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Spectacular advances in the throughput of DNA sequencing have allowed genome-wide analysis of epi-
genetic features such as methylation, nucleosome position and post-translational modification, chroma-
tin accessibility and connectivity, and transcription factor binding. However, for rare or precious
biological samples, input requirements of many of these methods limit their application. In this review
we discuss recent advances for low-input genome-wide analysis of chromatin immunoprecipitation,
methylation, DNA accessibility, and chromatin conformation.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The advent of cost effective massively-parallel short-read
sequencing has led to the sequencing of thousands of human gen-
omes [1,2] providing a glimmer of the much vaunted ‘‘personalized
genomics revolution.’’ But perhaps more importantly, high-
throughput sequencing has brought about a sea change in the
types of mechanistic biological questions that can be addressed
at genome-wide scale. Any biological question that might be trans-
formed into DNA fragments may now be investigated with hun-
dreds of millions to billions of individual measurements,
providing a powerful window into genome-wide molecular func-
tions. Arguably, nowhere has this fundamental methodological
change been more apparent than in the field of epigenomics [3,4].

For the purposes of this review, we will define the epigenome as
the set of chemical and physical modifications of the genome that
do not comprise changes in the primary sequence of the DNA.
These changes encompass a diverse set of transformations, from
DNA methylation [5,6], to changes in positions and chemical com-
position of nucleosomes [1,7], to the binding of transcription fac-
tors [3,8], to higher-order changes in the manner in which the
genome is folded and or made accessible within the nucleus
[5,6,9,10].

Substantial insight into the epigenetic information coded within
the nucleoprotein structure of chromatin have come from molecu-
lar biological methods that then couple into high-throughput
sequencing [5,11]. Chromatin immunoprecipitation and sequencing
(ChIP-seq) protocols have enabled investigation of nucleosome
modifications and their correlation with functional elements gen-
ome-wide, as well as a more comprehensive understanding of bind-
ing sites of transcription factors [11,12]. Methods to sequence
fragments generated from the digestion of chromatin with MNase
have allowed comprehensive cataloging of nucleosome position in
human cells [13,14]. A number of strategies for assessing the meth-
ylation state of bases within the genome, either in a defined subset
of genomic loci or genome wide, have also transformed our under-
standing of the dynamics of methylation changes in early develop-
ment, during differentiation, and in cancer [1,15–21]. Finally,
chromatin ‘‘openness’’ – the accessibility of DNA to transcription
factors, RNA polymerases, and other components involved in gene
expression – has been explored by coupling DNase I hypersensitiv-
ity assays and high throughput sequencing. The assay of DNA acces-
sibility in particular has proven an information-rich, genome-wide
analysis tool, allowing identification of areas of active transcription
factor binding, active transcription start sites, enhancers, microRNA
expression, and insulators in a wide variety of cell lines and tissue
samples [22–26]. To determine how these regulatory regions, or
even all regions in the genome, fold and interact with other regions,
a number of methods capable of recording the conformation of
chromatin have been employed to link regions that have a high
probability of interaction [27–32]. In sum, these methods, when
amplified by their application by scientific consortia such as the
ENCODE project [33] and the Roadmap Epigenomics Project [34],
have clearly demonstrated that the physical position, compaction,
and chemical modifications of histone particles encode a complex
and dynamic molecular ‘‘state machine’’ of the cell, defining cell
type specific functional regions of the genome.
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Despite these substantial insights, current methods for assaying
chromatin structure and composition are often substantially lim-
ited by cell input requirements on the order of tens to hundreds
of millions of cells as starting material [3,12,35–38], and such
requirements are limiting in a number of ways. First, these meth-
ods average out or drown out both dynamic heterogeneity and
standing variation in cellular populations. In this way, fine-scale,
subpopulation-level variability in epigenomic structure that may
be crucial to understanding the drivers of phenotype in complex
samples is lost to ensemble averaging over cellular populations.
Second, cells must often be grown and expanded in culture to
obtain sufficient starting material. These ex vivo methods of cellu-
lar propagation may well modulate the epigenetic state in
unknown ways. Indeed, for many dynamic and transient cellular
populations, the time required to expand cultures in vitro to the
degree necessary for genome-wide investigations will allow the
dynamic state of the sorted population to interconvert, frustrating
ensemble genome-wide assays. Finally, the requirements of large
amounts of input material, especially when coupled with relatively
complex workflows that often accompany methods for generating
genome-wide epigenomic information, make application of these
powerful methods more difficult in primary tissues, complicating
possible clinical applications. Indeed, as our mechanistic under-
standing of epigenetic drivers of phenotypic change grows, the
application of these methods to a broad diversity of human sam-
ples, both normal and diseased, promises to provide valuable,
and potentially clinically actionable insights.

