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INTRODUCTION: Cancer is one of the lead-
ing causes of death worldwide. Although the
2% of the human genome that encodes pro-
teins has been extensively studied, much re-
mains to be learned about the noncoding
genome and gene regulation in cancer. Genes
are turned on and off in the proper cell types
and cell states by transcription factor (TF)
proteins acting on DNA regulatory elements
that are scattered over the vast noncoding
genome and exert long-range influences. The
Cancer Genome Atlas (TCGA) is a global con-
sortium that aims to accelerate the understand-
ing of the molecular basis of cancer. TCGA has
systematically collected DNAmutation, methyl-

ation, RNA expression, and other compre-
hensive datasets from primary human cancer
tissue. TCGA has served as an invaluable re-
source for the identification of genomic aber-
rations, altered transcriptional networks, and
cancer subtypes. Nonetheless, the gene regu-
latory landscapes of these tumors have largely
been inferred through indirect means.

RATIONALE: A hallmark of active DNA reg-
ulatory elements is chromatin accessibility.
Eukaryotic genomes are compacted in chro-
matin, a complex ofDNAandproteins, andonly
the active regulatory elements are accessible by
the cell’s machinery such as TFs. The assay for

transposase-accessible chromatinusing sequenc-
ing (ATAC-seq) quantifies DNA accessibility
through the use of transposase enzymes that
insert sequencing adapters at these accessible
chromatin sites. ATAC-seq enables the genome-
wide profiling of TF binding events that or-
chestrate gene expression programs and give
a cell its identity.

RESULTS:We generated high-quality ATAC-
seq data in 410 tumor samples from TCGA,
identifying diverse regulatory landscapes across
23 cancer types. These chromatin accessibility
profiles identify cancer- and tissue-specific DNA
regulatory elements that enable classification of

tumorsubtypeswithnewly
recognized prognostic im-
portance. We identify dis-
tinct TF activities in cancer
based on differences in the
inferred patterns of TF-
DNA interaction andgene

expression. Genome-wide correlation of gene
expression and chromatin accessibility pre-
dicts tens of thousands of putative interac-
tions between distal regulatory elements and
gene promoters, including key oncogenes and
targets in cancer immunotherapy, such asMYC,
SRC, BCL2, and PDL1. Moreover, these regula-
tory interactions inform known genetic risk
loci linked to cancer predisposition, nominating
biochemical mechanisms and target genes for
many cancer-linked genetic variants. Lastly,
integration with mutation profiling by whole-
genome sequencing identifies cancer-relevant
noncodingmutations that are associatedwith
altered gene expression. A single-basemutation
located 12 kilobases upstream of the FGD4 gene,
a regulator of the actin cytoskeleton, generates
a putative de novo binding site for anNKXTF
and is associated with an increase in chroma-
tin accessibility and a concomitant increase in
FGD4 gene expression.

CONCLUSION: The accessible genome of pri-
mary human cancers provides a wealth of in-
formation on the susceptibility, mechanisms,
prognosis, and potential therapeutic strategies
of diverse cancer types. Predictionof interactions
betweenDNA regulatory elements and gene pro-
moters sets the stage for future integrative gene
regulatory network analyses. The discovery of
hundreds of noncoding somaticmutations that
exhibit allele-specific regulatory effects suggests
apervasivemechanism for cancer cells tomanip-
ulate gene expression and increase cellular fit-
ness. These data may serve as a foundational
resource for the cancer research community.▪
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Cancer gene regulatory landscape. Chromatin accessibility profiling of 23 human cancer
types (left) in 410 tumor samples from TCGA revealed 562,709 DNA regulatory elements. The
activity of these DNA elements organized cancer subtypes, identified TF proteins and
regulatory elements controlling cancer gene expression, and suggested molecular mecha-
nisms for cancer-associated inherited variants and somatic mutations in the noncoding
genome. See main article for abbreviations of cancer types. Ref., reference; Var., variant.
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We present the genome-wide chromatin accessibility profiles of 410 tumor samples
spanning 23 cancer types from The Cancer Genome Atlas (TCGA). We identify 562,709
transposase-accessible DNA elements that substantially extend the compendium of known
cis-regulatory elements. Integration of ATAC-seq (the assay for transposase-accessible
chromatin using sequencing) with TCGA multi-omic data identifies a large number of
putative distal enhancers that distinguish molecular subtypes of cancers, uncovers specific
driving transcription factors via protein-DNA footprints, and nominates long-range
gene-regulatory interactions in cancer. These data reveal genetic risk loci of cancer
predisposition as active DNA regulatory elements in cancer, identify gene-regulatory
interactions underlying cancer immune evasion, and pinpoint noncoding mutations that
drive enhancer activation and may affect patient survival. These results suggest a
systematic approach to understanding the noncoding genome in cancer to advance
diagnosis and therapy.

C
ancer is a highly heterogeneous group of
diseases, with each tumor type exhibiting
distinct clinical features, patient outcomes,
and therapeutic responses. The Cancer Ge-
nome Atlas (TCGA) was established to

characterize this heterogeneity and understand
the molecular underpinnings of cancer (1). Through
large-scale genomic and molecular analyses, TCGA
has revealed an exquisite diversity of genomic
aberrations, altered transcriptional networks,
and tumor subtypes that have engendered a more
comprehensive understanding of disease etiolo-
gies and laid the foundations for new therapeu-
tics and impactful clinical trials.
Work from TCGA and many others has dem-

onstrated the importance of the epigenome to
cancer initiation and progression (2). Profiling
of cancer-specific coding mutations through whole-
exome sequencing has identified prominent driver
mutations in genes encoding chromatin remodel-

ing enzymes and modifiers of DNA methyla-
tion. These mutations drive alterations in the
epigenome which, in turn, can establish the
dysregulated cellular phenotypes that have be-
come known as the hallmarks of cancer (3). Al-
though many principles of chromatin regulation
have been elucidated in cultured cancer cells,
epigenomic studies of primary tumors are es-
pecially valuable, capturing the genuine eco-
system of heterotypic tumor and stromal cell
interactions and the impacts of factors in the
tumor microenvironment such as hypoxia, aci-
dosis, and matrix stiffness (4). TCGA has car-
ried out targeted DNA methylation profiling of
more than 10,000 samples and, more recently,
whole-genome bisulfite sequencing (WGBS) of
39 TCGA tumor samples (5). This data-rich re-
source has identified cancer-specific differentially
methylated regions, providing an unprecedented
view of epigenetic heterogeneity in cancer. In-

tegration of DNA methylation and additional
TCGA data types has enabled the prediction of
functional regulatory elements (6–8) and the
identification of previously unknown cancer
subtypes (9–13). Additional work has identified
cancer-relevant variable enhancer loci by using
histone modifications (14) and enhancer RNA
sequencing (15). These studies represent, to date,
the largest genome-wide epigenomic profiling
efforts in primary human cancer samples.
Recently, the advent of the assay for transposase-

accessible chromatin using sequencing (ATAC-seq)
(16) has enabled the genome-wide profiling of
chromatin accessibility in small quantities of fro-
zen tissue (17). Because accessible chromatin is
a hallmark of active DNA regulatory elements,
ATAC-seq makes it possible to assess the gene
regulatory landscape in primary human cancers.
Combined with the richness of diverse, orthogo-
nal data types in TCGA, the chromatin accessi-
bility landscape in cancer provides a key link
between inherited and somatic mutations, DNA
methylation, long-range gene regulation, and,
ultimately, gene expression changes that affect
cancer prognosis and therapy.

Results
ATAC-seq in frozen human cancer
samples is highly robust

We profiled the chromatin accessibility land-
scape for 23 types of primary human cancers,
represented by 410 tumor samples derived from
404 donors from TCGA (protocol S1). These 23
cancer types are representative of the diversity of
human cancers (Fig. 1A and data S1). From the
410 tumor samples, we generated technical repli-
cates from 386 samples, yielding 796 genome-wide
chromatin accessibility profiles (data S1). Given the
size of this cohort, we first ensured that all gen-
erated ATAC-seq data could be uniquely mapped
to the expected donor through comparison with
single-nucleotide polymorphism (SNP) genotyping
calls (fig. S1A). In all samples, the genotype from
the ATAC-seq data generated in this study cor-
related most highly with previously published
genotyping array data for the expected donor
compared with that of all other 11,126 TCGA donors.
All ATAC-seq data included in this study passed a
minimum threshold of enrichment of signal over
background (fig. S1, B to D, and data S1) with most
samples showing a characteristic fragment size
distribution with clear nucleosomal periodicity
(fig. S1E). With this high-quality set of 410 tu-
mor samples, we identified 562,709 reproducible
(observed in more than one replicate) pan-cancer
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Fig. 1. Pan-cancer ATAC-seq of TCGA samples identifies diverse
regulatory landscapes. (A) Diagram of the 23 cancer types profiled in
this study. Colors are kept consistent throughout figures. (B) Pan-cancer
peak calls from ATAC-seq data. Peak calls from each cancer type are
shown individually in addition to the 562,709 peaks that represent the pan-
cancer merged peak set. Color indicates the type of genomic region
overlapped by the peak. The numbers shown above each bar represent the
number of samples profiled for each cancer type. UTR, untranslated
region. (C) Overlap of cancer type-specific ATAC-seq peaks with Roadmap
DNase-seq peaks from various tissues and cell types. Left: The percent
of ATAC-seq peaks that are overlapped by one or more Roadmap peaks.
Right: A heatmap of the percent overlap observed for each ATAC-seq
peak set within the Roadmap DNase-seq peak set. Colors are scaled
according to the minimum and maximum overlaps, which are indicated
numerically to the right of the DNase-seq peak set names. The total
number of ATAC-seq peaks (white to purple) or Roadmap DNase-seq
regions (white to green) are shown colorimetrically. (D) Normalized
ATAC-seq sequencing tracks of all 23 cancer types at the MYC locus. Each
track represents the average accessibility per 100-bp bin across all

replicates. Known GWAS SNPs rs6983267 (COAD, PRAD) and rs35252396
(KIRC) are highlighted with light blue shading. Region shown represents
chromosome 8 (chr8):126712193 to 128412193. (E) Normalized
ATAC-seq sequencing tracks of five different COAD samples (top,
orange) and KIRC samples (bottom, purple) shown across the same MYC
locus as in Fig. 1D. Known GWAS SNPs rs6983267 (COAD, PRAD) and
rs35252396 (KIRC) are highlighted with light blue shading. Region
shown represents chr8:126712193 to 128412193. ACC, adrenocortical
carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive
carcinoma; CESC, cervical squamous cell carcinoma; CHOL, cholangiocar-
cinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma;
GBM, glioblastoma multiforme; HNSC, head and neck squamous cell
carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal
papillary cell carcinoma; LGG, low grade glioma; LIHC, liver hepatocellular
carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; MESO, mesothelioma; PCPG, pheochromocytoma and
paraganglioma; PRAD, prostate adenocarcinoma; SKCM, skin cutaneous
melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors;
THCA, thyroid carcinoma; UCEC, uterine corpus endometrial carcinoma.
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peaks of chromatin accessibility (Fig. 1B and
data S2). These peaks were identified using a
normalized peak score metric to enable direct
comparison of peaks across samples of unequal
sequencing depth, with each cancer type having
an average of 105,585 peaks (range 56,125 to
215,978; Fig. 1B and fig. S1F; see methods). Re-
producibility within the pan-cancer peak set was
high for technical replicates (different nuclei
from the same tumor sample; fig. S1, G and H),
intratumor replicates (different samples from
the same tumor; fig. S1I), and intertumor rep-
licates (tumor samples from different donors;
fig. S1, J and K).

