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Identifying the causes of human diseases requires deconvolu-
tion of abnormal molecular phenotypes spanning DNA acces-
sibility, gene expression and protein abundance1–3. We present 
a single-cell framework that integrates highly multiplexed 
protein quantification, transcriptome profiling and analysis 
of chromatin accessibility. Using this approach, we establish 
a normal epigenetic baseline for healthy blood development, 
which we then use to deconvolve aberrant molecular features 
within blood from patients with mixed-phenotype acute leu-
kemia4,5. Despite widespread epigenetic heterogeneity within 
the patient cohort, we observe common malignant signatures 
across patients as well as patient-specific regulatory features 
that are shared across phenotypic compartments of individual 
patients. Integrative analysis of transcriptomic and chroma-
tin-accessibility maps identified 91,601 putative peak-to-gene 
linkages and transcription factors that regulate leukemia-
specific genes, such as RUNX1-linked regulatory elements 
proximal to the marker gene CD69. These results demonstrate 
how integrative, multiomic analysis of single cells within  
the framework of normal development can reveal both  
distinct and shared molecular mechanisms of disease from 
patient samples.

To identify pathologic features within neoplastic cells, we first 
aimed to establish molecular features of normal development for 
comparison. As mixed-phenotype acute leukemias (MPALs) pres-
ent with features of multiple hematopoietic lineages, we first con-
structed independent immunophenotypic, transcriptomic and 
epigenetic maps of normal blood development using droplet-based 
cellular indexing of transcriptomes and epitopes by sequenc-
ing (CITE-seq)6 (combined single-cell antibody-derived tag and 
RNA sequencing) and single-cell assay for transposase-accessible 
chromatin using sequencing (scATAC-seq; single-cell chromatin-
accessibility profiling)7 on bone marrow and peripheral blood 
mononuclear cells (BMMCs and PBMCs, respectively; Fig. 1a). For 
CITE-seq analyses, we simultaneously generated 10x Genomics 3′ 
single-cell RNA sequencing8 (scRNA-seq) and antibody-derived 
tag sequencing6 (scADT-seq; Supplementary Table 3) libraries from 
35,882 BMMCs (n = 12,602), CD34+-enriched BMMCs (n = 8,176) 
and PBMCs (n = 14,804). On average, 1,273 informative genes (2,370 
unique transcript molecules) were detected per cell and replicates  

were highly correlated (Supplementary Fig. 1a–e). We then selected 
a feature set of transcripts to mitigate batch effects and linearly pro-
jected retained transcript counts into a lower-dimensional space 
using latent semantic indexing9[,10 (LSI; Methods). Cells were clus-
tered using Seurat’s shared nearest neighbor (SNN) approach11, 
annotated using a manually curated maker gene list and visualized 
using uniform manifold approximation and projection (UMAP)12 
(Fig. 1b and Supplementary Fig. 1f).

We next established an epigenetic map of normal hematopoiesis 
by measuring chromatin accessibility across 35,038 single BMMCs 
(n = 16,510), CD34+ BMMCs (n = 10,160) and PBMCs (n = 8,368) 
using droplet scATAC-seq (10x Genomics)7. These cells exhibited 
a canonical fragment-size distribution with clearly resolved sub-, 
mono- and multinucleosomal modes, a high signal-to-noise ratio 
at transcription start sites (TSSs), an average of 11,597 uniquely 
accessible fragments per cell on average, a majority (61%) of Tn5 
insertions aligning within peaks and high reproducibility across 
replicates (Supplementary Fig. 2a–h). Using LSI, Seurat’s SNN clus-
tering and UMAP, we generated a chromatin-accessibility map of 
hematopoiesis that complements the transcriptional map of hema-
topoiesis (Fig. 1c and Supplementary Fig. 2i).

To validate the proposed transcriptomic and epigenetic single-
cell maps of hematopoiesis, we directly visualized lineage-restricted 
cell-surface marker and transcription-factor (TF) enrichment 
across each map. As anticipated, both scADT- and scRNA-seq mea-
surements of surface makers demonstrate CD3D enrichment across 
bone marrow and peripheral T cells; CD14 enrichment within the 
monocytic lineage; broad up regulation of CD19 across the B cell 
lineage; and CD8A enrichment within cytotoxic T lymphocytes13 
(Fig. 1d). Estimates of gene activity on the basis of correlated varia-
tion in promoter and distal-peak accessibility (Cicero14) broadly 
recapitulates this pattern, confirming that lineage specification 
is consistently reflected across the phenotypic, transcriptional 
and epigenetic maps of hematopoietic development (Fig. 1d). We 
then visualized our scADT-seq data of BMMCs and PBMCs using 
UMAP and found that we could broadly recapitulate our transcrip-
tomic hematopoietic map (Supplementary Fig. 1g,h). To further 
support these cell-type identifications and developmental map-
pings, we show concordance between three separate single-cell 
measurements, including direct transcript measurements from the  
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scRNA-seq dataset, inferred gene-activity scores from the scATAC-
seq dataset and TF activity using chromVAR15, for key develop-
mental TFs, including CEBPB in monocytic development, GATA1 
within the erythroid lineage and TBX21 in NK and CD8+ T mem-
ory cells, as well as PAX5 in B cell and plasmacytoid dendritic 
cell development (Fig. 1e). High-resolution single-cell multiomic 
tracks for key marker genes in each of the identified lineages fur-
ther support these identifications (Fig. 1f,g and Supplementary  
Fig. 3a–h). Collectively these results show that the proposed multiomic  
maps of healthy hematopoiesis are consistent and broadly capture 
essential phenotypic, transcriptomic and epigenetic features of 
blood development.