Thus while powerful genome-wide epigenome analysis meth-
ods would provide a picture of epigenomic composition within
phenotypically isolated, homogenous, and/or rare primary cells,
these ensemble methods still wash out the single-cell variability
that may be present within the population. As an ultimate goal,
we might hope these genome-wide techniques to be adapted for
the fundamental limit of input material – the single cell [39,40].
Indeed single cell methods might be applied to two important clas-
ses of problem. The first where individual cells might be selected
from a group of relatively abundant cells to unravel fine-scale epi-
genomic variation, and the second wherein a small group of rare
cells might be profiled to increase the sensitivity of assessing epi-
genomic state of the selected population. Such capabilities will
provide a never before seen window into cellular epigenomic and
gene-regulatory variation, and adding this crucial dimension of
analysis to the lists of single cell genome-scale investigation, which
currently include genome sequencing and gene expression analy-
sis. Recent work has begun to apply a variety of methodologies,
from microfluidics to novel enzymes to clever molecular biological
manipulations, to drive down the input requirements of these
methods while, ideally, maintaining data quality. This review will
focus on four methodological areas that have seen recent develop-
ments on this front: ChIP-seq, methyl-seq, DNA accessibility, and
chromosome conformation capture.
2. ChIP-seq

While a number of reports have detailed protocols for low-
input (i.e. <100,000 cells) ChIP-qPCR and ChIP-chip assays [41–
44], a smaller subset have been demonstrated compatible with a
high-throughput sequencing output. Two notable papers from
the laboratory of Bradley Bernstein have described ChIP-seq data
generated from as few as 10,000 cells [45,46]. This protocol,
referred to as nano-ChIP-seq, relies on a workflow fairly similar
to a standard ChIP-seq workflow, coupled with well-calibrated
sonication dosage and antibody concentrations, as well as two sep-
arate PCR amplification steps, to extend the sensitivity of the ChIP-
seq assay for post-translationally modified nucleosomes to the
level of 10,000 input cells. This methodology was initially applied
to hematopoietic progenitors, providing evidence that develop-
mental regulators in these HSC cell types are enriched for bivalent
domains. While the reduction in cell number from �2 � 107 to
�104 reduces overall signal intensity, peak calls of H3K4me3 mod-
ifications from nano-ChIP were highly concordant with calls from a
standard ChIP-seq protocol [45].

A distinct approach from the same laboratory involves the
direct single molecule sequencing of ChIP fragments using the
Helicos single molecule sequencing methodology [47]. In this
approach a standard protocol for ChIP of three types of modified
histones, as well as CTCF, was carried out, and the DNA fragments
obtained were then poly(A)-tailed and annealed onto a HeliScope
instrument for single molecule sequencing. This technique allows
for sequencing with no PCR amplification, thereby allowing a bet-
ter sampling of fragments independent of GC content. Overall the
method is compatible with as little as �50 pg (or approximately
25–50,000 cell equivalents) of input DNA, and while using this lim-
iting input material reduced the number of overall reads, the cor-
relation with larger input data sets was extremely high [47].
While Helicos sequencing has become harder to come by in recent
years, it is likely that this direct-sequencing approach may be
translatable to the single-molecule sequencing platforms of other
providers such as Pacific Biosciences, or Oxford Nanopore.