Cancer chromatin accessibility extends
the dictionary of DNA regulatory elements

The pan-cancer and cancer type–specific peak
sets generated in this study enabled quantifi-
cation of the number of DNA regulatory ele-
ments identified. To do this, we compared the
regions defined by our pan-cancer and cancer
type–specific peak sets to the regions defined
by the Roadmap Epigenomics Project deoxy-
ribonuclease I hypersensitive sites sequencing
(DNase-seq) studies (18), finding a median of
34.4% overlap between the cancer type–specific
peak sets and the various Roadmap tissue-type
peak sets, with the strongest overlap occurring
in the expected combinations (Fig. 1C and data
S3). In total, about 65% of the pan-cancer peaks
identified in this study had overlap with previ-
ously observed regulatory elements, highlighting
both the consistency of our results with pub-
lished datasets and the large number of addi-
tional putative regulatory elements observed in
this study (Fig. 1C). Given the extensive coverage
of Roadmap DNase-seq studies in healthy tissues,
our results suggested that the disease context
of cancer unveils the activity of additional DNA
regulatory elements. Moreover, overlap of the
ATAC-seq–defined DNA regulatory elements with
chromatin immunoprecipitation sequencing
(ChIP-seq)–defined ChromHMM regulatory
states shows a strong enrichment of accessible
chromatin sites in promoter and enhancer re-
gions, as expected (fig. S1L). Although we pro-
filed many samples in some cancer types [i.e.,
breast invasive carcinoma (BRCA), 75 tumor sam-
ples], we profiled fewer samples in multiple other
cancer types (i.e., cervical squamous cell car-
cinoma, four tumor samples) (Fig. 1B). By esti-
mating the number of unique peaks added with
each additional sample, we found that cancer
types have an estimated average of 169,822 total
peaks (range 97,995 to 309,313) at saturation
(fig. S1, M and N, and data S3), suggesting that
profiling of additional samples of each cancer
type would further expand the repertoire of reg-
ulatory elements.

Noncoding DNA elements reveal distinct
cancer gene regulation and genetic risks

The MYC proto-oncogene locus provides a prime
illustration of the diversity of the chromatin
accessibility landscape across cancer types. MYC
is embedded in a region with multiple DNA

regulatory elements and noncoding transcripts
that regulate MYC in a tissue-specific fashion
(19). We observed sufficient diversity in the
chromatin accessibility landscape of the MYC
locus to enable clustering of cancer types into
two primary categories: (i) cancer types with
extensive chromatin accessibility at 5′ and 3′
DNA elements, such as colon adenocarcinoma
(COAD), and (ii) cancer types with chromatin
accessibility primarily at 3′ regulatory elements,
such as kidney renal clear cell carcinoma (KIRC)
(Fig. 1D). This trend is consistent across dif-
ferent samples of the same cancer type, as shown
for COAD and KIRC (Fig. 1E) and is similar to
the regulation observed in the HOXD locus (20).
Genome-wide association studies (GWAS) have

identified numerous inherited risk loci for can-
cer susceptibility. However, many of these SNPs
reside in the noncoding genome within known
DNA regulatory elements. In the MYC locus, we
identify known sites of chromatin accessibility,
including peaks surrounding functionally vali-
datedGWAScancer susceptibility SNPs (rs6983267
and rs35252396; Fig. 1, D and E). SNP rs6983267
is associated with increased susceptibility to co-
lonadenocarcinomaandprostate adenocarcinoma
(PRAD) (21–23), consistent with the presence of
focal chromatin accessibility in these cancer
types. However, SNP rs6983267 has not been
previously associated with breast cancer or any
squamous tumor types, which also have strong
chromatin accessibility at this regulatory ele-
ment in our ATAC-seq data (Fig. 1D). Similarly,
SNP rs35252396 has been associated with KIRC
and, in our data, shows strong accessibility in
samples from kidney cancer types as well as
breast and thyroid carcinoma, suggesting a
potential role for these SNPs in previously un-
appreciated cancer contexts.
To visualize global patterns from our diverse

ATAC-seq datasets, we performed Pearson cor-
relation hierarchal clustering on distal and
promoter elements (Fig. 2A). We found that dis-
tal elements exhibited a greater specificity and
wider dynamic range of activity in association
with cancer types, whereas promoter element
accessibility was less cancer type–specific and
showed similar patterns of correlation to global
gene expression, as measured by RNA-seq (Fig.
2A). This functional specificity of distal regu-
latory elements was also previously observed
in healthy tissues and in development (24, 25).
Using t-distributed stochastic neighbor embed-
ding (26) (t-SNE; Fig. 2B) and density cluster-
ing (27) (fig. S2A), we identified 18 distinct
clusters, which we labeled based on the ob-
served cancer-type enrichment (fig. S2B and
data S3). We found strong concordance between
this ATAC-seq–based clustering and the pub-
lished multiomic iCluster scheme using TCGA
mRNA-seq, microRNA (miRNA)–seq, DNAmeth-
ylation, reverse-phase protein array (RPPA), and
DNA copy number data (28) (Fig. 2, C and D).
Comparing this clustering scheme to other TCGA-
based clustering schemes, we observed the
strongest concordance of our ATAC-seq cluster-
ing scheme with mRNA and cancer type (Fig. 2E).

This is consistent with the connection of chro-
matin accessibility to transcriptional output and
the observation that ATAC-seq is strongly cell
type–specific.Multiple observations canbemade
from these clusters: (i) Some cancer types split
into two distinct clusters such as breast cancer
(i.e., basal and nonbasal) and esophageal can-
cer (i.e., squamous and adenocarcinoma), (ii)
cancer samples derived from the same tissue
type often group together [i.e., kidney renal pap-
illary cell carcinoma (KIRP) and KIRC], and (iii)
some cancers group together across tissues as
observed for squamous cell types (Fig. 3A and
fig. S2B).

Cluster-specific regulatory landscapes
identify patterns of transcription factor
usage and DNA hypomethylation

Grouping of samples into defined clusters en-
ables the determination of patterns in chroma-
tin accessibility that are unique to each cluster.
Using a framework that we term “distal bi-
narization,” we identified the distal regulatory
elements that are accessible only in a single clus-
ter or small group of clusters (Fig. 3B, fig. S2C,
and data S4). Of the 516,927 pan-cancer distal
elements, 203,260 were found to be highly ac-
cessible in a single cluster or group of clusters
(up to four clusters). These cluster-specific peak
sets are enriched for motifs of transcription fac-
tors (TFs) with correlated gene expression that
are known to be important for cancer and tissue
identity (Fig. 3C, fig. S2D, and data S4). These
include the androgen receptor (AR) in prostate
cancer, forkhead box A1 (FOXA1) in nonbasal
breast cancer, and melanogenesis-associated tran-
scription factor (MITF) in melanoma. Moreover,
these cluster-specific peak sets are enriched for
known GWAS SNPs that are associated with
cancers of the corresponding type (fig. S2E and
data S5), highlighting that cancer-related GWAS
SNPs tend to be located within or near cancer
type–specific regulatory elements. The concor-
dance of GWAS risk loci and cancer chromatin
state has often been evaluated using cancer
cell lines in the past, and our work provides a
foundational map to evaluate noncoding GWAS
SNPs in primary human cancers.
Consistent with published reports (12, 18, 29, 30),

the degree of DNA methylation was anticorre-
lated with chromatin accessibility at regulatory
elements, and regions lacking chromatin acces-
sibilityweremore frequentlymethylated (fig. S2F).
In particular, cluster-specific peak sets are hypo-
methylated in the relevant cancer types, though
frequently methylated in other cancer types that
lack accessibility in those peaks (fig. S2G). Con-
sistent with these observations, which are based
on DNA methylation array data, we see a strong
depletion of DNA methylation at the center of
both distal peaks and promoter peaks in a single
patient profiled by WGBS (fig. S2H) (5). In our
analysis of methylation levels within cluster-
specific peak sets, we also identified a subgroup
of brain cancers that exhibits DNA hypermeth-
ylation of peaks specific to nonbrain cancers
(fig. S2G), likely caused by mutations in genes
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that affect DNA methylation, such as isocitrate
dehydrogenase 1 (IDH1) (fig. S3A). Similarly,
we found that the subset of testicular germ cell
tumors that are seminomas show a pattern of
genome-wide DNA hypomethylation, consistent
with a published report (31) (fig. S3B). Thus, a
small number of TFs dominate the cis-regulatory
landscape in each cancer type. These TFs are
often the known key drivers of the respective

cancer or tissue type, and TF occupancy is as-
sociated with, and possibly causes, DNA hypo-
methylation of the corresponding DNA elements
in cancer.

De novo identification of cancer
subtypes from ATAC-seq data

Given the richness of the chromatin accessi-
bility landscape, we explored the capacity of

ATAC-seq data to define molecular subtypes
of cancer de novo. This analysis was limited to
cancer types with sufficient available donors:
BRCA (N = 74), PRAD (N = 26), and KIRP (N =
34). In KIRP, a gap statistic identified three
distinct subgroups that are clearly separable by
the first two principal components (Fig. 3D).
The smallest of these subgroups contains four
donors with very clear differences in ATAC-seq

Corces et al., Science 362, eaav1898 (2018) 26 October 2018 4 of 13

Fig. 2. Chromatin accessibility profiles
reveal distinct molecular subtypes of
cancers. (A) Pearson correlation heatmaps
of ATAC-seq distal elements (left), ATAC-seq
promoters (middle), and RNA-seq of all
genes (right). Clustering orientation is
dictated by the ATAC-seq distal element
accessibility, and all other heatmaps use this
same clustering orientation. Color scale
values vary between heatmaps. Promoter
peaks are defined as occurring between
−1000 and +100 bp of a transcriptional start
site. Distal peaks are all nonpromoter peaks.
The total number of features (N) used for
correlation is indicated above each Pearson
correlation heatmap. (B) Unsupervised
t-SNE on the top 50 principal components
for the 250,000 most variable peaks across
all cancer types. Each dot represents the
merge of all technical replicates from a given
sample. Color represents the cancer type
shown above the plot. (C) Cluster residence
heatmap showing the percent of each
TCGA iCluster that overlaps with each ATAC-
seq–based cluster. (D) ATAC-seq t-SNE
clusters shown on the PanCanAtlas iCluster
TumorMap. Each hexagon represents a
cancer patient sample, and the positions of
the hexagons are computed from the sim-
ilarity of samples in the iCluster latent
space. The color and larger size of the
hexagon indicates the ATAC-seq cluster
assignment. Samples that were not included
in the ATAC-seq analysis are represented
by smaller gray hexagons. The text labels
indicate the cancer disease type.
(E) Variation of information analysis of
clustering schemes derived by using
various data types from TCGA.
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Fig. 3. ATAC-seq clusters cancer samples to show cancer- and tissue-
specific drivers. (A) Cluster residence heatmap showing the percent of
samples from a given cancer type that reside within each of the
18 annotated ATAC-seq clusters. (B) Heatmap showing the ATAC-seq
accessibility at distal elements (N = 203,260) identified to be cluster-
specific by distal binarization. (C) Enrichment of TF motifs in peak
sets identified in Fig. 3B. Enrichment is determined by a hypergeometric
(HG) test –log10(P value) of the motif’s representation within the cluster-
specific peaks compared to the pan-cancer peak set. Transcription factors
shown represent a manually trimmed set of factors whose expression is
highly correlated (r > 0.4) with the accessibility of the corresponding
motif. Color represents the –log10(P value) of the hypergeometric test.
(D) Principal component analysis of the top 25,000 distal ATAC-seq
peaks within the KIRP cohort (N = 34 samples). Each dot represents an
individual sample. The color of the dots represents K-means clustering
(K = 3 by gap statistic). (E) Distal binarization analysis based on
the three K-means–defined groups identified and shown (by color) in