Recent work has shown that immunophenotypically distinct 
subpopulations of MPAL blasts have similar genomic lesions within 
a patient, and that cells from one lineage can reconstitute the alter-
nate lineage in xenograft models16, suggesting that MPAL lineage 
plasticity may be epigenetically regulated. To explore the nature of 
this regulatory and phenotypic dysfunction, we assayed six MPAL 
samples including three T–myeloid MPALs (MPAL1–MPAL3), 
1 B myeloid MPAL (MPAL4) and one T–myeloid MPAL sampled 
before CALGB chemotherapy (MPAL5) and after post-treatment 
relapse (MPAL5R) (Supplementary Table 1). Across these samples, 
we observed extensive immunophenotypic heterogeneity (via diag-
nostic flow cytometry analysis) including bilineal patterns (multiple 
blast populations expressing both lymphoid and myeloid lineage 
antigens), biphenotypic patterns (a dominant blast population that 
simultaneously expresses both lymphoid and myeloid antigens) 
and both patterns (Supplementary Fig. 4a–f). We then performed 
whole-exome sequencing (WES) and found mutational profiles 
similar to previous studies16,17 (Supplementary Fig. 4g). To further 
profile our MPAL samples, we performed CITE-seq (18,056 cells) 
and scATAC-seq (35,423 cells) on either peripheral blood or bone 
marrow aspirates from these patients with MPAL, observing reason-
able data quality per cell as compared to that obtained for healthy 
samples (Supplementary Fig. 5a–m).

Using our transcriptomic and chromatin landscapes of healthy 
hematopoiesis, we next sought to develop an analytical framework 
to identify the hematopoietic developmental signature at single-cell 
resolution. First, the chromatin and gene expression signatures of 
single cells are projected into the LSI subspace of our ATAC- and 
RNA-based healthy hematopoietic map, and the results are then 
visualized using UMAP (Fig. 2a and Supplementary Fig. 6a). Next, 
by determining the closest hematopoietic cells to the projected cells 
we can identify the hematopoietic developmental compartment. 
This method does not require defining discrete cell -type boundaries 
and uses a large feature set to robustly position cells within the con-
tinuous landscape of hematopoiesis. To validate this approach, we 
first projected downsampled published bulk RNA-seq and ATAC-
seq data18 from subpopulations identified by fluorescence-activated  

cell sorting (FACS) into our chromatin and transcription hemato-
poietic maps and found high concordance with our healthy hema-
topoietic map and cluster definitions (Supplementary Fig. 6b). To 
further validate our approach, we projected published scRNA-seq19 
and scATAC-seq20–22 data from different platforms and different 
genomes on our chromatin and transcription hematopoietic maps 
and found striking agreement (Supplementary Fig. 6c). Lastly, we 
used our iterative LSI approach on 299,337 cells from the Human 
Cell Atlas (HCA) ‘Census of Immune Cells’ bone marrow data23 
(Supplementary Fig. 6d). By projecting our own hematopoietic 
data into the subspace defined by these HCA data (Supplementary  
Fig. 6d) we observe that our cohort reasonably repopulates the 
hematopoietic manifold created from this completely distinct set of 
donors. These results show that our dataset and method can accu-
rately identify the hematopoietic signature for chromatin and gene 
expression at a single-cell resolution.

Using this LSI-projection framework and landscapes of healthy 
hematopoiesis, we next sought to deconvolve the normal and leuke-
mic signatures of MPAL samples at a single-cell resolution. First, the 
leukemic single cells were projected into the hematopoietic linear 
LSI subspace. Next, we identified a non-redundant set of healthy 
hematopoietic cells that were nearest-neighbor normal cells to each 
leukemic cell, irrespective of their cell-type boundaries. Lastly, we 
computed the differences between the leukemic cells and near-
est normal cells to identify the leukemic specific signature. We 
first tested our approach by analyzing recently published scRNA-
seq data from samples from patients with acute myeloid leukemia 
(AML)19. By projecting the AMLs into our healthy hematopoietic 
map, we see general agreement with previous classifications without 
the need for potentially arbitrary cell-type boundaries on normal 
hematopoiesis (Supplementary Fig. 7a–c). We next wanted to clas-
sify our phenotypically diverse samples from patients with MPAL 
using our hematopoietic maps. First, we clustered our MPALs with 
our hematopoietic data to classify cells as ‘disease-like’ MPAL cells 
or ‘healthy-like’ cells (Supplementary Fig. 8a). These classifications 
generally agreed with the fraction of cells classified as blasts by 
morphology or flow cytometry (Supplementary Fig. 8b). We then 
projected our MPAL single cells onto our hematopoietic maps and 
discovered broad epigenetic and gene-expression diversity. To fur-
ther resolve this diversity, we grouped MPAL cells within individual 
patients into broad hematopoietic developmental compartments: 
progenitor-like (comprising human stem cell and multipotent pro-
genitor-like cells), lymphoid-like (comprising lymphoid-primed 
multipotent progenitors), erythroid-like (includes megakaryo-
cyte-erythroid progenitors), myeloid-like (includes granulocyte-
monocyte progenitors) and T/natural killer (NK)-like (includes 
differentiated T and NK cells24) (Fig. 2a,b and Supplementary  
Fig. 8a). The scADT-seq data resolve the dominant subpopulations in 
the bilineal MPAL1 and MPAL5; however, it does not fully capture 

