converge 
on a set of core genes that are directly involved in disease-relevant 
cellular processes3,52.

To further explore how IL2RA regulators and their targets 
might be involved in complex forms of immune disease, we used 
stratified linkage disequilibrium (LD) score (s-LDSC) regression to 
calculate the enrichment of immune and nonimmune trait herita-
bility in ATAC-Seq peaks53. Consistent with previous analyses13–16,54, 
heritability for immune traits is enriched in T cell accessible chro-
matin compared with nonimmune traits (Fig. 6c). We also found 
that ATAC-seq peaks that were significantly changed in at least 
one knockout were further enriched for immune trait heritability  
(Fig. 6c). We confirmed that this signal was not driven by just a few 
of the regulators (Extended Data Fig. 5a). This enrichment suggests 
that IL2RA regulators control a set of critical chromatin accessibil-
ity sites that can be altered by genetic variants and contribute to 
immune disease risk, revealing a network of coregulated noncod-
ing elements that could help to prioritize and characterize candidate 
GWAS hits.

We next wanted to test whether highly coregulated genes are spe-
cifically enriched for immune trait heritability rather than complex 
trait heritability more generally. We used s-LDSC to measure the 
enrichment of heritability in regions surrounding genes coregulated 
to different degrees for immune and nonimmune traits14. Highly 
coregulated genes were enriched for immune trait heritability com-
pared with nonimmune traits or immune genes that are not highly 
coregulated (Fig. 6d). To control for immune genes being more 
highly expressed in T cells, and thus easier to detect as differen-
tially expressed, we generated a background set of genes for each 
coregulation bin. These background sets were sampled from genes 
that were differentially expressed in less than five knockouts and 
were matched to the differentially expressed genes in each coregula-
tion bin based on expression. Highly coregulated genes were more 
enriched than their corresponding background sets, demonstrat-
ing that the enrichment is not just driven by levels of expression  
(Fig. 6d and Extended Data Fig. 5b). Overall, these data show that 
regulators of IL2RA coregulate a network of other immune disease 
genes. Furthermore, this process of identifying the regulators of key 
disease genes and then mapping their downstream targets could 
serve as a general strategy to map disease networks.

IL2RA regulators affect CREs and genes associated with multiple 
sclerosis. Among immune traits, multiple sclerosis (MS) heritabil-
ity was markedly enriched in our ATAC-seq peaks (Extended Data 
Fig. 6a). To explore how IL2RA regulators affect putative CREs and 
genes associated with MS, we used the probabilistic identification 
of causal (PICS)13,51 algorithm to identify likely causal SNPs from a 
recent MS GWAS meta-analysis55. Of 100 MS-associated SNPs with 

Fig. 5 | IL2RA regulators form highly interconnected gene networks. a, Significant changes in the expression of IL2RA regulators, IL2RA and CTLA4 in 
each knockout sample (FDR-adjusted P < 0.05 from Limma for all changes shown). b, Map of regulatory connections between IRF4 and other IL2RA 
regulators detected via RNA-seq in each knockout sample. Arrows point towards the target gene perturbed in each knockout sample, while the color of 
lines shows the fold change of the target (FDR-adjusted P < 0.05 from Limma for all changes shown). c, Number of outgoing and incoming regulatory 
connections between each IL2RA regulator and all other IL2RA regulators. d, Map of regulatory connections between IL2RA and regulators of IL2RA 
as described in b. e, Feedback loop between ETS1 and GATA3; connections as described in b. Top tracks, changes in chromatin accessibility in GATA3 
knockout cells and ChIP–seq of GATA3 binding at the ETS1 locus. Bottom tracks, changes in chromatin accessibility in ETS1 knockout cells and ChIP–seq 
of ETS1 binding at the GATA3 locus. ATAC-seq data are shown as normalized read coverage; samples were normalized using the size factors from DESeq2. 
ChIP–seq data are shown as background subtracted binding in reads per million. GATA3 ChIP–seq from Kanhere et al.47 and ETS1 ChIP–seq from Schmidl 
et al.48. n = 3 donors for RNA-seq and ATAC-seq. chr, chromosome.

Nature Genetics | VOL 54 | August 2022 | 1133–1144 | www.nature.com/naturegenetics 1139

