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Building a high-quality Human Cell Atlas
To the Editor — Building the Human 
Cell Atlas (HCA) requires consistent and 
agile experimental designs, standardized 
operating protocols (SOPs), benchmarks 
and quality control metrics that can adapt to 
a rapidly evolving technological landscape. 
Here, the HCA Standards and Technology 
Working Group outlines pertinent technical 
challenges and their approach to defining 
benchmarks and quality control measures 
to ensure high-quality data for building a 
comprehensive and accurate human cell 
atlas and help guide other atlas projects in 
health and disease.

The HCA aims to create comprehensive 
reference maps of all human cells, the 
fundamental units of life, as a basis for 
both understanding human health and 
diagnosing, monitoring and treating 
disease1. By integrating single-cell resolved 
molecular profiles of tissues and organs, it 
seeks to generate cellular and spatial maps, 
including the identification of dynamic cell 
states and rare cell populations. This effort 
requires the generation of high-quality 
data in multiple laboratories around the 
world, first assembled as a draft atlas and 
then increased in resolution and breadth 
by continued contributions from the 
community over time. The HCA community 
is open and collaborative, sharing its data 
through an open-source data coordination 
platform (DCP; https://www.humancellatlas.
org/data-coordination/) and bringing 
together and aligning biological, clinical, 
computational and engineering experts 
from diverse fields. Since the HCA’s launch 
in October 2016, more than 1,700 scientists 
from across the globe have enthusiastically 
joined to help shape this effort, through 
scientific collaboration, planning meetings, 
computational jamborees, social media and 
funding calls. Dedicated participants have 
formed biological networks spanning organs 
and systems, established their scientific 
leadership, and rapidly embarked on large 
scale data collection and analysis to build 
draft atlases.

As data collection for the HCA spans labs 
and techniques, spanning years and many 
technical innovations, it requires careful 
experimental design to construct a cohesive 
atlas. The HCA community is committed to 
producing the highest quality data possible 
and establishing rigorous standards, shared 
openly and broadly and updated regularly, 
ensuring findable, accessible, interoperable 
and reusable (FAIR) data principles2. The 
HCA develops, adopts and shares new tools 
for comprehensive and multidimensional 

atlas production. It also maintains flexibility, 
so it can revise the design of the HCA 
production and analysis as new insights, 
data and technologies emerge. Design 
considerations include both the choice 
of existing data-generating technologies 
and efforts to develop and assess new 
technologies with more measurement 
capabilities, increased scale and/or lower 
cost. Thus, benchmarking HCA data and 
technologies is a priority both for the 
HCA initiative and more broadly for the 
single-cell genomics field — including 
related efforts in specific disease areas 
or model organisms, such as the BRAIN 
Initiative Cell Census Network (BICCN), 
the Cancer Moonshot Human Tumor Atlas 
Network (HTAN) and LifeTime.

To fulfill this mission, the HCA 
established a Standards and Technology 
Working Group (STWG) not only to guide 
and advise its members around technology 
choices but also to outline best practices 
and help coordinate and carry out scientific 
work to support this mission (Fig. 1). The 
STWG encompasses 18 members from 14 
institutions across 7 countries, spanning 
diverse areas of expertise. The STWG 
initiates and leads efforts to compare, 
test and benchmark existing methods, 

the deployment of new methods and the 
development of analytics and quality control 
measures.

Data generation for the hca
Recent advances in single-cell and spatial 
genomics have made it possible to build 
a human cell atlas3. This atlas relies on 
high-resolution measurements along two 
major branches: a cellular branch, based 
on profiling of cells or nuclei, and a spatial 
branch, to measure profiles in the tissue 
context1.

The measurements underlying an atlas 
span diverse molecular aspects of cells 
and tissues, including the transcriptome, 
genome, epigenome, proteome and 
metabolome, as well as structural features 
of cells, tissues and organs. In the cellular 
branch, massively parallel single-cell and 
single-nucleus RNA sequencing  
(sc/snRNA-seq) allow fast and cost-effective 
profiling of transcriptomes of millions of 
individual cells and are among the primary 
technologies used for HCA data generation 
to date. In parallel, single-cell approaches 
for the profiling of other genomic features, 
such as chromatin states (for example, 
single-cell ATAC-seq and methylC-seq), and 
for joint measurement of multi-omic profiles 
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(for example, RNA and DNA, RNA and 
epigenome, and RNA and protein) have also 
rapidly matured and scaled4–6. In particular, 
scATAC-seq is now available at a scale 
comparable to that of scRNA-seq7. However, 
single-cell and single-nucleus profiling 
require cell dissociation or nuclei isolation, 
which erases critical information about 
spatial organization. Thus, the spatial branch 
is equally critical for atlas assembly; it relies 
on emerging technologies providing spatial 
information, including multiplexed in situ 
assays for RNA and protein (for example, 
imaging, sequencing, spatial coding and 
computational inference). Although  
sc/snRNA-seq techniques from dissociated 
cells are more consolidated and broadly 
disseminated (‘production’), emerging 
methods for spatial and multi-omics 
profiling are progressing through refinement 
and dissemination (‘scaling’) to production1.