Another pair of papers describing an approach from the Grone-
meyer lab rely on distinct molecular biological mechanisms to gen-
erate ChIP-seq libraries compatible with small input requirements
[48,49]. Amplification of ChIP-seq fragments in this protocol was
carried out with linear amplification of DNA (linDA), which relies
on the T7 RNA polymerase to linearly amplify DNA fragments. In
short, fragments generated from standard cross-linking based
ChIP-seq protocol are amplified by (1) poly-A tailing, (2) addition
of bidirectional T7-initiation promoter, and (3) the transcription
of RNA from ChIPed DNA fragments (Fig. 1). All of these initial steps
can occur in a single tube. After RNA generation, cDNA is then gen-
erated from the RNA, and this DNA can then be used in the stan-
dard sequencing library preparation protocol for high-throughput
sequencing. While this linear amplification methodology is suit-
able for T7-RNAP-based linear pre-amplification of any fragment
library, it has been successfully applied to produce ChIP-seq maps
of estrogen receptor alpha (ERa) from as few as 5000 cells [49]. In
principle, this protocol might be applied to the linear amplification
and subsequent sequencing library generation for any set of
nucleic acid fragments, making it potentially broadly applicable
to genome-wide assays of limited input materials. The concept of
linear pre-amplification leading to a more faithful representation
of the initial fragment distribution has also been used in whole-
genome amplification methods [50].

Finally, another recent method relies on an indexing-first
approach for profiling both post-translational modifications of
nucleosomes, as well as transcription factors in scarce cell popula-
tions [5]. In this iChIP methodology, cells are fixed, sorted and then
sheared, then immobilized on beads loaded with antibody against
histone H3. Fixed on this surface, the fragments that are still asso-
ciated to the nucleosomes are indexed via ligation of indexing oli-
gos unique to the specific cell type of interest, then the indexed
chromatin is released and pooled with other samples. This multi-
plexed pool of indexed chromatin is then divided among a variety
of ChIP experiments (i.e. to assess H3K4me1, H3K4me2, H3K4me3,
H3K27Ac, and PU.1 binding). After sequencing, the ChIP-seq data is
demultiplexed using the cell-specific barcode. When applied to a
variety of cell types within the hematopoietic lineage, this method-
ology provided excellent signal-to-noise ratio and reproducibility
when starting with as few as 500 cells per individual sorted popu-
lation. This technique is especially powerful when assessing a large
cohort of potentially related cell populations, as the pooling of



Fig. 1. Linear amplification of DNA fragments with T7 RNA polymerase: DNA
fragments to be amplified are first poly-T tailed, then a primer (including a BmpI
recognition sequence and T7 RNA polymerase (RNAP) transcription initiation site
(green)) are annealed, and added via primer annealing, extension, and gap filling.
Then in vitro transcription generates linearly amplified copies of the DNA (red).
These strands are then re-converted to DNA via primer annealing, 1st strand
synthesis, 2nd primer (identical to primer 1) annealing and 2nd strand synthesis.
Finally, the sequences added are cleaved off via BpmI digestion. Adapted from [48].
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indexed samples allows for increased total amount of material for
each distinct ChIP-seq experiment.
3. Methyl-seq