http://www.nature.com/naturegenetics


Articles NATuRE GEnETICS

ETS1 GATA3

IL2RA

Genes of
interest

IL2RA

STAT5AIRF4 KMT2A FOXP1 ETS1 IRF1 HIVEP2 ATXN7L3 CBFBKLF2

STAT5B GATA3 JAK3 PTEN MED12 MYB ZNF217 FOXK1 TNFAIP3

STAT5A IRF4 JAK3 RELAPTEN YY1 ZNF217IRF2 FOXK1 TNFAIP3

STAT5B GATA3 KMT2A FOXP1 ETS1 MBD2 MYB HIVEP2 ATXN7L3 KLF2 CBFB

IL2RA

a

c d

e

Regulators of IL2RA regulate each other’s expression
IL2RA regulators

CBFB KO
TNFAIP3 KO

KLF2 KO
FOXK1 KO

ATXN7L3 KO
ZNF217 KO
HIVEP2 KO

IRF2 KO
MYB KO
IRF1 KO

MED12 KO
YY1 KO

MBD2 KO
RELA KO
ETS1 KO
PTEN KO

FOXP1 KO
JAK3 KO

KMT2A KO
IRF4 KO

GATA3 KO
STAT5A KO

K
O

 s
am

pl
e

Genelog2 fold change

<–1.0 –0.5 0 0.5 >1.0

log2 fold change

<–1.0 –0.5 0 0.5 >1.0

STAT5B KO
IL2RA KO

CBFB

TNFAIP
3
KLF

2

FOXK1

ATXN7L
3

ZNF21
7

HIV
EP2

IR
F2

M
YB

IR
F1

M
ED12 YY1

M
BD2

RELA
ETS1

PTEN

FOXP1
JA

K3

KM
T2A

IR
F4

GATA3

STAT5A

STAT5B
IL

2R
A

CTLA
4

b
Extensive regulation between IRF4 and other IL2RA regulators

Feedback loops between IL2RA and regulators of IL2RANumber of regulatory connections between IL2RA regulators

20
IL2RA

IRF4KLF2
FOXP1

IRF1

IRF2

ZNF217
GATA3

JAK3
KMT2A

STAT5A

STAT5B

TNFAIP3

MBD2

HIVEP1
MYB

ETS1

PTEN CBFB

ATXN7L3

MED12

FOXK1

RELA

YY1

15

N
um

be
r 

of
 in

co
m

in
g 

co
nn

ec
tio

ns

10

5

0

5 10

Number of outgoing connections

15

Control ATAC-seq

ETS1 KO ATAC-seq

ETS1 ChIP–seq

Control ATAC-seq

GATA3 KO ATAC-seq

GATA3 ChIP–seq

Feedback loop between GATA3 and ETS1: binding of GATA3 at ETS1 locus and ETS1 at GATA3 locus

All connections
significant FDR <0.05

log2 fold change

<–1.0 –0.5 0 0.5 >1.0

All connections
significant FDR <0.05

0

360

0

6

ETS1MIR6090 ETS1-AS1

128,460 128,480 128,500 128,520 128,540 128,560 128,580 kbchr11

0

210

0

1

GATA3

8,055 8,060 8,065 8,070 8,075 8,080 8,085 kbchr10

Nature Genetics | VOL 54 | August 2022 | 1133–1144 | www.nature.com/naturegenetics1140

http://www.nature.com/naturegenetics


ArticlesNATuRE GEnETICS

a PICS probability greater than 50%, 28 were within an ATAC-seq 
peak (Fig. 7a). Remarkably, 17 of these SNPs were in ATAC-seq 
peaks that were altered upon knockout of an IL2RA regulator  
(Fig. 7a; P = 0.004, one-sided hypergeometric test). This finding 
reveals specific regulators that affect noncoding elements contain-
ing fine-mapped MS variants and places a large set of MS variants 
into a newly defined gene regulatory network.

To explore how MS SNPs might disrupt this network, we sought 
to link knockouts of IL2RA regulators to changes in putative CREs 
containing MS SNPs and to changes in the expression of nearby 
genes. For each SNP within a differential ATAC-seq peak, we ana-
lyzed how many protein-coding genes within 100 kb were differen-
tially expressed in at least one knockout (Extended Data Fig. 6b). 
The MS SNP rs1465697 is an eQTL in various cell types for CD37, 

DKKL1, TEAD2 and SLC6A16 (ref. 32). However, only CD37 was 
expressed in our data (Fig. 7b). Knockout of KLF2, TNFAIP3 and 
ZNF217 decreased chromatin accessibility at the putative CRE con-
taining rs1465697 and CD37 expression (Fig. 7b). These concordant 
changes across different knockouts strongly link this putative CRE 
to CD37 as the relevant target gene in T cells.

We used CRISPR to edit this putative CRE and test the effect on 
CD37 expression. We sorted the edited cells based on CD37 levels 
and sequenced the CRE. Cells containing the reference allele were 
enriched in CD37 high cells, while insertions/deletions around 
the SNP were enriched in CD37 low cells (Extended Data Fig. 6c). 
Furthermore, the average deletion size was larger in the CD37 low 
cells (Extended Data Fig. 6d). These data suggest that this CRE can 
act as an enhancer for CD37. However, single basepair edits at the 
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SNP or the naturally occurring SNP in the case of donor 3 were 
not differentially enriched between the CD37 high and low cells 
(Extended Data Fig. 6c). The SNP is an eQTL for CD37 in other 
cells, suggesting it can regulate CD37, but its effects may be time- or 
context-dependent32,38. Overall, these results suggest that analyzing 
concordant effects on putative CREs and nearby genes across mul-
tiple knockouts could be a generalizable strategy to link CREs to 
their target genes.