Fig. 3D. (F) Dot plot showing the number of nearby ATAC-seq peaks per
gene from the group 1 distal binarization. Each dot represents a
different gene. The MECOM gene (also called EVI1) is highlighted in red.
(G) Normalized average sequencing tracks of K-means–defined groups 1,
2, and 3 at the MECOM locus. Peaks specific to group 1 are highlighted
by light blue shading. (H) DNA copy number data at the MECOM locus in
the three K-means–defined groups. Each dot represents an individual
sample. CNV, copy number variation. (I) Average chromatin accessibility at
peaks near the MECOM gene (N = 42 peaks) and RNA-seq gene expression
of MECOM in KIRP samples (N = 34 samples). Each dot represents an
individual donor. Dots are colored according to the clustering group colors
shown in Fig. 3D. CPM, counts per million. (J) Kaplan-Meier analysis of
overall survival of all KIRP donors in TCGA (N = 287) stratified by MECOM
overexpressed (N = 44) and normal MECOM expression (N = 243).
(K) Hazard plot of risk of dying from KIRP based on multiple covariates,
including MECOM expression (hazard ratio = 5.2, 95% confidence
interval = 2.4 to 11.0). Lines represent 95% confidence intervals.
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accessibility identified by distal binarization (red
coloring in Fig. 3E). Within the set of regulatory
elements that are specific to this subgroup, we
found 42 ATAC-seq peaks near the MDS1 and
EVI1 complex locus (MECOM) gene (Fig. 3, F
and G). Notably, the high chromatin accessibil-
ity of these MECOM peaks is not related to copy
number amplification, as determined by DNA
copy number array data (Fig. 3H). The expres-
sion of the MECOM gene is highly correlated
with the mean ATAC-seq accessibility at these
42 ATAC-seq peaks [correlation coefficient (r) =
0.79, Fig. 3I]. Additionally, overexpression of
MECOM is significantly associated with poorer
overall survival across all available KIRP data
from TCGA (P = 2.2 × 10−5, Cox proportional
hazard test, Fig. 3J) with a hazard ratio of 5.2
(95% confidence interval = 2.4 to 11.0). This
association is more substantial than lymph node
status or patient age and is independent of can-
cer stage (Fig. 3K), indicating a potential prognos-
tic role for these findings. Importantly, MECOM
overexpression is not readily explained by any
previously identified subgroups of KIRP, includ-
ing subgroups with a CpG island methylator
phenotype or mutations in the gene encoding
fumarate hydratase, which have also been shown
to confer poor overall survival (13). These results
suggest that MECOM activation in KIRP iden-
tifies a previously unappreciated subgroup of
patients with adverse outcomes, a finding that
was uncovered by notable changes in the chro-
matin accessibility landscape of these samples.
Similarly, we found multiple distinct sub-

groups of PRAD and BRCA based on K-means
clustering of the top 25,000 variable distal ATAC-
seq peaks (fig. S3, C and D). In PRAD, these
include subgroups driven by activity of AR,
tumor protein P63 (TP63), and forkhead box–
family TFs (fig. S3C). From an unsupervised
analysis of breast cancer, we identified motifs
of known TF drivers of luminal subtype iden-
tity, such as GATA binding protein 3 (GATA3)
and FOXA1, as being enriched in the peak clus-
ters specific to a subset of luminal samples
(clusters 3 and 4, fig. S3D). We also identified a
potential role for grainyhead-like (GRHL) TF
motifs in basal breast cancer (32) (cluster 1, fig.
S3D) and an overlapping role for nuclear factor
I (NFI) in both basal and luminal A breast can-
cer (cluster 2, fig. S3D). Additionally, ATAC-seq
data can be used to identify regions of copy
number amplification de novo (33), enabling
the classification of HER2-amplified cases of
breast cancer (fig. S3, E to G).

Footprinting analysis defines
TF activities in cancer

The high sequencing depth of the ATAC-seq data
generated in this study (median of 56.7 million
unique reads per technical replicate) enabled the
profiling of TF occupancy at base-pair resolution
through TF footprinting. TF binding to DNA
protects the protein-DNA binding site from
transposition while the displacement or deple-
tion of one or more nucleosomes creates high
DNA accessibility in the immediate flanking se-

quence. Collectively, these phenomena are re-
ferred to as the TF footprint. To characterize TF
footprints, we adapted a recent approach (34)
that quantifies the “flanking accessibility,” a
measure of the accessibility of the DNA adja-
cent to a TF motif, and “footprint depth,” a
measure of the relative protection of the motif
site from transposition (Fig. 4A and data S6).
To calculate these variables, we aggregated all
insertions relative to the TF motif center, genome-
wide (fig. S4A). To attempt to account for known
Tn5 transposase insertion bias, we computed the
hexamer frequency centered at Tn5 insertions
and normalized for the expected bias at each
position relative to the motif center (34) (see
methods for potential limitations). Depending
on the binding properties of a TF and its ability
to affect local chromatin accessibility, changes
in these properties would be detectable through
this approach genome-wide (fig. S4, B and
C). ChromVAR (35), a similar genome-wide ap-
proach which assesses the ability of a TF to
affect flanking accessibility, identified a highly
overlapping list of TFs (fig. S4D).
To uncover transcriptionally driven TF bind-

ing patterns, we correlated the RNA-seq gene
expression of a given TF to its corresponding
footprint depth and estimated flanking acces-
sibility (data S6). A factor whose expression is
sufficient to generate robust DNA binding would
have a footprint depth and flanking accessibility
that are significantly correlated to its gene ex-
pression [false discovery rate (FDR) < 0.1, purple
dots in Fig. 4B], such as TP63 (Fig. 4, C and D) or
NK2 homeobox 1 (NKX2-1) (Fig. 4, E and F).
Increases in flanking accessibility and decreases
in footprint depth are likewise accompanied by
decreases inmethylation (bottomof Fig. 4, D and
F), consistent with the hypothesis that methy-
lated DNA is less likely to be bound by TFs (36).
Although footprint depth and flanking accessi-
bility are often correlated, their divergence can
suggest the modes of TF-DNA interaction. For
example, factors whose expression is sufficient to
cause opening of chromatin around the motif
site but not to protect the motif site from trans-
position would be expected to only exhibit a
significant correlation between gene expres-
sion and flanking accessibility (blue dots in Fig.
4B). This pattern of correlation could be caused
by effects such as rapid TF off rates or low oc-
cupancy (fig. S4, E and F). Conversely, a small
number of TFs have expression that is only
significantly correlated with footprint depth (red
dots in Fig. 4B). Though likewise rare, we also
identified potential negative regulators whose
expression is inversely correlated to gain of flank-
ing accessibility and loss of footprint depth,
such as the cut-like homeobox 1 (CUX1) TF (37)
(Fig. 4B and fig. S4, G and H). This is the ex-
pected behavior of repressive TFs that bind
DNA and lead to compaction of the neighbor-
ing sequence. These results predicted dozens
of positive and negative regulators whose ex-
pression is strongly correlated with chromatin
accessibility patterns near to their correspond-
ing motif (fig. S4I and data S6). Overall, our

footprinting analysis identified putative TFs
with activities correlated with gene expression.

Linking of DNA regulatory elements to
genes predicts interactions relevant
to cancer biology

The breadth and depth of this sequencing study
enabled a robust association of ATAC-seq peaks
with the genes that they are predicted to reg-
ulate. To do this, we implemented a strategy
based on the correlation of ATAC-seq accessi-
bility and gene expression across all samples
(Fig. 5A, N = 373 with matched RNA-seq and
ATAC-seq). Because promoter capture Hi-C data
suggested that >75% of three-dimensional (3D)
promoter-based interactions occur within a 500–
kilobase pair (kbp) distance (38), we restricted
the length scale of this analysis to 500 kbp to
avoid spurious predictions. Using a conserva-
tive FDR cutoff of 0.01, we identified 81,323
unique links between distal ATAC-seq peaks
and genes (Fig. 5B and data S7). Some of these
links are driven by correlation across many
cancer types (Fig. 5, C to E), whereas 70% are
strongly driven by one cluster (Fig. 5F and data
S7). To derive a final list of peak-to-gene links
(Fig. 5B), putative links were filtered against (i)
links whose correlation is strongly driven by
DNA copy number amplification (“CNA”; fig. S5,
A and B), (ii) regions with broad and high local
correlation (“diffuse”; fig. S5, B and C), and (iii)
links involving an ATAC-seq peak that over-
laps the promoter of any gene (Fig. 5G). As
expected, the histogram of distances between
a peak and its target gene decays sharply with
distance (39) (Fig. 5H). The expression of most
genes is correlated with the activity of fewer
than five different peaks (Fig. 5I), whereas most
peaks are predicted to interact with a single
gene (Fig. 5J). Additionally, this analysis found
that only 24% of predicted links occur between
an ATAC-seq peak and the nearest gene, indicat-
ing that the majority of predicted interactions
skip over one or more genes and would not be
possible to predict from primary sequence alone
(Fig. 5K). In total, we predicted at least one peak-
to-gene link for 8552 protein-coding genes,
accounting for nearly half of all protein-coding
genes in the human genome, including 48%
of the curated Catalogue of Somatic Muta-
tions in Cancer (COSMIC) cancer-relevant genes
(data S7).
In addition to predicting peak-to-gene links

across cancer types, we also predicted peak-to-
gene links within breast cancer (N = 74 donors),
identifying 9711 unique peak-to-gene links (fig. S5D
and data S7). Of these links, 36% were also
identified in our analysis of all cancer types
(fig. S5E). Particularly important in these BRCA-
specific links was the contribution of recurrent
DNA CNA as a strong driver for spurious peak-
to-gene correlation (Fig. 5G). These false-positive
associations were removed through the use of
published TCGA DNA copy number array data
and a local correlation correction model, as men-
tioned above (see methods). The final predicted
BRCA-specific links follow a similar distance
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distribution and peak-to-gene linking speci-
ficity as observed in the pan-cancer predicted
links (fig. S5, F to I).
Many of these predicted peak-to-gene links

occur in clusters where multiple nearby peaks
are predicted to be linked to the same gene,
indicating that these clusters of peak-to-gene
links may function as part of a single regu-
latory unit or enhancer. Extending the width of
the linked ATAC-seq peaks to 1500 bp allows
for joining of these peaks into defined merged
putative enhancer units (fig. S5J). This resulted
in a total of 58,092 pan-cancer and 7622 BRCA-
specific enhancer-to-gene links (data S7).