Fig. 1 | Multiomic epigenetic and phenotypic analysis of human hematopoiesis. a, Schematic of multiomic profiling of chromatin accessibility, 
transcription and cell-surface antibody abundance on healthy bone marrow and PBMCs using CITE-seq (combined single-cell RNA and antibody-derived 
tag sequencing for each single cell, scRNA-seq and scADT-seq, respectively) and scATAC-seq. b, scRNA-seq LSI UMAP projection of 35,882 single 
cells across healthy hematopoiesis. Below are the biological classifications for the scRNA-seq clusters (see Supplementary Table 1). c, Top, scATAC-
seq LSI UMAP projection of 35,038 single cells across healthy hematopoiesis. Bottom, the biological classifications for the scATAC-seq clusters (see 
Supplementary Table 1). d, Surface-marker overlay on single-cell RNA UMAP (as in b) of ADT antibody signal (top; center-log ratio (CLR) normalized), 
single-cell RNA (middle; log2(gene expression) (Exp)) and single-cell ATAC log2(gene-activity scores (GA)) for CD3D, CD14, CD19 and CD8A (bottom). 
e, TF overlay on single-cell ATAC UMAP (as in c) of TF chromVAR deviations (top), gene-activity scores (middle) and single-cell RNA for CEBPB, GATA1, 
TBX21 and PAX5 (bottom). f,g, Multiomic track of CD14 (specific in these clusters for monocytes) across monocyte development from HSC progenitor 
cells (f; n = 1,425–4,222) and multiomic track of CD19 (specific in these clusters for pre-B cells) across B cell development (g; n = 62–2,260). Multiomic 
tracks; average track of all clusters displayed (left top), binarized 100 random scATAC-seq tracks for each locus at a resolution of 100 bp (left bottom), 
scRNA-seq log2 violin and box plots of normalized expression for each cluster and scADT-seq CLR violin and box plots of protein abundance for each 
cluster (right). Violin plots represent the smoothed density of the distribution of the data. In box plots, the lower whisker is the lowest value greater than 
the 25% quantile minus 1.5 times the interquartile range (IQR), the lower hinge is the 25% quantile, the middle is the median, the upper hinge is the 75% 
quantile and the upper whisker is the largest value less than the 75% quantile plus 1.5 times the IQR.
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the transcriptional diversity in the other MPALs 2–4 (Supplementary 
Fig. 8c). We visualized these projected MPALs colored by these 
broad hematopoietic compartments, observing the expected 
high concordance between the scRNA-seq and scATAC-seq  

classifications (Fig. 2b). Comparing MPAL gene expression to 
this healthy nearest-neighbor set allowed the identification of 
pathogenic differential gene expression for MPALs from different  
compartments. In total, we identified 4,616 genes that were  
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significantly upregulated (log2 fold change (LFC) > 0.5 and false-
discovery rate (FDR) < 0.01, see Supplementary Table 4) in at 
least one MPAL subpopulation across the six patient samples, and 
grouped these genes with k-means clustering (Fig. 2c). We further 
categorized the most conserved differential genes, TFs and KEGG 
pathways across the MPALs25 (Supplementary Fig. 9a–c). Using 
the same approach for the scATAC-seq data, we performed test-
ing of differential peaks for each MPAL subpopulation and found 
72,196 significantly upregulated peaks (LFC > 0.5 and FDR < 0.05; 
Supplementary Table 4) in at least one MPAL subpopulation (Fig. 2c).  
Multiomic differential tracks for the cyclin-dependent kinase 
CDK11A and cyclin-dependent kinase inhibitor CDKN2A, genes 
that are recurrently mutated in MPAL16,26, demonstrate these leuke-
mia-specific ATAC-seq and RNA-seq differences (Supplementary 
Fig. 9d,e). Additionally, we calculated Pearson correlations of the 
differential genes and peaks and found that transcription and acces-
sibility differs significantly across patients, but is relatively con-
served across subpopulations within patients. (Fig. 2d).