Distinct SNPs associated with the same disease might also dis-
rupt multiple components of a regulatory cascade. The MS SNP and 
eQTL rs1399180 (ref. 32) is in the intron of GATA3, suggesting that 
altered GATA3 levels contribute to MS risk. We next asked whether 
GATA3 regulates any putative CREs containing an MS SNP. Using 
public GATA3 ChIP–seq47 and our GATA3 knockout ATAC-seq, we 
found a putative CRE directly bound by GATA3 upstream of RGS1 
that harbors the MS SNP rs1323292 (Fig. 7c). GATA3 knockout sig-
nificantly decreased chromatin accessibility at this CRE and RGS1 
expression (Fig. 7c). These data suggest that RGS1 expression and 
accessibility at its MS-associated CRE depend directly on GATA3. 
Furthermore, these data demonstrate how disease SNPs can affect 
multiple genes within a single regulatory cascade. We also per-
formed a motif analysis to predict the transcription factor binding 
motifs that might be disrupted by these SNPs (Supplementary Table 
6). Together, these examples illustrate how we can combine genetic 
perturbations, ATAC-seq and RNA-seq to understand how disease 
SNPs disrupt regulatory connections within gene networks, high-
lighting key regulators, putative CREs and downstream target genes 
required for immune homeostasis (Fig. 7d).

Discussion
Limited understanding of trans-regulatory networks has hampered 
our understanding of how disease-associated variants affect disease 
risk. To map trans-regulatory networks, the field has tradition-
ally faced a tradeoff between performing observational studies in 
disease-relevant primary cells or functional studies in less relevant 
cell lines or animal models. To overcome limitations with each of 
these approaches, we combined CRISPR perturbations, RNA-seq 
and ATAC-seq in primary human T cells to decipher the regulation 
of human disease genes and putative CREs.

Although trans-regulation can be inferred through trans-eQTL 
studies, such studies require thousands of samples to detect a mod-
est number of trans-eQTLs5,9. These sample sizes are prohibitive 
to map trans-regulatory connections comprehensively, especially 
since they must be repeated in each cell type of interest. In con-
trast, we identified dozens of upstream regulators and thousands of 
downstream targets by performing genetic perturbations directly in 
disease-relevant primary cells.

Functional studies to identify upstream regulators have been 
performed primarily in cell lines or mouse models35,56–58, which 
are not ideal for understanding disease biology. By using primary 
human cells, we could integrate the regulatory connections that we 
identified with genetics data to link regulators with a network of 
immune disease genes and putative CREs. While these studies were 
performed ex vivo and do not fully recapitulate the in vivo environ-
ment, the fact that immune trait SNPs were significantly enriched 
in the ATAC-seq peaks suggests that we are capturing biology rel-
evant for understanding in vivo disease networks. Future work will 
be needed to assess regulatory connections in distinct T cell subsets, 
in response to stimuli, or in disease settings.

We comprehensively mapped connections between 24 IL2RA 
regulators and thousands of downstream target genes and putative 
CREs. Identifying the downstream targets of each regulator in pri-
mary cells is an important step toward elucidating the processes that 
these factors regulate. Additionally, while gene coexpression is used 
commonly to construct gene regulatory networks, such observations 
are merely correlative42–46. Previous perturbation studies were limited 

by the number of genes studied, less robust siRNA perturbations, 
or less sensitive microarray measurements59,60. Consistent with our 
observations, several studies combining CRISPR perturbations with 
single-cell sequencing observed highly interconnected regulation 
between a limited set of transcription factors18,61,62. However, since 
we generated knockout populations with high efficiencies, we could 
use bulk ATAC-seq and RNA-seq to capture thousands of additional 
changes compared with single-cell approaches. These additional data 
are especially important to map regulatory connections between 
transcription factors, which are expressed in low amounts63 and can 
be more difficult to measure using single-cell RNA-seq.

These regulatory maps showed the highly interconnected 
structure of human gene networks. As we measured a subnetwork 
focused on only 24 individual knockouts, the full network prob-
ably contains many additional feedback loops. Future work focused 
on combinatorial perturbations would be interesting to map epi-
static interactions more comprehensively. As technology improves, 
genome-wide perturbations and profiling will likely be needed to 
map gene regulatory networks comprehensively.

Our strategy to map gene networks is likely broadly applicable 
to situations where we know a few genes of interest but have yet 
to discover what other genes and noncoding elements are involved. 
Perturbation of 1,484 genes coupled with profiling in yeast dem-
onstrated that this approach can assign many genes to functional 
pathways39. As similar scale experiments are not yet feasible in mam-
malian systems, we developed a two-step approach. We first iden-
tified the most important regulatory genes and then performed a 
focused set of perturbations coupled with RNA-seq and ATAC-seq. 
The strong enrichment for immune genes among coregulated genes 
suggests that this is a powerful and broadly applicable approach for 
identifying functionally related genes and putative CREs.

The identified IL2RA regulators coregulate a central network 
significantly enriched for genes that are associated with immune 
diseases. This network architecture is consistent with the omnigenic 
model that we proposed, in which a set of core genes act directly 
on a trait, but perturbations of many peripheral genes affect the 
expression of these core genes3,52. This network structure could 
explain how the dysregulation of many seemingly unrelated GWAS 
hits could disrupt a central network of important disease genes. 
Importantly, using perturbations to map gene networks can also 
identify connections between disease genes and upstream regula-
tors that themselves have not been genetically associated with the 
disease. Furthermore, this network could be relevant for diagnos-
ing candidate genetic variants found in clinical genome sequencing 
that have not been implicated in immunodeficiencies or autoim-
mune diseases, but map to genes in this network. Lastly, IL2RA, 
IL-2 and CTLA4, which served as seeds for this network, are estab-
lished targets of drug development for cancer and autoimmune dis-
eases64,65, so this network will likely help to identify promising new  
drug targets.