The complexity of the data collection 
landscape highlights several core challenges 
for the HCA. First, the existing plethora of 
methods and protocols can be challenging to 
data generators who need to make informed 
choices or compare their results to those of 
others. Second, method developers need 
means to identify key areas for technical 
improvement and to compare their results 
with those of other techniques. Third, 
the rapid development of new methods 
by a highly engaged community requires 
strategies to adopt and disseminate new 
methods throughout the HCA. Finally, as 
is now increasingly appreciated, human 
tissues and organs vary widely, as do sample 
types (biopsy, resection and autopsy), such 
that a method’s performance may vary 
substantially depending on the tissue or 
organ to which it is applied.

To account for a wide range of profiling 
methods and tissues of application and 
to devise effective strategies to address 
unavoidable biases and batch effects from 
multiple laboratories, technologies and 
protocols, we propose to use distinct 
methods (from sample preparation8 to data 
production9,10) to examine the same tissues 
while systematically applying a smaller 
number of technologies with consistent 
SOPs across all tissues. For example, because 
tissue-processing protocols vary in cell 
recovery11 and it is not clear which, if any, 
provide the full ground truth of cellular 
composition, generating datasets with varying 
experimental designs and technologies can 
increase the completeness of the first atlas 
draft. Dedicated projects have started to 
assess potential challenges in multi-site data 
generation, including the initial stages of 
sample preparation12,13 and data production9, 
with the goal of producing recommendations 
for how best to collect data for the atlas.

Validation of hca protocols and 
technologies
Building the HCA will require extensive 
lab protocols, SOPs, benchmarks and 
quality-control metrics. Each technology 
and tissue requires careful benchmarking 
of protocols or validation of datasets. 
Benchmarking can be conducted (1) across 
many sites using the same technology;  
(2) across many sites using complementary 
technologies9 and (3) at the same site 
using complementary technologies10 
(Fig. 2). For example, in the case of RNA 
applications, we should compare profiles 
between single-cell, single-nucleus, bulk 
and spatial transcriptomics methods to 
comprehensively identify the different cell 

types in tissues. Considering the diversity 
of tissues and questions, we argue that 
benchmarking experiments should aim to 
produce decision trees that serve to guide 
researchers to choose a protocol best suited 
to their samples and questions (Fig. 2). 
Such systematic testing has been performed 
for specific tissues8,11 and protocols9,10, 
highlighting important differences 
in resulting datasets, but continuous 
benchmarking efforts are required to 
broadly define applicable guidelines.

The HCA’s STWG and Analysis 
Working Group will facilitate this process 
by developing broadly agreed-upon 
experimental and computational metrics 
and guidelines for these comparisons.  
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The STWG will also receive feedback 
from the HCA Biological Networks on 
the application of these guidelines to 
specific organs, tissues and systems. Below, 
we outline the considerations for the 
construction of robust and useful SOPs  
and benchmarking datasets for each stage 
of the process, including sample collection, 
sample processing, sample profiling and  
data analysis.

Sample collection. HCA labs obtain and 
process human specimens from healthy 
living donors, clinical biopsies and surgical 
resections on living patients, deceased 
transplant organ donors and rapid autopsies. 
It is important to maximize biospecimen 
quality early in the sample collection 
process by rapid sample processing or 
preservation in clinical settings12,13 and by 
minimizing the post mortem interval (PMI) 
for deceased donor samples. We emphasize 
three key preanalysis quality metrics: first, 
pathology review with careful recording 
of the precise anatomical location of each 
specimen (ideally following a common 
coordinate framework allowing mapping 
and comparison of the sample to a reference 
template14); second, review and collection of 
associated donor metadata, including health 
and disease states; recording of sample 
metadata (for example, PMI measurements, 
freezing and/or fixation times); and third, 
scoring of biomolecule quality and integrity, 
if possible, and recording of quality 
control (QC) data for downstream assays 
(for example, viability, Bioanalyzer for 
scRNA-seq).