5-Methylcytosine is one of the most extensively studied epige-
netic features, and differential, or variable, methylation has been
detected in a variety of disease states including cancer [1]. A num-
ber of recent directions for decreasing the requirements for input
material for these methods have led to improvement in sensitivity
of sequencing-based methylation detection [51], but here we focus
on genome-wide methods. The laboratory of Jay Shendure and
Dieter Weichenhan has described a tagmentation-based approach
for ultra-low-input whole-genome bisulfite sequencing [52,53].
This method relies on the Tn5 transposase to simultaneously tag
and fragment the genome of interest (Fig. 2A). This Tn5 transpos-
ase uses a ‘‘cut and paste’’ mechanism to deliver its DNA payload
into the genome, generating PCR-amplifiable fragments rapidly
from genomic DNA. To generate a bisulfite sequencing library,
the transposase is loaded with specially protected adapter seg-
ments (with methylated CpGs) such that these adapters are unre-
active to bisulfite treatment. After an adapter-replacement and gap
repair step, which allows PCR amplifiable fragments to be gener-
ated after the transposition reaction, the fragments are bisulfite-
converted, and then PCR amplified, and sequenced using Illumina
chemistry. In these steps, harsh bisulfite treatment might cleave
the DNA backbone of some members of the library, leaving the
fragments incapable of amplification in subsequent PCR steps,
whereas full-length fragments that have been chemically con-
verted will be competent for amplification. Thus instead of ligating
adapters to DNA fragments and bisulfite converting the libraries,
this protocol eliminates a potentially inefficient and time consum-
ing ligation step, improving the number of sequenced fragments
per input cell. This strategy allows for a reported �100-fold
improvement in the input requirements for bisulfite whole-gen-
ome sequencing, allowing for high-quality bisulfite maps to be
generated from �2000 cells.

The laboratory of Takashi Ito has also reported a genome-wide
sequencing based assay of 5-methylcytosine by reordering crucial
steps in the sequencing library construction procedure. Instead of
ligating adapters prior to bisulfite conversion, bisulfite conversion
is instead carried out as the first step (thus the technique is named
Post-Bisulfite Adaptor Tagging or PBAT). Unlike standard bisulfite
library preparation methods that add adapters to dsDNA prior to
conversion, any fragmentation occurring during the bisulfite con-
version does not render these fragments non-amplifiable because
these fragments may still serve as substrates for subsequent steps
that sequentially add adapters to the now single stranded DNA
fragments (Fig. 2B). To add adapters to these post-bisulfite treated
ssDNA fragments, two rounds of sequential primer annealing and
extension are employed. In addition, biotinylated primers were
used to simplify purification steps. This purification strategy can
allow DNA libraries to be directly sequenced with no PCR steps,
improving the representation of regions of the genome. Alter-
nately, libraries can be made from even smaller amounts of input
material with a smaller number of global PCR steps prior to
sequencing. Overall, a whole genome bisulfite map of methyl-C
positions was generated without subsequent amplification at an
average depth of 21-fold on the mouse genome from 100 ng of
astrocyte DNA [54]. Methylation maps generated with the PBAT
process are highly concordant with standard methylC-seq
methods.

Other work has described a reduced representation bisulfite
sequencing (RRBS) approach for assaying methylation state gen-
ome-wide at the level of individual cells [55]. While RRBS provides
a picture of a subset of genomic methylation [37], this technique
has proven useful in providing a deep and targeted picture of
methylation in genomic subregions [17]. Guo et al. [55] shows a
one-pot RRBS approach that involves isolation and lysis of an indi-
vidual cell, followed by MSPI digestion, end repair and terminal-A
addition, then standard Y-adapter ligation followed by bisulfite
conversion and PCR. The approach can assay the methylation state
of up to 1.5 M CpG sites in the genome. They also applied this tech-
nique to haploid cells (sperm and pronuclei).

Finally, very recent work from the labs of Wolf Feik and Gavin
Kelsey has described true single cell genome-wide bisulfite
sequencing, applying the method to study embryonic stem cell
heterogeneity [56]. This single-cell bisulfite sequencing method
(scBS-seq) is able to measure DNA methylation of up to 48%
(10.1 M) CpG sites within a single cell. This procedure also relies
on efficiency gains obtained by carrying out the bisulfite conver-
sion prior to construction of the sequencing library by using a
modified PBAT procedure (Fig. 2B), allowing DNA fragments that
are cleaved by bisulfite treatment to be competent for generation
of sequencing library in later steps. With these data, the variance
in methylation state of within specific genomic regions (as distinct
from the mean methylation state, as observed in the bulk) could be
assessed. The variance of regions associated with enhancer marks
were higher than the genome average, consistent with the pre-
sumption that these distal regulatory elements may be showing