Finally, assembling gene network maps can also be used to 
engineer immune cell therapies. Better understanding of T cell 
regulatory networks will enable improved cell therapies and safer 
manipulation of genes with a more holistic understanding of the 
downstream consequences of such manipulation.
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Methods
Sample collection. This study was approved by the University of California San 
Francisco (UCSF) Committee on Human Research and Stanford University 
Panel on Medical Human Subjects (IRB 53302) and written consent was obtained 
from all donors. Primary human T cells were obtained from whole blood donors 
through a protocol approved by the UCSF Committee on Human Research (CHR 
13-11950) or through consented Leukopaks (STEMCELL). For some experiments 
that did not involve amplicon-, RNA-seq or ATAC-seq, primary human T cells 
were obtained from residuals from leukoreduction chambers after apheresis (Blood 
Centers of the Pacific).

Isolation, culture and expansion of human CD4+ CD25– effector T cells. 
Peripheral blood mononuclear cells were isolated by size separation using 
Lymphoprep (STEMCELL, catalog no. 07861) in SepMate tubes (STEMCELL, 
catalog no. 85460), according to the manufacturer’s protocol. To exclude CD4+ 
CD25+ regulatory T cells, CD4+ CD25– effector T cells were isolated using the 
StemCell EasySep Human Isolation Kit (catalog no. 18063). Isolated cells were 
then stimulated with Immunocult Human CD3/CD28/CD2 T Cell Activator 
(STEMCELL, catalog no. 10970) at 6.25 µl per 1 × 106 cells, cultured in RPMI with 
50 U ml–1 IL-2 (Amerisource Bergen, catalog no. 10101641) at a concentration of 
1 × 106 cells ml–1.

Pooled CRISPR screen. The IL2RA, IL-2 and CTLA4 screens were performed 
in cells from the same two donors; on the collection day, the CRISPR-edited cells 
were divided, stained for each target independently, and then sorted based on 
the expression of each target. The IL2RA screen was performed in cells from one 
additional donor.

Lentiviral transduction. At around 24 h poststimulation, lentivirus containing the 
sgRNA library was added directly to cultured T cells in a dropwise fashion while 
tilting the flasks to distribute evenly, targeting a multiplicity of infection of 0.4. 
After an additional 24 h, excess lentivirus was removed from the supernatant and 
washed off the cells. Cells were then incubated at 37 °C.

Cas9-RNP preparation. Cas9 protein (MacroLab, Berkeley, 40 µM stock) was 
delivered into the cells using a modified Guide Swap technique66. Lyophilized 
Dharmacon Edit-R crRNA nontargeting Control 3 (Dharmacon, catalog no. 
U-007503-01-05) and Dharmacon Edit-R CRISPR-Cas9 Synthetic tracrRNA 
(Dharmacon, catalog no. U-002005-20) were resuspended at a stock concentration 
of 160 µM in 10 mM Tris-HCl (pH 7.4) with 150 mM KCl. They were mixed 
at a 1:1 ratio, creating an 80 µM solution and incubated on a heat block at 
37 °C for 30 min. Single-stranded donor oligonucleotides (ssODN; sequence: 
TTAGCTCTGTTTACGTCCCAGCGGGCATGAGAGTAACAAGAGGGTGT 
GGTAATATTACGGTACCGAGCACTATCGATACAATATGTGTCATACGGA 
CACG) were then added at a 1:1 molar ratio of the final Cas9–Guide complex, 
and mixed well by pipetting. The solution was incubated for an additional 5 min at 
37 °C on the heat block. Cas9 was then added slowly at a 1:1 volume:volume ratio, 
taking care to avoid precipitation, pipetting up and down several times to ensure 
complete resuspension of the RNP complex, and incubated at 37 °C for 15 min.

Electroporation. At around 24 h after virus was washed from the culture, cells 
were centrifuged at 100g for 10 min to pellet them, and resuspended in room 
temperature Lonza P3 electroporation buffer (Lonza, catalog no. V4XP-3032) at 
1 × 106–2 × 106 cells per 17.8 µl. Then, 7.2 µl of the RNP-ssODN complex was added 
for every 17.8 µl of cells and mixed well. Using a multichannel pipette, 23 µl of the 
cells-RNP-ssODN mixture was added to each well of a 96-well electroporation 
cuvette plate (Lonza, catalog no. VVPA-1002), and nucleofected using the pulse 
code EH-115. Immediately after electroporation, 90 µl of prewarmed medium 
was added to each well and incubated at 37 °C for 15 min. Cells were then pooled, 
transferred to incubation flasks, and diluted with prewarmed medium to a final 
concentration of 1 × 106 cells ml–1 and incubated at 37 °C. Cells were passaged at 
around 48 h postelectroporation, and subsequently maintained in culture at  
1 × 106 cells ml–1.