Validation and utility of predicted links
between distal elements and genes

To verify a regulatory interaction for the pre-
dicted peak-to-gene links, we used a CRISPR
interference (CRISPRi) (40) strategy using a
catalytically dead Cas9 (dCas9) fused to a Kruppel-
associated box (KRAB) domain, which mediates
focal heterochromatin formation and functional
silencing of noncoding DNA regulatory elements
(Fig. 6A). In this way, targeting the distal peak
region of a predicted peak-to-gene link would be
expected to cause a decrease in the expression of
the linked gene, located tens to hundreds of
kilobases away. CRISPRi of a predicted distal
regulatory element linked to BCL2 (164 kbp,
Fig. 5C) led to a significant reduction in BCL2
gene expression in the luminal-like breast can-
cer MCF7 cell line but not in the basal-like MDA-
MB-231 cell line (Fig. 6B), consistent with the
role of BCL2 as a luminal-specific survival factor
(41). Similarly, CRISPRi of a distal regulatory
element linked to the SRC oncogene (−49 kbp,
Fig. 5D) led to a significant reduction in gene
expression in both MCF7 cells and MDA-MB-
231 cells (Fig. 6B). On a genome-wide scale, the
predicted BRCA-specific peak-to-gene links show
a strong enrichment in 3D chromosome con-
formation data from MDA-MB-231 cells (42),
providing further support for our link predic-
tion strategy (Fig. 6C). Moreover, we found that,
of the peak-to-gene links predicted from BRCA
ATAC-seq data that are also associated with a
DNA methylation array CpG probe, 35% overlap
with links predicted jointly from DNA methyl-
ation array and RNA-seq data in an ELMER
analysis (8, 43) of the complete TCGA BRCA
dataset (N = 858 tumors) (P << 0.001; Fig. 6D,
fig. S6A, and data S8). These overlaps contain
many luminal-specific and basal-specific links
(fig. S6A), with a clear delineation between
luminal (fig. S6B) and basal (fig. S6C) breast
cancer samples. Integrating WGBS and ATAC-
seq demonstrated the dynamics of methylation
and chromatin accessibility and the overlap of
predicted interactions at the non-basal FOXA1
and basal forkhead box C1 (FOXC1) loci (fig. S6,
D and E).
Similarly, previous work has leveraged TCGA

RNA-seq data to infer transcriptional networks
that consist of regulons, each of which is based
on a TF regulator and its associated positive and
negative target genes (fig. S7A) (44). For each
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Fig. 4. Footprinting
analysis identifies
distinct TF activities
in cancer. (A) Sche-
matic illustrating
the dynamics of
TF binding (purple) and
Tn5 insertion (green).
(B) Classification of TFs
by the correlation of
their RNA expression to
the footprint depth
and flanking accessibil-
ity of their motifs.
Color represents
whether the depth
(red), flank (blue), or
both (purple) are sig-
nificantly correlated to
TF expression below
an FDR cutoff of 0.1.
Each dot represents
an individual dedupli-
cated TF motif (see
methods). (C) TF foot-
printing of the TP63
motif (CIS-BP
M2321_1.02) in lung
cancer samples from
the squamous (cluster
8) or adenocarcinoma
(cluster 12) subtype.
The Tn5 insertion bias
track of TP63 motifs is
shown below. (D) Dot
plots showing the
footprint depth and
flanking accessibility of
TP63 motifs across all
lung cancer samples
studied. Each dot rep-
resents a unique sam-
ple. Color represents
cancer type (top),
RNA-seq gene expres-
sion (middle), or meth-
ylation beta value
(bottom). Samples
without matching RNA
or methylation data are
shown in gray. (E) TF
footprinting of the
NKX2-1 motif (CIS-BP
M6374_1.02) in lung
cancer samples from
the squamous (cluster
8) and adenocarcinoma
(cluster 12) subtype.
The Tn5 insertion bias
track of NKX2-1 motifs
is shown below. (F) Dot
plots showing the
footprint depth and
flanking accessibility of NKX2-1 motifs across all lung cancer samples studied. Each dot represents a
unique sample. Color represents cancer type (top), RNA-seq gene expression (middle), or methylation
beta value (bottom). Samples without matching RNA or methylation data are shown in gray.
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regulon, every donor in the cohort can be as-
signed a positive, undefined, or negative regulon
activity as measured by a differential enrichment
score (dES) (45). Certain patterns of chromatin
accessibility are expected on the basis of the
target gene set and dES status of the donor
(fig. S7B). For example, in donors with positive
dES, chromatin at sites linked to positive target
genes should be more accessible, whereas chro-
matin at sites linked to negative targets should
be less accessible (fig. S7B). Examination of the
estrogen receptor 1 (ESR1) regulon in the 74 BRCA
donors profiled in this study identified 482
ATAC-seq distal peak-to-gene links correspond-
ing to 124 ESR1 target genes (fig. S7C and
data S8). Accessibility at these peaks is strongly
concordant with expectations, further support-
ing the predicted links (P < 1 × 10−20, fig. S7D).
Examination of this regulon across all TCGA

BRCA donors (N = 1082) showed a significant
difference in overall survival between ESR1 dES-
positive and -negative samples (fig. S7, E and F).
Together, pan-cancer and BRCA-specific peak-

to-gene links further informed cancer-related
GWAS polymorphisms, allowing the linkage of
SNPs to putative gene targets with about 65%
of all GWAS polymorphisms targeting a gene
other than the closest gene on the linear ge-
nome (data S5). SNPs falling within peak-to-
gene links were predicted to act on important
cancer-related genes, including master regulators
of cancer and tissue identity such as NKX2-1
(fig. S7G) and TP63 (fig. S7H). Focusing specif-
ically on the BRCA peak-to-gene links for which
published 3D chromosome conformation data
are available, we found clear examples of GWAS
SNPs interacting with distant, non-neighboring
genes, such as OSR1 (Fig. 6E and fig. S7I). More-

over, overlapping of the pan-cancer and breast
cancer–specific peak-to-gene links with expres-
sion quantitative trait loci (eQTLs, where genetic
variation at noncoding elements is associated
with gene expression differences) from the
Genotype-Tissue Expression (GTEx) project
showed significant overlap in almost all com-
parisons (N = 44 of 48 comparisons) (fig. S7J
and data S5). These results underscored our
ability to use these predicted peak-to-gene links
to generate key insights into published data
and inform poorly understood aspects of cancer
biology.

Identification of DNA regulatory
elements related to immunological
response to cancer

Of particular interest to current cancer ther-
apy, immune infiltrates represent a substantial
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Fig. 5. In silico linking of ATAC-seq peaks to genes. (A) Schematic of
the in silico approach used to link ATAC-seq peaks in distal noncoding DNA
elements to genes via correlation of chromatin accessibility and RNA
expression. (B) Heatmap representation of the 81,323 pan-cancer peak-to-
gene links predicted. Each row represents an individual link between one
ATAC-seq peak and one gene. Color represents the relative ATAC-seq
accessibility (left) or RNA-seq gene expression (right) for each link as a
z-score. (C) Dot plot of the ATAC-seq accessibility and RNA-seq gene
expression of a peak-to-gene link located 164 kbp away from the
transcription start site of the BCL2 gene (peak 498895) that is predicted
to regulate its expression. Color represents the cancer type. Each dot
represents an individual sample. (D) Same as in Fig. 5C but for a peak
that is located 49 kbp away from the SRC gene (peak 525295). (E) Same

as in Fig. 5C but for a peak that is located 93 kbp away from the PPARG
gene (peak 98874). (F) Same as in Fig. 5C but for a peak that is located
58 kbp away from the ERBB3 gene (peak 381116). (G) Bar plot showing the
number of predicted links that were filtered for various reasons. First,
regions whose correlation is driven by DNA copy number amplification
were excluded (“CNA”). Next, regions of high local correlation were
filtered out (“Diffuse”). Lastly, peak-to-gene links where the peak
overlapped a promoter region were excluded (“Promoter”). The remaining
links (“Distal”) are used in downstream analyses. (H) Distribution of the
distance of each peak to the transcription start site (TSS) of the linked
gene. (I) Distribution of the number of peaks linked per gene. (J) Distribution
of the number of genes linked per peak. (K) Distribution of the number of
genes “skipped” by a peak to reach its predicted linked gene.
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contribution to the overall tumor composition
in solid tumors (46–48). We reasoned that in-
filtrating immune cells could contribute to our
ATAC-seq data, both through actions on tumor
cells and through increased chromatin accessi-
bility at known immune-specific regulatory ele-
ments. Leveraging published ATAC-seq datasets
from the human hematopoietic system (25) and
data generated here from human dendritic cell
subsets (Fig. 6F), we characterized each of our
linked peaks by comparing its accessibility in
immune cell types to its accessibility in bulk
cancer samples (Fig. 6G). We reasoned that
peaks that are more accessible in immune cells
compared with our cancer cohort might be gen-
erated from immune cells associated with the
tumor tissue (Fig. 6G). Additionally, we cor-
related each linked peak to the cytolytic activity
score (49) of the tumor. The cytolytic activity
score is based on the log-average gene expres-
sion of granzyme A and perforin 1, two CD8
T cell–specific markers. Linked peaks that ex-
hibit high correlation to cytolytic activity might
also be considered to be related to immune in-
filtration. Combining these two metrics, we iden-
tified peak-to-gene links expected to be highly
relevant to immune infiltration, including links
to genes relevant to antigen presentation and
T cell response (Fig. 6H and data S9). The ac-
cessibility of these peak-to-gene links that were
predicted to be immune-related is highly cor-

related with computationally predicted metrics
of immune infiltration (46, 47) and inversely
correlated with tumor purity (48) (Fig. 6I). One
notable linked gene is programmed death ligand 1
(PDL1, also known as CD274), a key mediator
of immune evasion by cancer and an impor-
tant target for cancer immunotherapy. PDL1 is
linked to four putative distal regulatory ele-
ments that exhibit distinct chromatin acces-
sibility across cancer types and are located as
far as 43 kbp away from the PDL1 transcription
start site (Fig. 6, J and K). CRISPRi of each of
these four putative PDL1 regulatory elements
significantly decreased, but did not abrogate,
the expression of PDL1 mRNA in at least one of
the two breast cancer cell lines tested (MCF7
and MDA-MB-231 cells, Fig. 6L). These results
support a model where the expression of PDL1
is affected by the combined activity of multiple
distal regulatory elements.

Identification of cancer-relevant
noncoding mutations

In addition to identifying gene regulatory in-
teractions in cancer, ATAC-seq combined with
whole-genome sequencing (WGS) can be used
to identify regulatory mutations driving cancer
initiation and progression. For example, if a
noncoding somatic mutation causes the gener-
ation of a TF binding site, this mutation could
lead to an increase in chromatin accessibility

in cis and a concomitant increase in the ob-
served frequency of the mutant allele in ATAC-
seq as compared with that in WGS (Fig. 7A).
Similarly, a mutation that inactivates a TF bind-
ing site can lead to a decrease in chromatin
accessibility and a concomitant decrease in the
observed frequency of the mutant allele. If such
mutations in regulatory elements were to be
functional in cancer, we might also expect that
they increase or decrease chromatin accessibil-
ity beyond the expected distribution observed
in nonmutated samples.
From the 404 donors profiled in this study,