Molecular profiling of dissociated cells 
or nuclei. Although sc/snRNA-seq is 
already one of the main profiling methods 
in the HCA, two key challenges remain. 
First, each tissue type typically requires 
at least some optimization for successful 
cell dissociation or nuclei extraction. Cell 
dissociation depends on the cell type and 
extracellular matrix composition of each 
tissue, and its process directly impacts the 
atlas’s quality as a result of transcriptional 
responses and/or RNA degradation during 
extended incubation8, as well as biases in 
cell viability and recovery15. snRNA-seq 
instead isolates nuclei from snap-frozen 
or lightly fixed tissue, tackling archived 
(frozen)11 and hard-to-dissociate tissues 
(for example, brain)16, but different buffers, 
detergents and physical forces can affect 
the recovery of nuclei from tissues, fewer 
genes and transcripts are detected by 
snRNA-seq17, and cell type enrichment is 
challenging. Both approaches recover cells 
with similar profiles, but sometimes at 
different proportions, with immune cells 

often more prevalent in scRNA-seq and 
many parenchymal cells more prevalent in 
snRNA-seq8,11. To assess such biases, we can 
use computational QC to determine cell 
composition11 or the presence of ambient 
RNA18, as well as auxiliary experimental data 
to determine the ground truth of cellular 
composition, including bulk RNA-seq 
(also providing a tissue-specific reference 
transcriptome) and spatial profiling. For 
example, in a lung dataset, bulk RNA-seq 
identified the depletion of fibroblast and 
endothelial cells and the enrichment of 
immune cell types in scRNA-seq datasets 
as a result of dissociation15. Efforts of the 
STWG involve the comparison of different 
sn/snRNA-seq modalities (3′, 5′, full-length 
and total RNA), multi-omics protocols, 
scATAC-seq, and spatial RNA and protein 
measures from donor-matched kidney 
samples. This framework can be readily 
extended to other tissue types in health and 
disease.

In situ and spatial profiling. To build an 
atlas, it is essential to characterize cells in 
their spatial context in tissues and whole 
organs. Benchmarking these methods, 
many of them not yet as broadly adopted, 
spans several challenges, including testing 
and sharing reagents — in particular, for 
spatial methods relying on RNA probes 
(for example, MERFISH or Seq-FISH) and 
antibodies (for example, MIBI, CODEX, 
or tCy-CIF); testing protocol-specific 
optimizations for specific tissues; testing 
equipment, particularly for methods that 
rely on highly specialized equipment 
that is not yet broadly available to 
other labs and that poses a cost barrier; 
and comparing to complementary 
methods like single-molecule FISH and 
immunohistochemistry of individual RNA 
and proteins, respectively. One key strategy 
is comparing different technologies on the 
same tissue. Given the highly specialized 
nature of many of these techniques, 
this often involves a collaborative effort 
whereby different expert labs apply 
different technologies to the same sample 
(Fig. 2; for example, using consecutive 
sections; see SpaceTx project below). In 
addition, applying both spatial profiling and 
molecular profiling of dissociated cells from 
the same tissue, as has been used for the atlas 
of the developing human heart19, can help 
assess the congruence of the two methods. 
As spatial technologies mature, they will 
require systematic evaluation to ensure a 
high-quality dataset for HCA, and we believe 
that their robustness and reproducibility will 
continue to progress in the near future.

Aside from benchmarking, there 
are also key opportunities for further 

development through concerted and 
collaborative efforts. Among these are 
improvements in the signal-to-background 
ratio and the resolution for approaches 
based on an imaging readout (through 
preparation approaches like tissue clearing20 
or expansion microscopy21), as well as 
enhancing the resolution or deconvolution22 
of approaches that are not single-cell 
or imaging based (for example, spatial 
transcriptomics, Slide-Seq and HDST). 
There are also efforts to improve the 
throughput for imaging-based strategies 
(for example, MIBI, FISSEQ, MERFISH, 
SeqFISH and STARmap), which require 
substantial imaging or processing time.

Minimizing and addressing 
confounding variables in data 
generation
HCA data should be reproducible 
(recovering cells with the same profiles and 
features across experiments), comprehensive 
(capturing cell proportions and rare cells 
within a tissue), and of predictive value 
(mapping molecular profiles and spatial 
features to predict a new entity). Inevitable 
technical and biological confounders pose 
a barrier to achieving these objectives, 
but several strategies can minimize such 
confounders in the HCA dataset.