Screen phenotyping and cell sorting. Cells were collected for analysis 6 days after 
electroporation, and 10–20 × 106 cells were portioned off and sorted based on GFP 
expression only. The remaining cells were sorted based on GFP positivity, as well 
as target expression using an APC fluorescent antibody targeting either IL2RA 
(CD25) (Tonbo, catalog no. 20-0259-T100), IL-2 (Biolegend, catalog no. 500310) or 
CTLA4 (Biolegend, catalog no. 349908). All antibodies were used at a 1:25 dilution 
for staining. Cells sorted for IL2RA underwent surface staining according to the 
manufacturer’s protocol. Cells sorted for IL-2 were treated with Cell Activation 
Cocktail with Brefeldin A (Biolegend, catalog no. 423304) for 4 h before fixation, 
and were fixed using the BD Cytofix/Cytoperm kit (Becton Dickinson, catalog no. 
554714) according to the manufacturer’s protocol. Cells sorted for CTLA4 were 
treated with Cell Activation Cocktail without Brefeldin A (Biolegend, catalog no. 
423302) for 4 h before fixation, and were fixed using the Foxp3 Fix/Perm buffer 
set (Biolegend, catalog no. 421403) according to the manufacturer’s protocol. Cells 
were sorted using a BD FACS Aria II and FACSDiva v.8.0.1.

RNA-seq. RNA was submitted to the UC Davis DNA Technologies and Expression 
Analysis Core to generate 3′ Tag-seq libraries with unique molecular indices 
(UMIs). Barcoded sequencing libraries were prepared using the QuantSeq FWD 
kit (Lexogen) for multiplexed sequencing according to the recommendations of 
the manufacturer. The fragment size distribution of the libraries was verified via 
microcapillary gel electrophoresis on a Bioanalyzer 2100 (Agilent). The libraries 
were quantified by fluorometry on a Qubit fluorometer (LifeTechnologies)  
and pooled in equimolar ratios. Samples were sequenced on a HiSeq 4000 
sequencer (Illumina).

Plate-ATAC protocol. We harvested, counted and treated each T cell culture with 
200 U ml–1 of DNase (Worthington catalog no. LS002007) for 30 min at 37 °C. 
We then transferred 60,000 cells of each T cell culture into individual wells of a 
96-well plate and washed cells once with PBS and once with RSB (10 mM Tris-HCl 
pH 7.5, 10 mM NaCl, 3 mM MgCl2). Cells were lysed in 50 µl of cell lysis buffer 
(0.1% NP40, 0.1% Tween-20, 0.01% Digitonin in RSB) on ice for 3 min. We then 
added 150 µl of RSB with 0.1% Tween-20 to each well and pelleted nuclei at 500g 
for 10 min at 4 °C. Cells were resuspended in 50 µl transposition mix (25 µl 2× TD 
buffer [20% dimethylformamide, 20 mM Tris-HCl, pH 7.6, 10 mM MgCl2], 16.5 µl 
1× PBS, 0.5 µl 10% Tween, 0.5 µl 1% Digitonin, 2.5 µl Tn5 transposase and 5 µl 
H2O) and transposition was performed at 37 °C for 30 min with 300 rpm shaking. 
Transposed fragments were purified using ZR-96 DNA Clean & Concentrator-5 Kit 
(Zymo D4024) and libraries were generated using PCR amplification with Nextera 
adapters and purified using Ampure beads. ATAC-seq libraries were sequenced 
on a Novaseq with paired-end 100-bp reads. The following samples produced 
low yield libraries and were not carried forward with sequencing: donor 1 PTEN 
knockout, donor 3 STAT5B knockout, donor 3 AAVS1_4 control.

Analysis of pooled screens. A table of individual guide abundance in each 
sample was generated using the count command in MAGeCK v.0.5.8 (ref. 67). Two 
individual sgRNAs (s_991 and s_3329) were filtered out due to extreme outlier 
counts. The MAGeCK test command was used to identify differentially enriched 
sgRNA targets between the low and high bins. All genes with an FDR-adjusted 
P < 0.05 were considered significant. For screen QC, classification of essential 
genes, fitness and nonessential genes were taken from Hart et al.68. Screen targets 
were classified as expressed if they had a count greater than zero transcripts per 
million in CD4+ T cell RNA-seq from Calderon et al.16.

Analysis of RNA-seq data. Adapters were trimmed from fastq files using cutadapt 
v.2.10 (ref. 69) with default settings keeping a minimum read length of 20 bp. Reads 
were mapped to the human genome GRCh38 keeping only uniquely mapping reads 
using STAR v.2.7.5b70 with the following settings ‘–outFilterMultimapNmax 1.’ 
UMIs were extracted from fastqs using umi_tools v.1.0.1 (ref. 71) extract command 
with the following settings ‘–extract-method=regex–bc-pattern = ‘(?P < umi_1 > .
{{6}})(?P < discard_1 > .{{4}}).*‘’. Reads were then deduplicated using umi_tools 
dedup command with default settings. Deduplicated reads overlapping genes were 
then counted using featureCounts v.2.0.1 (ref. 72) with the following settings ‘-s 1’ 
and using the Gencode v.35 basic transcriptome annotation.

To identify differentially expressed genes, UMI deduplicated counts between 
each knockout sample and AAVS1 control samples were compared; sample donor 
4 AAVS1 number 6 was excluded as an outlier. A minimum count per million 
was calculated based on the read depth of the samples being compared using the 
following command ‘ceiling(10/(min(colSums(count_mat))/1e6))’ in R; only  
genes with more reads than this minimum count across at least three samples 
were kept. Significantly differentially expressed genes for each knockout were 
then identified using Limma v.3.44.3 (ref. 73) while controlling for any differences 
between donors. Significant differentially expressed genes were defined as having a 
FDR-adjusted P < 0.05.