To compare the leukemic programs of the MPAL hematopoietic 
compartments to previous studies, we downsampled bulk leuke-
mia RNA-seq and projected onto our transcriptomic hematopoi-
etic UMAP for childhood AMLs, B acute lymphoblastic leukemias 
(B-ALLs), early T cell precursor T acute lymphoblastic leukemias 
(ETP T-ALLs), non-ETP T-ALLs and MPALs16 (Supplementary 
Fig. 10a,b). We calculated differential expression with respect 
to the closest normal cell populations to identify their respective 
leukemic programs. Next, we performed LSI on variable malig-
nant genes across all the leukemia subtypes, including MPAL1–
MPAL5, and then visualized these patients with UMAP (Fig. 2e  
and Supplementary Fig. 10c,d). Interestingly, we found large differ-
ences in the leukemic programs across various leukemias includ-
ing T-ALLs and B-ALLs, as well as across different cytogenetic 
subtypes. In addition, we found that the MPALs assayed in this 
study were representative of previously characterized MPALs16  
(Fig. 2e). Given that we were insufficiently powered to detect unique 
leukemic differences between AML and our MPAL samples when 
analyzing downsampled bulk data, we compared the malignant 
transcriptomic profiles identified from reanalyzed AML scRNA-
seq data18 with our MPALs to dissect further these unique malig-
nant signatures (Fig. 2c and Supplementary Fig. 7c). To this end, we 
identified genes that were more commonly universally upregulated 
in AMLs or in MPALs, or jointly upregulated in both leukemias  
(Fig. 2f, Supplementary Fig. 7c and Supplementary Table 4). These 
gene sets provide fine-grained phenotypic resolution for comparing 
the differences and similarities between AML and MPAL leukemic 
programs and suggest possible insight into why MPALs respond 
poorly to AML treatment27,28.

Having compared our leukemic transcriptomic programs to 
other studies we wanted to identify the key TFs that regulate these 

programs. First, we identified which TFs were differentially enriched 
in each k-means cluster of differentially accessible peaks observed 
in Fig. 2c (Fig. 3a and Supplementary Table 5). We found that 
RUNX1 motifs were highly enriched in both cluster 4 and 10—the 
two clusters corresponding to the most commonly shared accessible 
elements across MPAL subset populations. In addition, RUNX1 is 
significantly upregulated in about half (7 of 17) of the MPAL sub-
populations. RUNX1 is one of the most frequently mutated genes 
across hematologic malignancies acting as both a tumor suppres-
sor with loss-of-function mutations in AML29, myelodysplastic syn-
drome30 and ETP T-ALL31,32, and as a putative oncogene in non-ETP 
T-ALL33,34. Furthermore, wild-type RUNX1 has been implicated as a 
potential driver of leukemogenesis in core-binding factor leukemia35  
and mixed-lineage leukemia36.

To link RUNX1 and other putative regulatory TFs to their leu-
kemic programs we first developed an analytical framework that 
utilizes both our transcriptomic and chromatin single-cell data to 
link putative regulator peaks to target genes. We used our matched 
scATAC-seq and scRNA-seq data for all MPALs and concordant 
hematopoietic maps, and aligned each cell into a common sub-
space using canonical correlation analyses (CCA)10,11,37,38. For each 
scATAC-seq cell, we identified the nearest scRNA-seq neighbor 
(Fig. 3b and Supplementary Fig. 11a,b). We found that the map-
ping of scATAC-seq cell clusters to scRNA-defined cell clusters 
was highly consistent (single-cell overlap of 52% across 26 clusters; 
Supplementary Fig. 12a–d). We then aggregated our scATAC-seq 
cells on the basis of nearest neighbors in the LSI subspace using 
Cicero14 and created a corresponding scRNA-seq aggregate for each 
cluster using the constructed CCA alignment. We next identified 
91,601 peak-to-gene links by correlating accessibility changes of 
ATAC peaks within 250 kb of the gene promoter with the expres-
sion of the gene independently for both healthy and MPAL aggre-
gates (Fig. 3b and Supplementary Table 5). This analysis revealed 
peak-to-gene links that were specific to healthy hematopoiesis, oth-
ers that were specific to MPALs and a conserved subset that was 
shared across both hematopoiesis and MPALs. We hypothesize that 
the MPAL-specific peak-to-gene links may be important for leu-
kemic gene regulation. Overall, the identified set of peak-to-gene 
links had similar distributions for peaks mapped per gene, genes 
mapped per peak, number of skipped genes and the peak-to-gene as 
previously observed in a similar linkage analyses2 (Supplementary  
Fig. 12e). To further support these peak-to-gene links, we used pre-
viously published H3K27ac HiChIP in primary T cells and a human 
coronary artery smooth muscle (HCASM) cell line and found that 
the T/NK-biased peak-to-gene links were more enriched in T cells 
than the HCASM cell line39 (Supplementary Fig. 12f). We next 
examined GTEx expression quantitative trait locus (eQTL) map-
pings within our inferred peak-to-gene links, finding enrichment 
of eQTLs in several functionally related categories such as whole 