high-depth WGS data was available for 35 donors
across 10 cancer types. These 35 donors had
374,705 called somatic mutations, with 32,696
falling within annotated ATAC-seq peaks and
2259 having at least 30 reads in both ATAC-seq
andWGS data (data S10). Among these mutations
were three separate occurrences of telomerase
reverse transcriptase (TERT) gene promoter mu-
tations (Fig. 7B), previously shown to generate
de novo E26 transformation-specific (ETS) motif
sites. ATAC-seq is especially well suited to iden-
tifying these TERT promoter mutations because
the variant allele frequency is skewed owing to
the increase in accessibility on the mutant allele
(fig. S8A). Compared with the publicly available
exome sequencing data from TCGA, where the
TERT capture probes do not extend into the pro-
moter region, ATAC-seq provided significantly
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Fig. 6. Validation of long-range gene regulation of cancer in peak-to-
gene links. (A) Schematic of CRISPRi experiments performed. Each
experiment uses three guide RNAs (gRNAs) to target an individual peak.
The effect of this perturbation on the expression of the linked gene is
determined with quantitative polymerase chain reaction (qPCR). (B) Gene
expression changes by qPCR after CRISPRi of peaks predicted to be linked to
the BCL2 (peak 498895) and SRC (peak 525295) genes in MCF7 and
MDA-MB-231 cells. Error bars represent the standard deviation of four
technical replicates. ***P < 0.001 and NS is not significant by two-tailed
Student’s t test. (C) Meta-virtual circular chromosome conformation capture
(4C) plot of predicted BRCA-specific peak-to-gene links with distances
greater than 100 kbp. HiChIP interaction frequency is shown for the MDA-
MB-231 basal breast cancer cell line as well as multiple populations of
primary T cells. Th17, T helper 17 cell; Treg, regulatory T cell. (D) Bar plot
showing the overlap of predicted ATAC-seq–based peak-to-gene links and
DNA methylation–based ELMER predicted probe-to-gene links in BRCA, as
a percentage of all ATAC-seq–based peak-to-gene links with a peak
overlapping a methylation probe. The percentage of peak-to-gene links
overlapping an ELMER probe-to-gene link (34.9%) is compared to the
overlap with 1000 sets of randomized ELMER probe-to-gene links (3.6 ±
0.6%, P << 0.001). (E) Virtual 4C plot of the peak-to-gene link between
rs4322801 and the OSR1 gene. Normalized HiChIP interaction signal is
shown for the MDA-MB-231 basal breast cancer cell line as well as multiple
populations of primary T cells using the colors shown in Fig. 6C. ATAC-seq
sequencing tracks are shown below for four BRCA samples and MDA-MB-231
cells with increasing levels of OSR1 gene expression. The rs4322801 SNP
(left) and OSR1 gene (right) are highlighted by light blue shading. Region
shown represents chr2:18999999 to 19425000. (F) Diagram of the
hematopoietic differentiation hierarchy with differentiated cells colored as
either B cells (green), Tcell or natural killer (Tcell/NK) cells (blue), or myeloid
cells (red). HSC, hematopoietic stem cell; LMPP, lymphoid-primed multipo-
tent progenitor; CLP, common lymphoid progenitor; MPP, multipotent
progenitor; CMP, common myeloid progenitor, GMP, granulocyte macrophage
progenitor; HSPC, hematopoietic stem and progenitor cells; pDC, plasmacy-

toid dendritic cell; mDC, myeloid dendritic cell. (G) Schematic of the analysis
shown in Fig. 6H. Peak-to-gene links are classified as related to immune
infiltration if their accessibility is higher in immune cells than TCGA cancer
samples and they are highly correlated to cytolytic activity. (H) Dot plot
showing ATAC-seq peak-to-gene links with relevance to immune infiltration.
Each dot represents an individual peak with a predicted gene link. Peaks that
are related to immune cells have higher ATAC-seq accessibility
in immune cell types compared to TCGA cancer samples. Peaks related to
immune infiltration have a higher correlation to cytolytic activity. Color
represents the cell type of the observation.The vertical dotted line represents
the mean + 2.5 standard deviations above the mean for all ATAC-seq peak
correlations to the cytolytic activity. The red shading indicates peak-to-gene
links that are predicted to be related to immune infiltration. The blue
shading indicates peak-to-gene links that are not predicted to be related to
immune infiltration. NS, not significant. (I) Violin plots of the distribution
of Spearman correlations across all peak-to-gene links predicted to be
related to immune infiltration (red) or not (blue) with various metrics of
tumor purity. (J) Normalized ATAC-seq sequencing tracks of the PDL1 gene
locus in six samples with variable levels of expression of the PDL1 gene
(right). Predicted links (red) are shown below for four peak-to-gene links
(L1 to L4, peaks 293734, 293735, 293736, and 293740, respectively) to the
promoter of PDL1. One of these peak-to-gene links (L2) overlaps an
alternative start site for PDL1 and was therefore labeled as a “promoter” peak
during filtration. This peak-to-gene link was added to this analysis after
manual observation. Region shown represents chr9:5400502 to 5500502.
(K) Heatmap representation of the ATAC-seq chromatin accessibility of the
5000-bp region centered at each of the four peak-to-gene links shown in
Fig. 6J. Each row represents a unique donor (N = 373) ranked by PDL1
expression. The correlation of the chromatin accessibility of each peak with
the expression of PDL1 is shown below the plot. Color represents normalized
accessibility. (L) Gene expression changes of the PDL1 gene by qPCR after
CRISPRi of peaks predicted to be linked to the PDL1 gene in MCF7 and MDA-
MB-231 cells. Error bars represent the standard deviation of four technical
replicates. ***P < 0.0001 and **P < 0.05 by two-tailed Student’s t test.
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higher sequencing coverage of the TERT pro-
moter locus per read sequenced, enabling a more
robust classification of TERT promoter muta-
tions (P < 1 × 10−7, fig. S8B). Of the three TERT
promoter mutations identified in the subset of
donors with matched WGS, one mutation, in
particular, leads to a significant increase in ac-
cessibility compared to the other nonmutated
members of that cancer type (FDR < 0.0001,
blue dot in Fig. 7, B and C). As expected, this
increase in TERT promoter accessibility is asso-
ciated with a concomitant increase in TERT gene
expression (blue dot in Fig. 7C). TERT promoter
mutations, however, are not the only way to in-
crease TERT gene expression, because high TERT
expression can also be observed in samples with-
out identifiable TERT promoter mutations (Fig. 7C).
Consistent with a previous report (50), differ-
ential motif analysis at the site of this TERT
promoter mutation identified E74-like ETS tran-

scription factor 1 (ELF1) or ELF2 as the TF that
likely binds to the de novo ETS motif (fig. S8C).
In addition, we identified several mutations over-
lapping CCCTC-binding factor (CTCF) motif oc-
currences that are associated with decreased
accessibility at that site (fig. S8, D and E). How-
ever, these mutations were relatively rare and
often had only small effects on the accessibility
of the CTCF motif site despite a known en-
richment of somatic mutations in CTCF motif
sites in cancer (51, 52).
In addition to known TERT promoter mu-

tations, integrative analysis of WGS and ATAC-
seq data uncovered a mutation upstream of the
FYVE RhoGEF and PH domain-containing 4
(FGD4) gene, a regulator of the actin cytoskeleton
and cell shape. This mutation occurs in a bladder
cancer sample where the variant allele frequen-
cy observed in ATAC-seq is markedly higher
than the variant allele frequency observed in

WGS (Fig. 7B). This mutation is associated
with a significant increase in accessibility com-
pared to other bladder cancer samples in this
cohort (Fig. 7, B and D) and is accompanied by
a similar increase in FGD4 mRNA (Fig. 7D).
Moreover, this mutation upstream of the FGD4
gene (referred to as eFGD4 for enhancer FGD4)
leads to a level of accessibility that is higher than
any of the other samples profiled by ATAC-seq
in this study (fig. S8F) and a level of FGD4 gene
expression that is in the top 3% of all bladder
cancer samples in TCGA (fig. S8G). As estimated
by WGS data, this eFGD4 mutation is present in
a subclone comprising about 13% of the tumor
(Fig. 7E); however, the mutant allele is present
in 96% of all ATAC-seq reads spanning this
locus (Fig. 7E), demonstrating a strong prefer-
ence for accessibility on the mutant allele. This
eFGD4 mutation is analogous to, but potentially
more potent than, the TERT promoter mutation
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described above (Fig. 7E). In the case of the
eFGD4 mutation, this dramatic allele bias oc-
curs because chromatin at this locus is not
normally accessible in any of the bladder can-
cer samples profiled in this study (gray dots
and tracks in Fig. 7, D and F) but becomes highly
accessible in the context of the eFGD4 mutation
(purple dot and track in Fig. 7, D and F). Dif-
ferential motif analysis identified NKX factor
motifs as the most strongly enriched in the se-
quence corresponding to the eFGD4 mutation
(Fig. 7G), where a C-to-T transition at position
two generated a perfect NKX2-8 motif de novo
from a latent site (Fig. 7H). RNA-seq data from
the mutated sample identified multiple expressed
NKX TFs [transcripts per million (TPM) > 0.5],
nominating NKX3-1, NKX2-3, and NKX2-5 as
potential mediators of this DNA binding event
(fig. S8H). From this, we hypothesized that the
eFGD4 mutation creates a de novo binding site
for an NKX TF which, upon binding to the
DNA, leads to a broad increase in accessibility
across the entire 12-kbp region upstream of the
FGD4 gene. This hypothesis was further sup-
ported by the observation that the ATAC-seq ac-
cessibility of the entire FGD4 upstream locus
occurs on a single phased allele (fig. S8I).Moreover,
separation of subnucleosomal and nucleosome-
spanning reads in the ATAC-seq data are con-
sistent with protein binding at the site of the
eFGD4 mutation (light blue shading in fig. S8I).
Lastly, because higher FGD4 expression is sig-
nificantly associated with worse overall survival
in bladder cancer (Fig. 7I and fig. S8J), this mu-
tation could have functional consequence in
this particular cancer. Whether the eFGD4 mu-
tation or other enhancer mutations emerge as
recurrent drivers of human cancer should be
addressed in future studies. Our data identified
multiple additional noncoding mutations asso-
ciated with a concomitant gain of chromatin
accessibility and increase in RNA expression
(fig. S8, K to Q), and we anticipate that future
work will uncover mechanisms underlying this
type of regulatorymutation across all cancer types.

Discussion

Here we provide an initial characterization of
the chromatin regulatory landscape in primary
human cancers. This dataset identified hundreds
of thousands of accessible DNA elements, ex-
panding the dictionary of regulatory elements
discovered through previous large-scale efforts
such as The Roadmap Epigenomics Project. The
identification of these additional elements was
made possible through (i) our analysis of pri-
mary cancer specimens, (ii) greater saturation
of some cancer and tissue types in our dataset,
or (iii) potential differences between ATAC-seq
and DNase-seq platforms. Nevertheless, the high
overlap between the two datasets demonstrates
the robustness of both platforms and the con-
sistency of the observed results.
The exquisite cell type–specificity of distal