Analysis of ATAC-seq data. Adapters were trimmed from fastq files using 
cutadapt v.2.10 (ref. 69) with default settings keeping a minimum read length 
of 20 bp. Reads were then mapped to the human genome GRCh38 using 
bowtie2 v.2.4.1 (ref. 74) with the following settings ‘-X 2000–very-sensitive’. 
Low-quality reads were filtered using SAMtools v.1.10 (ref. 75) using the following 
command ‘samtools view -h -b -F 1804 -f 2 -q 30.’ Reads mapping within the 
ENCODE blacklist region were removed using bedtools v.2.29.2 (ref. 76) using 
bedtools intersect. Duplicated reads were removed using picard v.2.23.3 (http://
broadinstitute.github.io/picard/) using the following settings ‘VALIDATION_
STRINGENCY = LENIENT’. Reads mapping to ChrX, ChrY and ChrM were 
excluded from further analysis. Reads were converted to single nucleotide ATAC 
insertion sites using the following command “bedtools bamtobed -i {input.bam} | 
awk ‘BEGIN {{OFS = “\t”}} $6 == “+” {{$2 = $2 + 4; $3 = $2 + 1; print}} $6 == 
“-” {{$3 = $3 - 4; $2 = $3 - 1; print}}’ | sort -k1,1 -k2,2n > {output.bed}”. For each 
sample, peaks were called using MACS2 v.2.2.7.1 (ref. 77) using the ATAC insertion 
site bed files as input with the following settings ‘–format BED–shift −75–extsize 
150–nomodel–call-summits–nolambda–keep-dup all -B–SPMR -q 0.01.’

Peaks called in individual samples were merged into a consensus peak file 
in the following way using single nucleotide peak summits from MACS2. For 
each knockout or control condition, peak summits that were within 75 bp of 
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another peak summit in two out of three donors and were supported by at least 
ten ATAC-seq reads were merged into reproducible summit clusters. Across all 
samples, reproducible summits from each knockout or controls were aggregated 
with other summits within 150 bp of each other. For each aggregate cluster, 
we calculated an average summit location based on the location of all of the 
summits within the cluster. Each average summit location was then extended to 
350-bp peaks centered on the average summit location to generate a consensus 
peak list. For each sample, the number of ATAC-seq insertion sites that overlap 
each consensus peak was counted using the summarizeOverlaps function in the 
GenomicAlignments package v.1.24.0 (ref. 78).

To identify differentially accessible peaks, counts between each knockout 
sample and all AAVS1 control samples were compared. A minimum count per 
million was calculated based on the read depth of the samples being compared 
using the following command ‘ceiling(10/(min(colSums(count_mat))/1e6))’ in 
R; peaks with less reads than this minimum across at least three samples were 
filtered out. Significantly differentially accessible peaks for each knockout were 
then identified using DESeq2 v.1.28.1 (ref. 79) while controlling for both donor and 
the enrichment of reads at the transcription start site (TSS), which controls for the 
sample quality of individual ATAC-seq samples. Significant differentially accessible 
peaks were defined as having a FDR-adjusted P < 0.05.

Analysis of ChIP–seq data. Preprocessed ChIP–seq coverage bigwigs for 
transcription factors in various subsets of human CD4+ T cells (STAT5A, STAT5B, 
ETS1, GATA3, MYB) or engineered bulk T cells (IRF4) were downloaded from 
ChIP-Atlas80. ChIP-Atlas maps ChIP–seq data to the human genome GRCh38 
using Bowtie2, removes PCR duplicates with SAMtools, and calculates coverage 
in reads per million mapped reads using bedtools. All ChIP–seq tracks show 
background subtracted binding. ChIP–seq data were originally generated in the 
following papers: ETS1 (refs. 48,81), GATA3 (ref. 47), IRF4 (ref. 82), MYB83, STAT5A 
and STAT5B84.

Enrichment of immune genes, Mendelian disease genes and autoimmune 
GWAS genes. Genes were associated with the gene ontology term ‘immune system 
process’ (GO:0002376) using the bioconductor package org.Hs.eg.db v.3.11.4 
(ref. 85). A list of inborn errors of immunity (IEI) Mendelian disease genes were 
downloaded from the International Union of Immunological Societies website 
(https://iuis.org/committees/iei/) December 2019 dataset or taken from the 
2021 update49. Genome-wide significant SNPs (P < 5 × 10−8) associated with 24 
autoimmune diseases were taken from Taylor et al.51. Genes were categorized as 
autoimmune GWAS genes if their TSS is within 100 kb of one of these SNPs. The 
average gene expression level for all expressed genes was calculated as the log2 
average count per million across control AAVS1 1, 2, 3, 4, 5, 7, 8 samples across all 
three donors. AAVS1 6 was excluded due to one outlier sample. The significance 
of the association between these three gene categories and how highly a gene is 
coregulated was calculated with the glm function in R using coregulation bin and 
average gene expression as inputs.