Fig. 2 | Multiomic projection of MPALs into hematopoiesis identifies normal and leukemic programs. a, Schematic for projection of MPAL single cells 
onto hematopoiesis for both scRNA-seq and scATAC-seq classified into broad hematopoietic compartments. b, Left, MPAL single-cell projections 
into hematopoiesis for both scRNA-seq and scATAC-seq. Right, the proportion of MPAL cells that were broadly classified as healthy or disease and 
their respective hematopoietic compartment (range is from 0 to 1). c, Left, scRNA-seq heat map of upregulated genes (LFC > 0.5 and two-sided t test 
FDR < 0.01) log2(fold changes) comparing MPAL disease subpopulations to closest non-redundant normal cells. Differential genes were clustered using  
k-means clustering (k = 10) on the basis of their log2(fold changes). Right, scATAC-seq heat map (ordered by scRNA-seq hierarchal clustering on the left) 
of differentially upregulated accessible peaks (LFC > 0.5 and two-sided t test FDR < 0.01) log2(fold changes) comparing MPAL disease subpopulations 
to the closest non-redundant normal cells. Differential peaks were clustered using k-means clustering (k = 10) on the basis of their log2(fold changes). 
d, Pearson correlation of the log2(fold changes) (from c) for differentially upregulated genes and peaks across all MPAL subpopulations. e, LSI UMAP of 
differentially upregulated gene-expression profiles across bulk leukemias16 (circle, n = 321) and MPAL samples assayed in this study (outlined triangle, 
n = 17), colored by WHO 2016 classifications5. f, Left, MA plot (log-ratio (M) by mean average (A)) comparing the proportion of malignant (upregulated) 
gene-expression profiles in AML and MPALs. The x axis represents, for each upregulated gene, the average proportion of subpopulations from patients 
with AML and MPAL that are broadly upregulated (LFC > 0.5). The y axis represents, for each upregulated gene, the difference in the proportion of 
upregulated subpopulations from patients with MPAL and AML (LFC > 0.5). Right, genes that are more malignantly biased to either AMLs or MPALs and 
genes that are conserved across both AMLs and MPALs.
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blood and lymphocytes (Supplementary Fig. 12g). To demonstrate 
the utility of these peak-to-gene links, we linked differentially acces-
sible regions to known leukemic genes such as the surface protein 
CD96, the leukemic stem cell marker IL1RAP, the cytokine receptor  

FLT3 and apoptosis regulator MCL1 (Supplementary Fig. 13a–d).  
Overall, these analyses, show that the peak-to-gene links are highly 
enriched in immune regulation and across other previously pub-
lished linkage datasets2,39.
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Having established a high-quality set of peak-to-gene links, we 
aimed to identify the set of malignant genes putatively regulated by 
RUNX1. First, we utilized our peak-to-gene links to identify differ-
ential peaks linked to a differential gene within at least two MPAL 

subpopulations. Next, we selected all linked differential accessibility 
sites that contain the RUNX1 motif. Finally, for each linked gene 
we combined all linked peaks to create a differential linkage score 
(Methods) and compared this score to the proportion of MPAL 
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subpopulations that exhibited differential expression and accessibil-
ity in at least one linked peak and target gene (a measure of how 
common this RUNX1-driven dysfunction is across MPAL subsets) 
(Fig. 3c). Using this approach, we found 732 genes putatively regu-
lated by a RUNX1-containing distal element in at least two MPAL 
subsets, and found that CD69, which is implicated in lymphocyte 
activation through initiation of JAK–STAT signaling40 and lym-
phocyte retention in lymphoid organs41, was both highly enriched 
in the calculated differential linkage score and was observed to be 
differentially upregulated in almost every MPAL subpopulation  
(Fig. 3d and Supplementary Table 5). To further support the pre-
dicted RUNX1 regulation of CD69 (refs. 42,43), we incorporated  
T  cell H3K27ac HiChIP39, CRISPR-activation-validated CD69 
enhancers39,44 and RUNX1 ChIP-seq45 into our multiomic differ-
ential track. These orthogonal datasets support RUNX1 binding 
to these linked distal regulatory regions (Fig. 3e). Finally, by using 
the 732 identified RUNX1-target genes to stratify patients with 
AML from The Cancer Genome Atlas (TCGA)46 by expression, we 
observed significantly decreased survival (P = 0.023) in donors with 
a high RUNX1-target-gene signature46 (Fig. 3f). This analysis sug-
gests that RUNX1 is an important TF that putatively upregulates a 
portion of the leukemic signature in MPAL and potentially AML.

Collectively, this work establishes an experimental and analyti-
cal approach for deconstructing cancer-specific features using inte-
grative analysis of multiple single-cell technologies. We find that 
MPAL malignant programs are largely conserved across pheno-
typically heterogenous cells within individual patients; this obser-
vation is consistent with a previous report16 that MPAL cells likely 
originate from a multipotent progenitor cell, thereby sharing a com-
mon mutational landscape while populating different regions of 
the hematopoietic tree. We used integrative single-cell analyses to 
further define putative TF regulation of these malignant programs. 
We inferred that RUNX1 acts as a potential oncogene in MPAL, reg-
ulating malignant genes associated with poor survival. We antici-
pate that similar approaches will be used in future studies to both 
identify the differentiation status of different tumor types (that is, 
identify the closest normal cell type) and enable molecular dissec-
tion of molecular dysfunction in pathogenic cellular subtypes, with 
the ultimate goal of identifying personalized therapeutic targets 
through integrative single-cell molecular characterization.
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Methods
Experimental methods. Description of healthy donors. PBMCs, BMMCs and 
CD34+ bone marrow cells were obtained from healthy donors with informed 
consent and compliance with relevant ethical regulations (AllCells). Individual 
information for each donor is provided in Supplementary Table 1. All healthy 
cells used in this study were cryopreserved (fresh frozen in either Bambanker 
freezing medium or 10% DMSO with 90% serum). Thawed cells were not filtered 
for viability before loading into droplets. High-quality cells were identified 
bioinformatically.