regulatory elements from our ATAC-seq data
enabled the classification of cancer types and
the discovery of previously unappreciated cancer
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Fig. 7. Integration of WGS and ATAC-seq identifies cancer-relevant regulatory mutations.
(A) Schematic of how functional variants are identified in regulatory elements. The example shown
depicts the TERTpromoter. (B) Dot plot of the difference in variant allele frequency (VAF) of ATAC-seq
and WGS and the changes in chromatin accessibility caused by the given variant with respect to other
samples of the same cancer type.Variants with a higher variant allele frequency in ATAC-seq than WGS
would be expected to cause an increase in accessibility. Each dot represents an individual somatic
mutation. (C) Normalized ATAC-seq and RNA-seq of thyroid cancer donors profiled in this study.
Each dot represents an individual donor. Blue dot represents the donor with a TERT promoter
mutation shown in Fig. 7B. Other thyroid cancer donors known to harbor a TERT promoter mutation
were excluded from this plot.The hinges of the box represent the 25th to 75th percentile.WT, wild type.
(D) Normalized ATAC-seq and RNA-seq of bladder cancer donors profiled in this study. Each dot
represents an individual donor. Purple dot represents the donor with a mutation upstream of
the FGD4 gene shown in Fig. 7B. The hinges of the box represent the 25th to 75th percentile.
(E) Comparison of wild-type and mutant reads in WGS and ATAC-seq data at the TERTpromoter and
FGD4 upstream region for the donors highlighted in (D) and (E). (F) Normalized ATAC-seq sequencing
tracks of the FGD4 locus in the 10 bladder cancer samples profiled in this study, including the one
sample with a mutation predicted to generate a de novo NKX motif (TCGA-BL-A13J). Locus shown
represents chr12:32335774 to 32435774. The mutation position is indicated by a black dotted line.
The predicted enhancer region surrounding this mutation is highlighted by light blue shading.
(G) Difference in motif score in the wild-type and mutant FGD4 upstream region. Motif score
represents the degree of similarity between the sequence of interest and the relevant motif. Each dot
represents an individual motif. (H) Overlay of the NXK2-8 motif (CIS-BP M6377_1.02) and the wild-
type and mutant sequences of the FGD4 upstream region. (I) Kaplan-Meier survival analysis of TCGA
bladder cancer patients with high (top 33%) and low (bottom 33%) expression for the FGD4 gene.
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subtypes. De novo clustering of TCGA samples
based on chromatin accessibility strongly over-
laps previous integrative clustering methods,
identifying 18 distinct cancer clusters. Compar-
ing this clustering scheme to other clustering
schemes defined by cancer type, mRNA, miRNA,
DNA methylation, RPPA, and DNA copy number
alterations, we observed the strongest concor-
dance of our clustering scheme with mRNA and
cancer type, consistent with a close functional
linkage between chromatin accessibility and
transcriptional output. The strength of the ob-
served associations is influenced by the features
represented for each platform. For example, the
DNA methylation clusters are based on cancer-
specific promoter hypermethylation (28). Clus-
tering based on DNA methylation at distal
regulatory elements would likely show a stron-
ger correlation with the ATAC-seq groupings,
but distal regulatory element representation
on the DNA methylation array used for these
samples was too sparse to allow such an anal-
ysis. We also identified epigenetically distinct
subtypes of kidney renal papillary cancer that
have clear differences in overall survival. This
cancer type–specific activity in DNA regulatory
elements may arise via mutations within the
regulatory element, pathologic transcription fac-
tor activity, or reflect the regulatory state of the
tumor’s cell of origin (e.g., stem cells). As the
chromatin accessibility landscapes of additional
primary cancer samples are profiled, we antic-
ipate the identification of further epigenetic
subdivisions with prognostic implications, po-
tentially nominating avenues for therapeutic
intervention.
The data generated in this study fully rep-

resents the cellular complexity of primary human
tumors, comprising signals from tumor cells,
infiltrating immune cells, stromal cells, and other
normal cell types. In many ways, this complex-
ity is advantageous because it allows complex
systems-level analyses to be performed in the
future, including cellular deconvolution ap-
proaches to understand the contributions of
various cell types or cell states to the overall
landscape of chromatin accessibility. However,
the admixed nature of this signal also highlights
the need for future work to profile the chroma-
tin accessibility of matched healthy tissues to
further refine the specific changes that drive
cancer. Nevertheless, the chromatin accessibil-
ity profiles generated in this study represent the
largest effort to date to characterize the regu-
latory landscape in primary human cancer cells.
Using this data-rich resource, we identified

classes of TFs whose expression leads to dif-
ferent patterns in TF occupancy and motif
protection. By integrating RNA-seq and ATAC-
seq, we found factors whose expression is suf-
ficient for both motif protection and nucleosome
repositioning and demonstrated this binding to
be inversely correlated with the level of DNA
methylation at those binding sites. Despite this
strong correlation, many sites of differential
chromatin accessibility do not show differential
methylation, demonstrating the complemen-

tarity of these two data types, perhaps owing to
the presence of intermediate chromatin states
such as poised promoters or enhancers (53, 54).
Moreover, integration of RNA-seq and ATAC-

seq across the 373 donors with paired datasets
enabled a quantitative model to link the acces-
sibility of a regulatory element to the expression
of predicted target genes. This workflow identi-
fied putative links for more than half of the
protein-coding genes in the genome, informing
the target genes of poorly understood GWAS
SNPs and increasing our understanding of can-
cer gene regulatory networks. These predictions
were further supported using 3D chromosome
conformation data, and a subset were validated
through CRISPRi experiments in breast cancer
cell lines. However, profiling of chromosome
conformation in primary cancer samples has
not been performed on a large scale. Future
work to produce maps of chromosome confor-
mation in these or other primary cancer sam-
ples will improve our understanding of gene
regulatory networks in cancer and further clar-
ify the roles for certain GWAS-identified SNPs
in cancer initiation and progression.
Lastly, through integration of WGS and ATAC-

seq, we revealed a class of somatic mutations
that occur in regulatory regions and lead to
strong gains in chromatin accessibility. We
demonstrated that these mutations likely lead
to changes in nearby gene expression and affect
genes whose expression is linked to poorer over-
all survival. Some of these mutations, such as
those occurring in the TERT promoter, have
been found to be recurrent whereas others, such
as the mutation upstream of the FGD4 gene,
may be rare but functionally important. Because
the enhancer functions are often distributed
and latent enhancer sequences are pervasive in
the genome, noncoding mutations in cancer
may be especially challenging and require high-
throughput functional assessment. Future larger-
scale efforts to combine genome and epigenome
sequencing will pave the way to tackling the
noncoding genome in cancer.

Materials and methods summary

ATAC-seq data was generated from 410 tissue
samples from the TCGA collection of primary
human tumors. These samples spanned 23 dif-
ferent tumor types. These ATAC-seq data were
used to cluster samples, identifying epigeneti-
cally defined patient subgroups. Moreover, TF
regulators of cancer were defined, and foot-
printing of these regulators was correlated to
gene expression to identify putative classes of
TFs. A correlation-based model was developed
to link ATAC-seq peaks to putative target genes.
These putative links were validated using CRISPRi-
based perturbation of the peak region followed
by quantification of changes in gene expression.
Publicly available HiChIP data and GTEx eQTL
data were further used to support genome-wide
peak-to-gene linkage predictions. Lastly, WGS
and ATAC-seq were combined to identify non-
coding mutations that affect chromatin accessi-
bility in an allele-specific manner.

REFERENCES AND NOTES

1. C. Hutter, J. C. Zenklusen, The Cancer Genome Atlas: Creating
lasting value beyond its data. Cell 173, 283–285 (2018).
doi: 10.1016/j.cell.2018.03.042; pmid: 29625045

2. W. A. Flavahan, E. Gaskell, B. E. Bernstein, Epigenetic plasticity
and the hallmarks of cancer. Science 357, eaal2380 (2017).
doi: 10.1126/science.aal2380; pmid: 28729483

3. D. Hanahan, R. A. Weinberg, Hallmarks of cancer: The next
generation. Cell 144, 646–674 (2011). doi: 10.1016/
j.cell.2011.02.013; pmid: 21376230

4. M. Egeblad, E. S. Nakasone, Z. Werb, Tumors as organs:
Complex tissues that interface with the entire organism. Dev.
Cell 18, 884–901 (2010). doi: 10.1016/j.devcel.2010.05.012;
pmid: 20627072

5. W. Zhou et al., DNA methylation loss in late-replicating
domains is linked to mitotic cell division. Nat. Genet. 50,
591–602 (2018). doi: 10.1038/s41588-018-0073-4;
pmid: 29610480

6. M. Almamun et al., Integrated methylome and transcriptome
analysis reveals novel regulatory elements in pediatric acute
lymphoblastic leukemia. Epigenetics 10, 882–890 (2015).
doi: 10.1080/15592294.2015.1078050; pmid: 26308964

7. Y. He et al., Improved regulatory element prediction based on
tissue-specific local epigenomic signatures. Proc. Natl. Acad.
Sci. U.S.A. 114, E1633–E1640 (2017). doi: 10.1073/
pnas.1618353114; pmid: 28193886

8. L. Yao, H. Shen, P. W. Laird, P. J. Farnham, B. P. Berman,
Inferring regulatory element landscapes and transcription
factor networks from cancer methylomes. Genome Biol. 16,
105 (2015). doi: 10.1186/s13059-015-0668-3; pmid: 25994056

9. M. Ceccarelli et al., Molecular profiling reveals biologically
discrete subsets and pathways of progression in diffuse
glioma. Cell 164, 550–563 (2016). doi: 10.1016/
j.cell.2015.12.028; pmid: 26824661

10. H. Noushmehr et al., Identification of a CpG island methylator
phenotype that defines a distinct subgroup of glioma.
Cancer Cell 17, 510–522 (2010). doi: 10.1016/j.ccr.2010.03.017;
pmid: 20399149

11. T. Hinoue et al., Genome-scale analysis of aberrant DNA
methylation in colorectal cancer. Genome Res. 22,
271–282 (2012). doi: 10.1101/gr.117523.110;
pmid: 21659424

12. P. A. Northcott et al., The whole-genome landscape of
medulloblastoma subtypes. Nature 547, 311–317 (2017).
doi: 10.1038/nature22973; pmid: 28726821

13. The Cancer Genome Atlas Research Network, Comprehensive
molecular characterization of papillary renal-cell carcinoma.
N. Engl. J. Med. 374, 135–145 (2016). doi: 10.1056/
NEJMoa1505917; pmid: 26536169

14. B. Akhtar-Zaidi et al., Epigenomic enhancer profiling defines a
signature of colon cancer. Science 336, 736–739 (2012).
doi: 10.1126/science.1217277; pmid: 22499810

15. H. Chen et al., A pan-cancer analysis of enhancer expression in
nearly 9000 patient samples. Cell 173, 386–399.e12 (2018).
doi: 10.1016/j.cell.2018.03.027; pmid: 29625054

16. J. D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang,
W. J. Greenleaf, Transposition of native chromatin for fast
and sensitive epigenomic profiling of open chromatin,
DNA-binding proteins and nucleosome position. Nat. Methods
10, 1213–1218 (2013). doi: 10.1038/nmeth.2688;
pmid: 24097267

17. M. R. Corces et al., An improved ATAC-seq protocol reduces
background and enables interrogation of frozen tissues.
Nat. Methods 14, 959–962 (2017). doi: 10.1038/nmeth.4396;
pmid: 28846090

18. A. Kundaje et al., Integrative analysis of 111 reference human
epigenomes. Nature 518, 317–330 (2015). doi: 10.1038/
nature14248; pmid: 25693563

19. J. Schuijers et al., Transcriptional dysregulation of MYC reveals
common enhancer-docking mechanism. Cell Reports 23,
349–360 (2018). doi: 10.1016/j.celrep.2018.03.056;
pmid: 29641996

20. G. Andrey et al., A switch between topological domains
underlies HoxD genes collinearity in mouse limbs. Science 340,
1234167 (2013). doi: 10.1126/science.1234167;
pmid: 23744951

21. M. Yeager et al., Genome-wide association study of prostate
cancer identifies a second risk locus at 8q24. Nat. Genet. 39,
645–649 (2007). doi: 10.1038/ng2022; pmid: 17401363

22. I. P. M. Tomlinson et al., A genome-wide association study
identifies colorectal cancer susceptibility loci on chromosomes
10p14 and 8q23.3. Nat. Genet. 40, 623–630 (2008).
doi: 10.1038/ng.111; pmid: 18372905