S-LDSC analysis. GWAS summary statistics were downloaded from the Price 
laboratory website (https://alkesgroup.broadinstitute.org/sumstats_formatted/ 
and https://alkesgroup.broadinstitute.org/UKBB/). LD scores were created for 
each annotation (corresponding to a set of differential ATAC-seq peaks or SNPs 
within 100 kb of genes or their corresponding matched background sets) using the 
1000G Phase 3 population reference. Each annotation’s heritability enrichment 
for a given trait was computed by adding the annotation to the baselineLD model 
and regressing against trait chi-squared statistics using HapMap3 SNPs with the 
stratified LD score regression package v.1.0.1 (ref. 53). Heritability enrichments 
were meta-analyzed across immune or nonimmune traits using inverse variance 
weighting. The ATAC-seq background set was generated by randomly sampling 
peaks from all unchanged peaks. The ATAC-seq peaks in the background set 
were matched to significant differential ATAC-seq peaks based on deciles of 
chromatin accessibility in AAVS1 control cells. ATAC-seq background peaks 
in each accessibility decile were further matched to differential peaks based on 
the percentage of proximal peaks (defined as within 2 kb of a TSS). For each 
coregulation bin, RNA-seq background genes were sampled from the set of genes 
that were differentially expressed in fewer than five samples. RNA-seq background 
genes were matched to significant differential RNA-seq genes in each bin based on 
deciles of gene expression in AAVS1 control cells.

To calculate P values for the S-LDSC enrichment between differential and 
background ATAC-seq peaks or between coregulated gene sets, the difference in 
average enrichments was first converted into Z scores and then the Z scores were 
converted to two-sided P values using the following equations in R:

z = abs(differential$avg_enrichment - background$avg_enrichment) / 
sqrt(differential$avg_var + background$avg_var)

2*pnorm(z, mean = 0, sd = 1, lower.tail = FALSE)

Plots and genomic tracks. All plots were generated in ggplot2 in R v.4.0.2 
(ref. 86). Network connections were visualized with ggraph package v.2.0.4 in 
R (https://CRAN.R-project.org/package=ggraph). Heatmap of ATAC-Seq 
changes at the IL2RA locus was visualized with Gviz v.1.32.0 in R87. For all 

ATAC-seq coverage tracks, ATAC-seq reads were extended to 100 bp centered 
on the ATAC-seq insertion site. Size factors for normalization for each sample 
were estimated using the number of ATAC-seq reads that fall in peaks with the 
estimateSizeFactorsForMatrix function from the DESeq2 package in R79. Reads 
at a particular genomic locus were then normalized by that sample’s size factor. 
Per base read coverage was averaged across all three donors and exported as a 
bigwig file. Of AAVS1 controls 1–8, AAVS1 control 4 was excluded from coverage 
calculations due to an insufficient number of reads sequenced across all three 
donors. ATAC-seq and ChIP–seq coverage at a particular locus was visualized 
using the pygenometracks package v.3.6 (ref. 88) with 25 bp bins.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw sequencing files generated during this study are available at GEO under 
accession GSE171737. Transcription factor binding motifs used in this study were 
downloaded from JASPAR2020 (https://doi.org/10.18129/B9.bioc.JASPAR2020), 
HOCOMOCO v.11 (https://hocomoco11.autosome.org/) and CIS-BP (http://cisbp.
ccbr.utoronto.ca/index.php).

Code availability
The code for this paper is available at https://doi.org/10.5281/zenodo.637164689.
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Extended Data Fig. 1 | Quality control of the CRISPR screens. a, Fluorescence activated cell sorting (FACS) gating for IL2RA, IL-2, and CTLA4 screens. 
Representative example from the IL2RA screen is shown. b, Abundance of sgRNAs targeting GFP in either the starting plasmid or in the GFP + sorted 
population (n = 3 donors, 1 plasmid pool). c, Differential enrichment between the high- and low-expression bins for sgRNAs targeting genes that are either 
expressed or not expressed in CD4 + T cells based on RNA-Seq. d, Abundance of sgRNAs targeting essential genes, fitness genes, non-essential genes, 
or non-targeting guides in the starting plasmid (n = 1) or in the GFP + sorted samples (n = 3 donors). e, Enrichment of sgRNAs between the GFP + sorted 
population and starting plasmid. Results from Donor 1 and Donor 2 are depicted. Significant hits were identified with MAGeCK and genes with an 
FDR-adjusted P < 0.05 across all donors are highlighted. f, Comparison of the number of shared significant hits between the different screens and whether 
those hits have the same direction of effect on their targets. Two-sided sign test P = 0.002, shared direction of effect = 82%, 95% confidence interval  
61-95%. All boxplots show the median, first and third quartiles, and 1.5x the interquartile range.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Arrayed knockouts validate IL-2 and CTLA4 screen results. a,b, Representative flow cytometry density plots for IL-2 (a) or CTLA4 
(b) protein levels after knockout of top screen hits. Knockout of hits that decrease target levels are shown in blue, and knockout of hits that increase target 
levels are shown in red. c,d, Summary of changes in IL-2 (c) or CTLA4 (d) levels measured using flow cytometry. Screen hits selected for validation are 
displayed on the y-axis ordered by their effect size in the pooled CRISPR screen. For each knockout, bars show the average change in IL-2 or CTLA4 median 
fluorescence intensity relative to non-targeting controls. Dots show individual data points, and error bars show standard deviation across two guide RNAs 
and three donors per guide RNA. Concordant changes between the screen and validation that increase or decrease IL-2/CTLA4 levels are shown in red 
or blue, respectively. Discordant changes are shown in grey. The average insertion/deletion (indel) percentage at the genomic target site across multiple 
donors for guide RNA 1 (n = 3) and guide RNA 2 (n = 2) is shown to the right. e, Representative flow cytometry density plots for IL2RA protein levels after 
cells are grown with exogenous IL-2 or without IL-2 + blocking anti-IL-2 antibody. f, Knockout of top regulators of IL2RA in cells cultured with exogenous 
IL-2 or without IL-2 + blocking anti-IL-2 antibody. IL2RA median fluorescent values are normalized to AAVS1 control knockouts with exogenous IL-2 (black 
dashed line). Colored dashed lines show the normalized IL2RA median fluorescent intensity averaged across the AAVS1 control knockouts without IL-2 + 
blocking anti-IL-2 antibody in each donor.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Downstream mapping of genes and chromatin sites controlled by each IL2RA regulator. a, mRNA fold change for the CRISPR 
targeted gene in each knockout sample. Data are presented as the effect size from Limma, with error bars showing the 95% confidence interval.  
b, Comparison of average changes in IL2RA mRNA levels (RNA-Seq) and protein levels (flow cytometry) for each knockout sample collected for RNA-Seq 
and ATAC-Seq. c, Percent of significantly changed ATAC-Seq peaks in each knockout sample that contain a known motif for the knocked out transcription 
factor. d,e, The total number of significantly changed genes (d) or peaks (e) detected via RNA-Seq and ATAC-Seq in each knockout sample. For a-e, n = 3 
donors for the RNA-Seq and ATAC-Seq data. f, Summary of changes in IL2RA levels measured using flow cytometry. For each knockout, the change in 
IL2RA median fluorescence intensity is normalized to AAVS1 knockout alone controls. g, The percent of reads containing insertions/deletions (indels) at 
the genomic target sites for the guide RNAs and samples in f. Solid line indicates the mean indel percentage across different perturbation combinations.
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IL2RA