Description of patients and donors with leukemia. Patient samples were collected 
with informed consent in accordance with all relevant ethical regulations regarding 
human research participants under a protocol approved by the Institutional Review 
Board (IRB) at Stanford University Medical Center (Stanford IRB, 42949, 18329 
and 6453). Peripheral blood and bone marrow aspirate samples were processed 
by Lymphoprep (STEMCELL Technologies) gradient centrifugation and fresh 
frozen in Bambanker medium. Diagnostic flow cytometry performed on bone 
marrow aspirate samples were analyzed. In all cases, a retrospective review of 
clinical parameters, hemogram data, peripheral blood smears, bone marrow 
aspirates, trephine biopsies, results of karyotype and flow cytometry studies was 
performed. Clinical follow-up information was obtained by retrospective review of 
the medical record charts. Cases were classified using the 2016 WHO classification 
of hematopoietic and lymphoid neoplasms5. Thawed cells were not filtered for 
viability before loading into droplet assays. High-quality cells were identified 
bioinformatically.

Combined single-cell antibody-derived tag and RNA sequencing. CITE-seq  
was performed as previously reported6 using the (version 2) Chromium  
Single Cell 3′ Library and Gel Bead kit (10x Genomics, 120237). Six thousand  
cells were targeted for each sample. Oligonucleotide-coupled antibodies were 
obtained from Biolegend, indexed by PCR (ten cycles) with custom barcodes  
(see Supplementary Table 3), quantified by PCR using a PhiX Control v3  
(Illumina, FC-110-3001) standard curve and sequenced on an Illumina  
NextSeq 550 together with scRNA-seq at no more than 60% of the total library 
composition (1.5 pM loading concentration, 26 × 8 × 0 × 98 base pair (bp)  
read configuration).

Single-cell assay for transposase-accessible chromatin using sequencing. scATAC-seq 
targeting 4,000 cells per sample was performed using a beta version of Chromium 
Single Cell ATAC Library and Gel Bead kit (10x Genomics, 1000110). Each sample 
library was uniquely barcoded and quantified by PCR using a PhiX Control v3 
(Illumina, FC-110-3001) standard curve. Libraries were then pooled and loaded on 
a NextSeq 550 Illumina sequencer (1.4 pM loading concentration, 33 × 8 × 16 × 33 
bp read configuration) and sequenced to either 90% saturation or 30,000 unique 
reads per cell on average.

Whole-exome sequencing of patients and donors with leukemia. Genomic DNA 
was extracted from diagnostic PBMCs or bone marrow samples using the Zymo 
Clean and Concentrator kit. Library construction (Agilent SureSelect Human All 
Exon kit), quality assessment and 150-bp paired-end sequencing (HiSeq4000) were 
performed by Novogene. Reads with adaptor contamination, uncertain nucleotides 
and paired reads with >50% low-quality nucleotides were discarded. Paired-end 
reads were then aligned to the reference genome (GRCh37) using BWA software. 
Genome Analysis Toolkit (GATK) was used to ignore duplicates with Picard-tool. 
Filtered variants (single-nucleotide polymorphisms and indels) were identified 
using GATK HaplotypeCaller and variantFiltration. Variants obtained from initial 
analysis were further compared to dbSNP and the 1,000 Genomes database. Finally, 
missense, stop–gain and frameshift mutations were compared against a custom 
panel of 300 genes that are recurrently mutated in hematologic malignancies as 
described previously16,17.

Analytical methods. Fluorescence-activated cell sorting. Flow cytometry was 
performed on a FACSCalibur or FACSCanto II (Becton Dickinson) cytometer 
using commercially available antibodies (Supplementary Table 2). Lymphocytes 
were identified by low side scatter and bright CD45 expression. The gate was 
validated by backgating on CD3+ or CD19+ events. Blasts were identified by low 
side scatter and dim CD45 expression. The gate was further assessed by backgating 
on CD34+ events. Gates were drawn by additionally using isotype controls and 
internal positive and negative controls.

scADT-seq analysis. Raw sequencing data were converted to fastq format using 
bcl2fastq (Illumina, v.2.20.0.422). ADTs were then assigned to individual cells and 
antibodies (see reference antibody barcodes in Supplementary Table 3) allowing for 
two and three barcode mismatches, respectively. Unique molecular counts for each 
cell and antibody were then generated by counting only barcodes with a unique 
molecular identifier (UMI). PBMC and BMMC ADT count data were transformed 
using the centered log ratio (CLR) as previously described6. PBMCs and BMMCs 
were visualized in two dimensions using the uwot implementation of UMAP12 in R 
(n_neighbors = 50, min_dist = 0.4).

scATAC-seq. scATAC-seq processing. Raw sequencing data were converted to fastq 
format using cellranger atac mkfastq (10x Genomics, v.1.0.0; Supplementary  
Fig. 14). scRNA-seq reads were aligned to the GRCh37 (hg19) reference genome 
and quantified using cellranger count (10x Genomics, v.1.0.0).

scATAC-seq quality control. To ensure that each cell was both adequately sequenced 
and had a high signal-to-background ratio, we filtered cells with less than 1,000 
unique fragments and enrichment at TSSs below 8. To calculate TSS enrichment2, 
genome-wide Tn5-corrected insertions were aggregated ±2,000 bp relative 
(TSS-strand-corrected) to each unique TSS. This profile was normalized to the 
mean accessibility ±1,900–2,000 bp from the TSS, smoothed every 51 bp and the 
maximum smoothed value was reported as TSS enrichment in R. We estimate that 
the multiplet percentage for this study was around 4% (ref. 7).