Fig. 2. Strategies for small-sample methylation analysis: (A) Genomic DNA is exposed to Tn5 transposase (yellow), generating fragments. Then adapter fragments are
replaced and added to the strand, generating independently amplifiable fragments from each strand of the DNA. Bisulfite conversion then transforms un-methylated Cs to Us,
which are read as As during PCR. Bisulfite treatment breaks some fragments, which are not amplified in subsequent steps. (B) Genomic DNA is sheared, then bisulfite
converted, transforming un-methylated Cs to Us. Primers are added by sequential extensions of random primers. In Ref. [56] this first step is repeated multiple times, whereas
in ref [55] these steps are carried out on beads attached through biotinylated primers. After addition of the second primer, optional pre-sequencing PCR converts Us to Ts and
generates a final sequencing library.
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the first signs of development-specific methylation. Overall, these
synergistic works have opened the door to single-cell analysis of
methylation variation, blazing a trail that will be further reinforced
by further improvements in recovery efficiency of fragments from
individual cells, and methods for highly multiplexed single-cell
methylation analysis.
4. DNA accessibility

DNAse hypersensitivity has been used for more than 30 years to
identify regions of the genome that are capable of interacting with
DNA binding proteins [57,58]. Recent work coupling this method
to high-throughput sequencing [59] has produced genome-wide
maps of chromatin accessibility that have transformed our under-
standing of gene regulation [22,23,26]. Such assays can identify
portions of the genome accessible to the machinery of transcrip-
tion and to transcription factor binding within different cell types,
thereby highlighting phenotype-specific regulatory regions
[22,23]. However, protocols for DNAse-seq generally require tens
of millions of reads to generate deep data sets [3,35], making
exploration of rare or precious samples difficult.

To address these input requirements, recent work has described
a transposase-based method for probing the accessibility of chro-
matin [60]. Instead of relying upon DNase I to create nicks in acces-
sible regions of DNA, this assay of transposase accessible
chromatin, or ATAC-seq, relies on the Tn5 transposase to simulta-
neously fragment and insert sequencing adapters into the genome
(Fig. 3A–C). In this manner, the complex, multi-day protocol for
generating DNAse-seq libraries [3] is reduced to a workflow com-
prising the steps of (1) isolating native chromatin, (2) exposing this
chromatin to purified transposase loaded with sequencing adapt-
ers, and (3) amplifying and quantitating library for sequencing.
The procedure generates complex (�50 M fragment) libraries from
approximately 50,000 cells, and allows the identification of a sub-
set of DNAse-seq peaks from as few as 500 cells [60]. Furthermore,
by sequencing both ends of the DNA fragments generated from the
ATAC-seq assay, the fragment size distribution of ATAC-seq frag-
ments can be bioinformatically separated into fragments originat-
ing from nucleosome free regions, and reads likely originating from
nucleosomes (Fig. 3D). These differently sized fragments can then
be used to call regions that appear nucleosome free, as well as
nucleosomal regions, generating data akin to MNase-seq data
[13,61,62] within regulatory regions. In a similar manner to
DNAse-seq, the insertion pattern of the Tn5 transposase can be
used to infer the presence of proteins that interact with DNA
[60]. The workflow simplification coupled with reduction in
sample requirements enables the possibility of functional investi-
gations of gene regulation from clinical tissues, or from fluores-
cently-sorted sub-populations of cells [60]. While the field has



Fig. 3. Assaying accessible chromatin with Tn5 transposase: To map accessible DNA within chromatin, (A) native chromatin is isolated, then (B) exposed to Tn5 transposase
loaded with sequencing adapters. Tn5 can only insert its adapter payload into regions of the genome that are accessible. Fragments generated (C) can be amplified after
primer extension steps. (D) The distribution of fragments comprises short fragments generated from nucleosome free regions of the genome, as well as fragments generated
from protection of integer multiples of individual nucleosomes. Adapted from [60].
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already begun to implement ATAC-seq in the context of limited
samples, for example in the hematopoietic niche [5], ATAC-seq
remains to be applied broadly to a wide variety of different cell
types, and the specific sensitivity of ATAC-seq data as compared
to DNAse-seq data for determining regulatory elements or infer-
ring TF binding remains to be broadly assessed.
5. Chromatin connectivity