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Direct binding of IL2RA regulators at the IL2RA locus. Chromatin accessibility measured by ATAC-Seq in AAVS1 control knockouts 
is shown in black. ATAC-Seq data are shown as normalized read coverage; samples were normalized using the size factors from DESeq2. Results from 
previous CRISPR activation (CRISPRa) screen38 tiling the IL2RA locus in Jurkat cells is shown in pink. CRISPRa tracks show the log2 enrichment of guide 
RNAs in cells expressing high, mid, or low levels of IL2RA compared to background. Public ChIP-Seq data for IL2RA regulators in various subsets of human 
CD4 + T cells (STAT5A, STAT5B, ETS1, GATA3, MYB) or engineered bulk T cells (IRF4) are shown in green. ChIP-Seq data are shown as background 
subtracted binding in reads per million. ATAC-Seq peaks that were significantly differentially accessible in each knockout are shown in blue. The location of 
a matching binding motif in a significantly differentially accessible peak for each transcription factor is shown in orange. Where available, public ChIP-Seq 
tracks are from either two independent studies or individual donors: ETS148,81, GATA347, IRF482, MYB83, STAT5A and STAT5B84. chr, chromosome.
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Extended Data Fig. 5 | Highly co-regulated gene sets are enriched for immune disease genes. a, Enrichment of heritability for immune traits compared 
to non-immune traits in significantly differentially accessible ATAC-Seq peaks for each knockout. Only knockouts with at least 1,000 significantly 
differentially accessible ATAC-Seq peaks are shown. b, Enrichment of heritability for immune traits compared to non-immune traits in a 100-kb window 
around co-regulated genes. Enrichment for matched background sets for each knockout (a) or each co-regulation bin (b) are shown. Enrichment 
calculated using stratified LD score regression. Traits were meta-analyzed using inverse-variance weighting; average enrichment and standard error 
shown. P-values were calculated by first converting the difference in average enrichments to Z-scores, and then converting Z-scores to two-sided P-values 
(see Methods). For a, Bonferroni-corrected P-values range from 1.8 × 10−2 to 7.5 × 10−16. For b, Bonferroni corrected P-values range from 2.7 × 10−2 to  
6.6 × 10−10. NS, not significant. n = 16 immune traits and n = 15 non-immune traits for a and b.
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Extended Data Fig. 6 | Multiple sclerosis SNPs within CD4 + T cell ATAC-Seq peaks. a, Enrichment of heritability in accessible ATAC-Seq peaks for 
different immune traits. Data are presented as estimated enrichment +/− standard error estimated from stratified LD score regression. b, The number 
of all protein-coding genes and differentially expressed protein-coding genes with a TSS within 100 kb of a multiple sclerosis SNP. Only high confidence 
multiple sclerosis SNPs (PICS probability greater than 50%) within differentially accessible ATAC-Seq peaks are shown. c, Editing outcomes in CD37 low- 
and high-expressing cells after using CRISPR/Cas9 and homology-directed repair templates to edit the SNP rs1465697. Editing was performed with guide 
RNAs targeting the CD37 CRE (CD37 guide RNA) or a control region (AAVS1 guide RNA). d, Length of deletions after CRISPR editing in CD37 low- and 
high-expressing cells.
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