scATAC-seq counts matrix. To construct a counts matrix for each cell by each 
feature (window or peaks), we read each fragment.tsv.gz fill into a GenomicRanges 
object. For each Tn5 insertion, which can be thought of as the ‘start’ and ‘end’ of 
the ATAC fragments, we used findOverlaps to find all overlaps with the feature by 
insertions. Then we added a column with the unique id (integer) cell barcode to 
the overlaps object and fed this into a sparseMatrix in R. To calculate the fraction 
of reads/insertions in peaks, we used the colSums of the sparseMatrix and divided 
it by the number of insertions for each cell id barcode using table in R.

scATAC-seq union peak set from latent semantic index clustering. We adapted a 
previous workflow for generating a union peak set that will account for diverse 
subpopulation structure2,9,10 (Supplementary Fig. 14). First, we created 2.5-kb 
windows genome wide using ‘tile(hg19chromSizes, width = 2500)’ in R. Next, a 
cell-by-2.5-kb-window sparse matrix was constructed as described above. The top 
20,000 accessible windows were kept and the binarized matrix was transformed 
with the term frequency-inverse document frequency (TF-IDF) transformation8. 
In brief, we divided each index by the colSums of the matrix to compute the 
cell ‘term frequency’. Next, we multiplied these values by log(1 + ncol(matrix)/
rowSums(matrix)), which represents the ‘inverse document frequency’. This 
normalization resulted in a TF-IDF matrix that was then used as input to the irlba 
singular value decomposition (SVD) implementation in R. The 2nd to 25th SVD 
dimensions (1st dimension is correlated with the depth of cell reads15) were used 
for creating a Seurat object and initial clustering was performed using Seurat’s 
SNN graph clustering (v.2.3.4) with ‘FindClusters’ at a default resolution of 0.8. If 
the minimum cluster size was below 200 cells, the resolution was decreased until 
this criterion was reached leading to a final resolution of 0.8N (where N represents 
the iterations until the minimum cluster size is 200 cells). For each cluster, peak 
calling was performed on Tn5-corrected insertions (each end of the Tn5-corrected 
fragments) using the MACS2 callpeak command with parameters ‘--shift -75 
--extsize 150 --nomodel --call-summits --nolambda --keep-dup all -q 0.05’. The 
peak summits were then extended by 250 bp on either side to a final width of 
501 bp, filtered by the ENCODE hg19 blacklist (https://www.encodeproject.org/
annotations/ENCSR636HFF/) and filtered to remove peaks that extend beyond the 
ends of chromosomes.

Overlapping peaks called were handled using an iterative removal procedure 
as previously described2. First, the most significant (MACS2 score) extended peak 
summit is kept and any peak that directly overlaps with that significant peak is 
removed. This process reiterates to the next most significant peak until all peaks 
have either been kept or removed owing to direct overlap with a more significant 
peak. The most significant 200,000 extended peak summits for each cluster were 
quantile normalized using ‘trunc(rank(v))/length(v)’ in R (where v represents the 
vector of MACS2 peaks scores). These cluster peak sets were then merged and 
the previous iterative removal procedure was used. Lastly, we removed any peaks 
whose nucleotide content had any ‘N’ nucleotides and any peaks mapping to chrY.

scATAC-seq-centric latent semantic indexing clustering and visualization. scATAC-
seq clustering was performed by adapting the strategy of Cusanovich et. al9,10 to 
compute the term TF-IDF transformation. In brief, we divided each index by the 
colSums of the matrix to compute the cell ‘term frequency’. Next, we multiplied 
these values by log(1 + ncol(matrix)/rowSums(matrix)), which represents the 
‘inverse document frequency’. This resulted in a TF-IDF matrix that was used as 
input to the irlba SVD implementation in R. The first 50 SVD dimensions were 
used as input into a Seurat object and initial clustering was performed using 
Seurat’s (v.2.3.4) SNN graph clustering ‘FindClusters’ with a resolution of 1.5 (25 
SVD dimensions for healthy hematopoiesis and 50 for healthy hematopoiesis and 
MPALs). We found that in some cases, there was batch effect between experiments. 
To minimize this effect, we identified the top 50,000 variable peaks across the 
initial clusters (summed cell matrix for each cluster followed by edgeR log(counts 
per million) (CPM) transformation47). These 50,000 variable peaks were then 
used to subset the sparse binarized accessibility matrix and recompute the TF-IDF 
transform. We used SVD on the TF-IDF matrix to generate a lower-dimensional 
representation of the data by retaining the first 50 dimensions. We then used these 
reduced dimensions as input into a Seurat object and then final clusters were 
identified by using Seurat’s (v.2.3.4) SNN graph clustering ‘FindClusters’ with a 
resolution of 1.5 (50 SVD dimensions for healthy hematopoiesis and 50 for healthy 
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hematopoiesis and MPALs). These same reduced dimensions were used as input  
to the uwot implementation of UMAP (n_neighbors = 55, n_components = 2,  
min_dist = 0.45) and plotted in ggplot2 using R. We merged scATAC-seq clusters 
from a total of 36 clusters for hematopoiesis to 26 final clusters that best agreed 
with the scRNA-seq clusters. The objective of this analysis is to optimize feature 
selection, which minimizes batch effects, and enable projection of future data into 
the same manifold as described further below.