SOPs. Sample collection, lab protocol 
and organizational SOPs can all reduce 
technical confounders, facilitate comparison 
and streamline HCA operations. Sample 
collection SOPs provide a clear set of 
operation and sampling features (donor 
information and metadata, site, time, size 
and preservation) for obtaining biospecimens 
with reduced inter-individual variability and 
maximal quality, as demonstrated by other 
large efforts with excellent SOP collections, 
such as the GTEx project23. Lab protocol 
SOPs describing each pipeline from tissue 
type to data type will be summarized in a 
STWG virtual handbook linked to detailed 
open access workflows in protocols.io. 
Finally, organizational SOPs help address 
sample tracking systems and necessary 
equipment, setting labs up for success.

Reference toolkit. A toolkit will be made 
available including samples, reagents and 
computational pipelines to share across 
the HCA community when testing and 
evaluating methods across labs and new 
methods, further helping to minimize 
experimental batch effects. Banked reference 
samples enable comparison of protocols 
across the community and monitoring of 
performance to avoid drift. For example, 
the HCA reference sample used for 
benchmarking scRNA-seq technologies9 
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can monitor assay performance over time 
and is also available to extend the effort to 
future technologies (for example, used in 
Smart-seq324) and modalities (for example, 
sc/snATAC-seq). In particular, peripheral 
blood monocytes (PBMCs)10, which are 
commercially available in large batches and 
are stably frozen in aliquots, can be easily 
shared across labs.

Extensive metadata recording. Adding 
metadata on clinical, epidemiological, 
collection, histological and technical features 
allows the identification of potential factors 
driving batch effects and helps to correct 
or minimize variations in data. Metadata 
collection is performed for all HCA datasets 
in the DCP (https://data.humancellatlas.org/
metadata).

Systematic QC metrics. In-process 
experimental QC processes and post hoc 
computational QC processes can help 
guarantee the retrieval of consistent data 
with appropriate quality. They also are 
key to detecting sample mislabeling or 
swapping and assessing viability, library 
quality and quantity metrics. Computational 
QC procedures that will be applied to 
flag low-quality samples in the DCP are 
developed by working closely with the 
Analysis Working Group.

Early sample multiplexing. Multiplexing 
helps reduce batch effects or randomize 
batches. For example, for sc/snRNA-seq, 
multiplexing can now be achieved by 
genetics25 or by DNA-barcoded lipids26, 
chemicals27 or antibodies28. Although 
sample pooling reduces technical variance 
across donors, caution must be taken when 
selecting the labeling strategy to avoid biases 
in cell type composition29.

establishing and disseminating hca 
benchmarks and standards
The STWG has already initiated guides 
and analytical benchmarking projects. Its 
first effort was to tackle the ~20 different 
scRNA-seq methods, through systematic 
comparisons with two complementary 
benchmark studies9,10. In the first approach, 
a complex mixture of cells (human PBMC, 
mouse colon and different cell lines) 
was sent to labs across the world to test 
different sc/snRNA-seq methods9. In a 
second approach, several sc/snRNA-seq 
technologies were tested on the same 
samples (PBMC, NIH3T3/HEK293 cell mix, 
T cells and mouse brain) in one location10. 
Both studies pointed to differences in 
protocol performance as evaluated by 
sensitivity, throughput and cost, by their 
power to detect genes and cell type markers, 

and in their successful merger into a 
joint atlas or projection onto a reference. 
The computational pipelines scumi and 
matchSCore2, which were developed 
to analyze, compare and integrate the 
benchmarking data of these efforts, will 
be helpful as new or improved methods 
emerge. Furthermore, the benchmarking 
data and remaining banked samples are an 
excellent resource for computational tool 
developers tackling batch-effect correction 
and data integration. Further comparisons 
can be made between laboratories using 
the same protocol to assess robustness and 
reproducibility.

A similar effort, SpaceTx, tackled spatial 
transcriptomics techniques, with labs expert 
in each technique analyzing the same brain 
sample, followed by a community-wide 
analysis effort through ‘SpaceJam’ Jamborees. 
As the scRNA-seq and SpaceJam efforts 
mature, STWG has now turned its attention 
to benchmarking different methods for 
scATAC-seq across labs and technologies, and 
to developing guidelines for sample handling 
across tissues for the HCA community9,10 
through decision trees that help researchers 
choose the most suitable protocol for their 
research goals and guidelines on how to 
optimize protocols (Fig. 2).

A final key role of STWG is to 
disseminate protocols and best practices for 
high-quality data production for the atlas. 
To ensure that technologies are disseminated 
and standardized across laboratories, 
Specialized Work Acquisition Teams 
(SWATs) provide personnel exchanges 
through short visits for hands-on in-person 
training, learning and troubleshooting. 
Moreover, in the spirit of open research, 
protocols and SOPs are shared using 
protocols.io. The STWG leverages these 
efforts to ensure experimental methods are 
applied in a coordinated fashion across HCA 
sites using agreed metrics.
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