Corces et al., Science 362, eaav1898 (2018) 26 October 2018 12 of 13

RESEARCH | RESEARCH ARTICLE
on O

ctober 27, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1016/j.cell.2018.03.042
http://www.ncbi.nlm.nih.gov/pubmed/29625045
http://dx.doi.org/10.1126/science.aal2380
http://www.ncbi.nlm.nih.gov/pubmed/28729483
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://dx.doi.org/10.1016/j.devcel.2010.05.012
http://www.ncbi.nlm.nih.gov/pubmed/20627072
http://dx.doi.org/10.1038/s41588-018-0073-4
http://www.ncbi.nlm.nih.gov/pubmed/29610480
http://dx.doi.org/10.1080/15592294.2015.1078050
http://www.ncbi.nlm.nih.gov/pubmed/26308964
http://dx.doi.org/10.1073/pnas.1618353114
http://dx.doi.org/10.1073/pnas.1618353114
http://www.ncbi.nlm.nih.gov/pubmed/28193886
http://dx.doi.org/10.1186/s13059-015-0668-3
http://www.ncbi.nlm.nih.gov/pubmed/25994056
http://dx.doi.org/10.1016/j.cell.2015.12.028
http://dx.doi.org/10.1016/j.cell.2015.12.028
http://www.ncbi.nlm.nih.gov/pubmed/26824661
http://dx.doi.org/10.1016/j.ccr.2010.03.017
http://www.ncbi.nlm.nih.gov/pubmed/20399149
http://dx.doi.org/10.1101/gr.117523.110
http://www.ncbi.nlm.nih.gov/pubmed/21659424
http://dx.doi.org/10.1038/nature22973
http://www.ncbi.nlm.nih.gov/pubmed/28726821
http://dx.doi.org/10.1056/NEJMoa1505917
http://dx.doi.org/10.1056/NEJMoa1505917
http://www.ncbi.nlm.nih.gov/pubmed/26536169
http://dx.doi.org/10.1126/science.1217277
http://www.ncbi.nlm.nih.gov/pubmed/22499810
http://dx.doi.org/10.1016/j.cell.2018.03.027
http://www.ncbi.nlm.nih.gov/pubmed/29625054
http://dx.doi.org/10.1038/nmeth.2688
http://www.ncbi.nlm.nih.gov/pubmed/24097267
http://dx.doi.org/10.1038/nmeth.4396
http://www.ncbi.nlm.nih.gov/pubmed/28846090
http://dx.doi.org/10.1038/nature14248
http://dx.doi.org/10.1038/nature14248
http://www.ncbi.nlm.nih.gov/pubmed/25693563
http://dx.doi.org/10.1016/j.celrep.2018.03.056
http://www.ncbi.nlm.nih.gov/pubmed/29641996
http://dx.doi.org/10.1126/science.1234167
http://www.ncbi.nlm.nih.gov/pubmed/23744951
http://dx.doi.org/10.1038/ng2022
http://www.ncbi.nlm.nih.gov/pubmed/17401363
http://dx.doi.org/10.1038/ng.111
http://www.ncbi.nlm.nih.gov/pubmed/18372905
http://science.sciencemag.org/


23. I. K. Sur et al., Mice lacking a Myc enhancer that includes
human SNP rs6983267 are resistant to intestinal tumors.
Science 338, 1360–1363 (2012). doi: 10.1126/
science.1228606; pmid: 23118011

24. R. E. Thurman et al., The accessible chromatin landscape of
the human genome. Nature 489, 75–82 (2012). doi: 10.1038/
nature11232; pmid: 22955617

25. M. R. Corces et al., Lineage-specific and single-cell chromatin
accessibility charts human hematopoiesis and leukemia
evolution. Nat. Genet. 48, 1193–1203 (2016). doi: 10.1038/
ng.3646; pmid: 27526324

26. L. J. P. van der Maaten, G. E. Hinton, Visualizing data
using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

27. A. Rodriguez, A. Laio, Clustering by fast search and find of
desity peaks. Science 344, 1492–1496 (2014). doi: 10.1126/
science.1242072; pmid: 24970081

28. K. A. Hoadley et al., Cell-of-origin patterns dominate the
molecular classification of 10,000 tumors from 33 types of
cancer. Cell 173, 291–304.e6 (2018). doi: 10.1016/
j.cell.2018.03.022; pmid: 29625048

29. M. Kulis et al., Whole-genome fingerprint of the DNA
methylome during human B cell differentiation. Nat. Genet. 47,
746–756 (2015). doi: 10.1038/ng.3291; pmid: 26053498

30. H. S. Kim et al., Pluripotency factors functionally premark
cell-type-restricted enhancers in ES cells. Nature 556, 510–514
(2018). doi: 10.1038/s41586-018-0048-8; pmid: 29670286

31. H. Shen et al., Integrated molecular characterization of
testicular germ cell tumors. Cell Reports 23, 3392–3406
(2018). doi: 10.1016/j.celrep.2018.05.039; pmid: 29898407

32. S. Werner et al., Dual roles of the transcription factor
grainyhead-like 2 (GRHL2) in breast cancer. J. Biol. Chem. 288,
22993–23008 (2013). doi: 10.1074/jbc.M113.456293;
pmid: 23814079

33. S. K. Denny et al., Nfib promotes metastasis through a
widespread increase in chromatin accessibility. Cell 166,
328–342 (2016). doi: 10.1016/j.cell.2016.05.052;
pmid: 27374332

34. S. Baek, I. Goldstein, G. L. Hager, Bivariate genomic
footprinting detects changes in transcription factor activity.
Cell Reports 19, 1710–1722 (2017). doi: 10.1016/
j.celrep.2017.05.003; pmid: 28538187

35. A. N. Schep, B. Wu, J. D. Buenrostro, W. J. Greenleaf,
ChromVAR: Inferring transcription-factor-associated
accessibility from single-cell epigenomic data. Nat. Methods
14, 975–978 (2017). doi: 10.1038/nmeth.4401;
pmid: 28825706

36. Y. Yin et al., Impact of cytosine methylation on DNA binding
specificities of human transcription factors. Science 356,
eaaj2239 (2017). doi: 10.1126/science.aaj2239;
pmid: 28473536

37. T. Ellis et al., The transcriptional repressor CDP (Cutl1) is
essential for epithelial cell differentiation of the lung and the
hair follicle. Genes Dev. 15, 2307–2319 (2001). doi: 10.1101/
gad.200101; pmid: 11544187

38. B. M. Javierre et al., Lineage-specific genome architecture links
enhancers and non-coding disease variants to target gene
promoters. Cell 167, 1369–1384.e19 (2016). doi: 10.1016/
j.cell.2016.09.037; pmid: 27863249

39. C. P. Fulco et al., Systematic mapping of functional
enhancer-promoter connections with CRISPR interference.
Science 354, 769–773 (2016). doi: 10.1126/science.aag2445;
pmid: 27708057

40. L. S. Qi et al., Repurposing CRISPR as an RNA-guided
platform for sequence-specific control of gene expression.
Cell 152, 1173–1183 (2013). doi: 10.1016/j.cell.2013.02.022;
pmid: 23452860

41. Y. H. Eom, H. S. Kim, A. Lee, B. J. Song, B. J. Chae, BCL2 as a
subtype-specific prognostic marker for breast cancer. J. Breast
Cancer 19, 252–260 (2016). doi: 10.4048/jbc.2016.19.3.252;
pmid: 27721874

42. S. W. Cho et al., Promoter of lncRNA gene PVT1 is a tumor-
suppressor DNA boundary element. Cell 173, 1398–1412.e22
(2018). doi: 10.1016/j.cell.2018.03.068; pmid: 29731168

43. T. C. Silva, S. G. Coetzee, L. Yao, D. J. Hazelett, H. Noushmehr,
B. P. Berman, Enhancer linking by methylation/expression
relationships with the R package ELMER version 2. bioRxiv
148726 [Preprint]. 11 June 2017. doi: 10.1101/148726

44. A. G. Robertson et al., Comprehensive molecular
characterization of muscle-invasive bladder cancer. Cell 171,
540–556.e25 (2017). doi: 10.1016/j.cell.2017.09.007;
pmid: 28988769

45. M. A. A. Castro et al., Regulators of genetic risk of breast
cancer identified by integrative network analysis. Nat. Genet.
48, 12–21 (2016). doi: 10.1038/ng.3458; pmid: 26618344

46. V. Thorsson et al., The immune landscape of cancer. Immunity
48, 812–830.e14 (2018). doi: 10.1016/j.immuni.2018.03.023;
pmid: 29628290

47. K. Yoshihara et al., Inferring tumour purity and stromal and
immune cell admixture from expression data. Nat. Commun. 4,
2612 (2013). doi: 10.1038/ncomms3612; pmid: 24113773

48. S. L. Carter et al., Absolute quantification of somatic DNA
alterations in human cancer. Nat. Biotechnol. 30, 413–421
(2012). doi: 10.1038/nbt.2203; pmid: 22544022

49. M. S. Rooney, S. A. Shukla, C. J. Wu, G. Getz, N. Hacohen,
Molecular and genetic properties of tumors associated with
local immune cytolytic activity. Cell 160, 48–61 (2015).
doi: 10.1016/j.cell.2014.12.033; pmid: 25594174

50. M. M. Makowski et al., An interaction proteomics survey of
transcription factor binding at recurrent TERT promoter
mutations. Proteomics 16, 417–426 (2016). doi: 10.1002/
pmic.201500327; pmid: 26553150

51. R. Katainen et al., CTCF/cohesin-binding sites are frequently
mutated in cancer. Nat. Genet. 47, 818–821 (2015).
doi: 10.1038/ng.3335; pmid: 26053496

52. D. Hnisz et al., Activation of proto-oncogenes by disruption of
chromosome neighborhoods. Science 351, 1454–1458 (2016).
doi: 10.1126/science.aad9024; pmid: 26940867

53. R. D. Hawkins et al., Distinct epigenomic landscapes of pluripotent
and lineage-committed human cells. Cell Stem Cell 6, 479–491
(2010). doi: 10.1016/j.stem.2010.03.018; pmid: 20452322

54. T. K. Kelly et al., Genome-wide mapping of nucleosome
positioning and DNA methylation within individual DNA
molecules. Genome Res. 22, 2497–2506 (2012). doi: 10.1101/
gr.143008.112; pmid: 22960375

ACKNOWLEDGMENTS

We thank X. Ji and J. Coller for assistance in sequencing, P. Giresi
and Epinomics for sharing advice and expertise related to
ATAC-seq data analysis, and the members of the Greenleaf and
Chang laboratories for thoughtful advice and critique.
Funding: Supported by the National Cancer Institute, NIH grants
R35-CA209919 (to H.Y.C.), P50-HG007735 (to H.Y.C. and W.J.G.),
and the Parker Institute for Cancer Immunotherapy (H.Y.C.).
M.R.C. is supported by NIH K99-AG059918. Additional support
through the NIH Genomic Data Analysis Networks
1U24CA210974-01 (J. Zhu), 1U24CA210949-01 (J. N. Weinstein),
1U24CA210978-01 (R. Beroukhim), 1U24CA210952-01
(S. J. Jones), 1U24CA210989-01 (O. Elemento),
1U24CA210990-01 (J. Stuart), 1U24CA210950-01 (R. Akbani),
1U24CA210969-01 (P.W.L.), and 1U24CA210988-01 (K.A.H.).
W.J.G. is a Chan-Zuckerberg Biohub Investigator. H.Y.C. is an
Investigator of the Howard Hughes Medical Institute. Author
contributions: L.M.S., J.C.Z., W.J.G., and H.Y.C. conceived of and
designed the project. M.R.C. and J.M.G. compiled figures and
wrote the manuscript with the help of all authors. M.R.C.
developed methodology for profiling frozen cancer tissues by
ATAC-seq. S.S., B.H.L., and M.R.C. performed all tissue
processing and ATAC-seq data generation. N.C.S. designed and
wrote the ATAC-seq data processing pipeline with help from
M.R.C. M.R.C. and J.M.G. processed all ATAC-seq data, and J.M.G.