A full two meters of DNA is folded into a �5 lm cell nucleus
within every human cell. The topology of the packaging of chroma-
tin is expected to play a role in gene regulation – from setting the
background abilities of different enhancers to interact with pro-
moters to drive expression, to partitioning highly expressed
regions and less expressed genomic regions [28]. A variety of
methods for understanding these interactions, including 3-C, 4-C,
5-C, Hi-C, and ChIA-pet have been developed to probe these types
of interactions at varying levels of generality [29]. The most gen-
eral, Hi-C [28], uses a library preparation whereby two distal
regions of the genome that were in close proximity are fragmented
and ligated together to produce one chimeric read. When each end
of this read is aligned to the genome, the distant alignments pro-
vide a pairwise, genome-wide contact map. Initial implementa-
tions of the Hi-C protocol required millions of input cells [28],
thereby producing a ensemble average picture of the sorts of inter-
actions that occurred within the population of cells of interest.

A recent study described methods to generate Hi-C data sets
from individual cells to asses the variability of this higher order
genome organization from cell to cell [63]. To achieve this substan-
tial improvement, many aspects of the bulk Hi-C protocol, includ-
ing the crosslinking of chromatin, restriction enzyme digestion,
biotin fill-in and ligation to generate chimeric reads, were all done
within the nuclei of the cells of interest. These nuclei were then
hand selected and placed into individual tubes, where the rest of
the standard Hi-C protocol (i.e. reversion of crosslinks, purification
of ligation junctions, and the rest of library preparation) was car-
ried out. The resulting libraries generated more than 1000 distinct
Hi-C read pairs in 37 of the 74 cells that were investigated. While
relatively modest number of reads per cell were obtained, exten-
sive analysis of these data demonstrated substantial cell-to-cell
stochasticity in the structure of condensed DNA – however some
global organizational aspects, including the localization of active
gene domains to the boundaries of chromosome territories,
remained constant [63]. Future improvements in the efficiency of
this single-cell investigation promise an even higher-resolution
view of the intricacies of DNA folding, and how this folding varies
in larger numbers of cells.

6. Conclusion

The development of methods capable of interrogating epige-
nomic components of small numbers of cells – even to the level
of individual cells – are enabling the epigenomic profiling of pre-
cious or rare tissue samples. However, further thought must also
be given to making these methods highly quantitative when input
material reaches such very low levels. Unlike RNAseq methodolo-
gies, where transcript abundance can reach into the thousands
per cell, the dynamic range associated with assessment of epige-
nomic features often ranges between 0 and �2 reads per genomic
locus per cell. Fundamentally, limiting input materials substan-
tially blunts the dynamic range of assessment, a problem further
magnified at the level of single cell analysis. This problem also
manifests itself as a fundamental limit to the complexity of the
sequencing library, i.e. the number of unique fragments that can
be sequenced. The library complexity per cell unit is often the most
relevant figure of merit, along with sensitivity of signal-to-noise
ratio to input amount, for small-sample epigenomic methods.
Indeed, the complexity limitations inherent in small-sample assays
make identification of reads originating from PCR duplicates (using
methods such as molecular barcoding strategies [64–67]) all the
more important.

Because of these issues of dynamic range and library complex-
ity, substantial work remains for algorithm development that
might take these relatively sparse data sets and extract maximally
biologically meaningful insights from these promising methodolo-
gies. Alternately, this problem of dynamic range might be
addressed by highly parallel methods for the probing of many indi-
vidual cells, allowing per-cell technical noise to be combated by
large numbers of observations. In short, the future of small-sample
epigenomic analysis is bright, with a number of recent innovative
methodological solutions poised to diffuse to the epigenomics
community at large, unlocking exciting new directions of
investigation.
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