performed all analyses and developed all analytical tools unless
otherwise stated below. J.A.S. and C.G. performed survival
analyses with supervision from C.C., A.G.R., and M.A.C. J.A.S.
performed subtyping analysis for KIRP. W.Z. performed WGBS
methylation analysis and variation of information clustering
analysis with supervision from P.W.L. T.C.S. performed all
ELMER analyses with supervision from B.P.B. C.G. performed all
regulon analysis with supervision from A.G.R. and M.A.C. C.K.W.
performed tumor map analysis. K.A.H. performed cluster
coincidence analysis comparing ATAC-seq–derived clusters to
TCGA iClusters. S.W.C. produced all Tn5 transposase used in this
study and generated reagents and cell lines used in CRISPRi
experiments. B.H.L., S.S., and M.R.C. performed CRISPRi
experiments. A.T.S. generated human dendritic cell ATAC-seq
data. J.M.G. and A.T.S. performed immune infiltration analysis.
J.M.G. and M.R.M. performed HiChIP analysis. M.R.C. performed
all analysis for identifying noncoding mutations from WGS and
ATAC-seq data. I.F. coordinated all TCGA analysis working group
efforts. J.C.Z. selected tumor samples to profile in this study.
P.W.L. and W.J.G. co-chaired the TCGA analysis working group.
C.C. provided expertise relevant to pan-cancer data analysis.
H.Y.C. and W.J.G. supervised overall data generation and analysis.
All authors listed under “The Cancer Genome Atlas Analysis
Network” provided valuable input and expertise. Competing
interests: H.Y.C. is a co-founder of Accent Therapeutics and
Epinomics and is an adviser of 10X Genomics and Spring
Discovery. W.J.G is a co-founder of Epinomics and an adviser to
10X Genomics, Guardant Health, Centrillion, and NuGen. C.C. is
an adviser to GRAIL. Stanford University holds a patent on
ATAC-seq, on which H.Y.C. and W.J.G. are named as inventors.
Data and materials availability: Processed data not provided in
the supplementary data files are available through our TCGA
Publication Page (https://gdc.cancer.gov/about-data/
publications/ATACseq-AWG). This includes pan-cancer raw and
normalized counts matrices, cancer type–specific peak calls,
cancer type–specific raw and normalized count matrices, and
bigWig track files for all technical replicates. Raw ATAC-seq data
as fastq or aligned BAM files will be made available through the
NIH Genomic Data Commons portal (https://portal.gdc.cancer.
gov/). ATAC-seq data corresponding to human plasmacytoid
dendritic cells and myeloid dendritic cells (the only non-TCGA
data generated here) is available through SRA BioProject
PRJNA491478. The ATAC-seq peak accessibility and computed
peak-to-gene linkage predictions are publicly available for
interactive visualization and exploration at the UCSC Xena
Browser (https://atacseq.xenahubs.net). Sample-level ATAC-seq
data across all 404 donors assayed can be visualized side-by-side
with all other data from TCGA, including gene expression, DNA
methylation from both Illumina 450K array and WGBS platforms,
and ELMER enhancer analysis results, as well as the latest
survival data and mutation calls from the Genomic Data
Commons. ATAC-seq data can be queried by gene, genomic
position, or individual peaks. The UCSC Xena Browser makes this
rich resource available for interactive online analysis and
visualization by the larger scientific community. Samples from
the TCGA project can only be used for TCGA efforts owing to
restrictions in the material transfer agreement used for
acquisition. No external groups can access the tissue or analytes.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/362/6413/eaav1898/suppl/DC1
TCGA Analysis Network Collaborators
Materials and Methods
Protocol S1
Figs. S1 to S8
References (55–78)
Data S1 to S10

22 August 2018; accepted 28 September 2018
10.1126/science.aav1898

Corces et al., Science 362, eaav1898 (2018) 26 October 2018 13 of 13

RESEARCH | RESEARCH ARTICLE
on O

ctober 27, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1126/science.1228606
http://dx.doi.org/10.1126/science.1228606
http://www.ncbi.nlm.nih.gov/pubmed/23118011
http://dx.doi.org/10.1038/nature11232
http://dx.doi.org/10.1038/nature11232
http://www.ncbi.nlm.nih.gov/pubmed/22955617
http://dx.doi.org/10.1038/ng.3646
http://dx.doi.org/10.1038/ng.3646
http://www.ncbi.nlm.nih.gov/pubmed/27526324
http://dx.doi.org/10.1126/science.1242072
http://dx.doi.org/10.1126/science.1242072
http://www.ncbi.nlm.nih.gov/pubmed/24970081
http://dx.doi.org/10.1016/j.cell.2018.03.022
http://dx.doi.org/10.1016/j.cell.2018.03.022
http://www.ncbi.nlm.nih.gov/pubmed/29625048
http://dx.doi.org/10.1038/ng.3291
http://www.ncbi.nlm.nih.gov/pubmed/26053498
http://dx.doi.org/10.1038/s41586-018-0048-8
http://www.ncbi.nlm.nih.gov/pubmed/29670286
http://dx.doi.org/10.1016/j.celrep.2018.05.039
http://www.ncbi.nlm.nih.gov/pubmed/29898407
http://dx.doi.org/10.1074/jbc.M113.456293
http://www.ncbi.nlm.nih.gov/pubmed/23814079
http://dx.doi.org/10.1016/j.cell.2016.05.052
http://www.ncbi.nlm.nih.gov/pubmed/27374332
http://dx.doi.org/10.1016/j.celrep.2017.05.003
http://dx.doi.org/10.1016/j.celrep.2017.05.003
http://www.ncbi.nlm.nih.gov/pubmed/28538187
http://dx.doi.org/10.1038/nmeth.4401
http://www.ncbi.nlm.nih.gov/pubmed/28825706
http://dx.doi.org/10.1126/science.aaj2239
http://www.ncbi.nlm.nih.gov/pubmed/28473536
http://dx.doi.org/10.1101/gad.200101
http://dx.doi.org/10.1101/gad.200101
http://www.ncbi.nlm.nih.gov/pubmed/11544187
http://dx.doi.org/10.1016/j.cell.2016.09.037
http://dx.doi.org/10.1016/j.cell.2016.09.037
http://www.ncbi.nlm.nih.gov/pubmed/27863249
http://dx.doi.org/10.1126/science.aag2445
http://www.ncbi.nlm.nih.gov/pubmed/27708057
http://dx.doi.org/10.1016/j.cell.2013.02.022
http://www.ncbi.nlm.nih.gov/pubmed/23452860
http://dx.doi.org/10.4048/jbc.2016.19.3.252
http://www.ncbi.nlm.nih.gov/pubmed/27721874
http://dx.doi.org/10.1016/j.cell.2018.03.068
http://www.ncbi.nlm.nih.gov/pubmed/29731168
http://dx.doi.org/10.1101/148726
http://dx.doi.org/10.1016/j.cell.2017.09.007
http://www.ncbi.nlm.nih.gov/pubmed/28988769
http://dx.doi.org/10.1038/ng.3458
http://www.ncbi.nlm.nih.gov/pubmed/26618344
http://dx.doi.org/10.1016/j.immuni.2018.03.023
http://www.ncbi.nlm.nih.gov/pubmed/29628290
http://dx.doi.org/10.1038/ncomms3612
http://www.ncbi.nlm.nih.gov/pubmed/24113773
http://dx.doi.org/10.1038/nbt.2203
http://www.ncbi.nlm.nih.gov/pubmed/22544022
http://dx.doi.org/10.1016/j.cell.2014.12.033
http://www.ncbi.nlm.nih.gov/pubmed/25594174
http://dx.doi.org/10.1002/pmic.201500327
http://dx.doi.org/10.1002/pmic.201500327
http://www.ncbi.nlm.nih.gov/pubmed/26553150
http://dx.doi.org/10.1038/ng.3335
http://www.ncbi.nlm.nih.gov/pubmed/26053496
http://dx.doi.org/10.1126/science.aad9024
http://www.ncbi.nlm.nih.gov/pubmed/26940867
http://dx.doi.org/10.1016/j.stem.2010.03.018
http://www.ncbi.nlm.nih.gov/pubmed/20452322
http://dx.doi.org/10.1101/gr.143008.112
http://dx.doi.org/10.1101/gr.143008.112
http://www.ncbi.nlm.nih.gov/pubmed/22960375
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://gdc.cancer.gov/about-data/publications/ATACseq-AWG
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://atacseq.xenahubs.net
http://www.sciencemag.org/content/362/6413/eaav1898/suppl/DC1
http://science.sciencemag.org/


The chromatin accessibility landscape of primary human cancers

Chang
Zenklusen, Peter W. Laird, Christina Curtis, The Cancer Genome Atlas Analysis Network, William J. Greenleaf and Howard Y. 
Gordon Robertson, Nathan C. Sheffield, Ina Felau, Mauro A. A. Castro, Benjamin P. Berman, Louis M. Staudt, Jean C.
Groeneveld, Christopher K. Wong, Seung Woo Cho, Ansuman T. Satpathy, Maxwell R. Mumbach, Katherine A. Hoadley, A. 
M. Ryan Corces, Jeffrey M. Granja, Shadi Shams, Bryan H. Louie, Jose A. Seoane, Wanding Zhou, Tiago C. Silva, Clarice

DOI: 10.1126/science.aav1898
 (6413), eaav1898.362Science 

, this issue p. eaav1898; see also p. 401Science
identified, and noncoding mutations associated with clinical prognosis were discovered.
revealed, transcription factors and enhancers driving molecular subtypes of cancer with patient survival differences were 
integrated with other omics data available for the same tumor samples, inherited risk loci for cancer predisposition were
chromatin landscape in 410 TCGA samples from 23 cancer types (see the Perspective by Taipale). When the data were 

 used a recently modified assay to profile chromatin accessibility to determine the accessibleet al.cancers. Corces 
The Cancer Genome Atlas (TCGA) provides a high-quality resource of molecular data on a large variety of human

Cancer chromatin accessibility landscape

ARTICLE TOOLS http://science.sciencemag.org/content/362/6413/eaav1898

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2018/10/24/362.6413.eaav1898.DC1

CONTENT
RELATED 

http://stm.sciencemag.org/content/scitransmed/2/38/38ra47.full
http://stm.sciencemag.org/content/scitransmed/7/283/283ra54.full
http://stm.sciencemag.org/content/scitransmed/5/209/209ra153.full
http://stm.sciencemag.org/content/scitransmed/4/156/156ra140.full
http://science.sciencemag.org/content/sci/362/6413/401.full

REFERENCES

http://science.sciencemag.org/content/362/6413/eaav1898#BIBL
This article cites 78 articles, 17 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science
licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. The title 
Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive 

(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience 

on O
ctober 27, 2018

 
http://science.sciencem

ag.org/
D

ow
nloaded from

 

http://science.sciencemag.org/content/362/6413/eaav1898
http://science.sciencemag.org/content/suppl/2018/10/24/362.6413.eaav1898.DC1
http://science.sciencemag.org/content/sci/362/6413/401.full
http://stm.sciencemag.org/content/scitransmed/4/156/156ra140.full
http://stm.sciencemag.org/content/scitransmed/5/209/209ra153.full
http://stm.sciencemag.org/content/scitransmed/7/283/283ra54.full
http://stm.sciencemag.org/content/scitransmed/2/38/38ra47.full
http://science.sciencemag.org/content/362/6413/eaav1898#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