scATAC-seq visualization in genomic regions. To visualize scATAC-seq data, we 
read the fragments into a GenomicRanges object in R. We then computed sliding 
windows across each region we wanted to visualize every 100 bp ‘slidingWindow
s(region,100,100)’. We computed a counts matrix for Tn5-corrected insertions as 
described above and then binarized this matrix. We then returned all non-zero 
indices (binarization) from the matrix (cell × 100-bp intervals) and plotted them 
in ggplot2 in R with ‘geom_tile’. For visualizing aggregate scATAC-seq data, the 
binarized matrix above was summed and normalized. Scale factors were computed 
by taking the binarized sum in the global peak set and normalizing to 10,000,000. 
Tracks were then plotted in ggplot in R.

chromVAR. We measured global TF activity using chromVAR15. We used the 
cell-by-peaks and the Catalog of Inferred Sequence Binding Preferences (CIS-BP) 
motif (from chromVAR motifs ‘human_pwms_v1’) matches within these peaks 
from motifmatchr. We then computed the GC-bias-corrected deviations using 
the chromVAR ‘deviations’ function. We then computed the GC-bias-corrected 
deviation scores using the chromVAR ‘deviationScores’ function.

Gene-activity scores using Cicero and co-accessibility. We calculated gene activities 
using the R package Cicero14. In brief, we used the sparse binary cell-by-peaks 
matrix and created a cellDataSet, detectedGenes and estimatedSizeFactors. We 
then created a ‘cicero_cds’ with k = 50 and the ‘reduced_coordinates’ being the 
LSI SVD coordinates (hematopoiesis = 25, hematopoiesis and MPALs = 50). This 
function returns aggregated accessibility across groupings of cells on the basis of 
nearest-neighbor rules from the R package FNN. We then identified all peak–peak 
linkages that were within 250 kb by resizing the peaks to 250 kb and 1 bp and using 
‘findOverlaps’ in R. We calculated the Pearson correlation for each unique peak–
peak link and created a connections data.frame where the first column is peak_i, 
the second column is peak_j and the third column is co-accessibility (Pearson 
correlation). We created a gene data.frame from the TxDb ‘TxDb.Hsapiens.UCSC.
hg19.knownGene’ in R, resized each gene from its TSS and created a window 
±2.5 kb centered at the TSS and annotated the ‘cicero_cds’ using ‘annotate_cds_
by_site’. We then calculated gene activities with ‘build_gene_activity_matrix’ (co-
access cutoff of 0.35). Lastly we normalized the gene activities by using ‘normalize_
gene_activities’ and the read depth of the cells, log normalized these gene activities 
scores for interpretability by computing log2(GA × 1,000,000 + 1), where GA is the 
gene activity score.

scRNA-seq. scRNA-seq processing. Raw sequencing data were converted to fastq 
format using cellranger mkfastq (10x Genomics, v.3.0.0; Supplementary Fig. 
14). scRNA-seq reads were aligned to the GRCh37 (hg19) reference genome and 
quantified using cellranger count (10x Genomics, v.3.0.0). We kept genes that were 
present in both 10x gene transfer formatfiles v.3.0.0 for hg19 and hg38 (https://
support.10xgenomics.com/single-cell-gene-expression/software/release-notes/
build). Mitochondrial and ribosomal genes were also filtered before further 
analysis. Genes remaining after these filtering steps we refer to as ‘informative’ 
genes and enable cross genome comparison.

scRNA-seq quality control. We wanted to filter out cells whose transcripts were 
lowly captured and first plotted the distribution of genes detected and UMIs for 
all experiments. On the basis of these plots, we chose to filter out cells that had 
less than 400 informative genes detected and 1,000 UMIs. In addition, to lower 
multiplet representation, we filtered cells with above 10,000 UMIs. We estimate 
that the multiplet percentage for this study was around 6% (ref. 8). We then plotted 
the correlation for each replicate experiment and found high reproducibility.

scRNA-seq-centric latent semantic indexing clustering and visualization. We 
initially tested a few methods for clustering scRNA-seq but settled on an 
approach that enabled us to effectively capture the hematopoietic hierarchy 
without substantial alteration of transcript expression (Supplementary Fig. 
14). We first log normalized the transcript counts by first depth normalizing to 
10,000 and adding a pseudocount before a log2 transform (log2(counts per ten 
thousand transcripts + 1)). Next, we identified the top 3,000 variable genes and 
performed the TF-IDF transform on these 3,000 genes. We performed SVD on 
this transformed matrix keeping the first 25 dimensions and used this as input 
to Seurat’s SNN clustering (v.2.3.4) with an initial resolution of 0.2. We summed 
the individual clusters single cells and computed the logCPM transformation, 
‘edgeR::cpm(mat,log = TRUE,prior.count = 3)’, and identified the top 2,500 variable 
genes across these initial clusters. These variable genes were used as input for a  
TF-IDF transform and an SVD was performed on this transformed matrix 
keeping the first 25 dimensions, which were used as input to Seurat’s SNN 

clustering (v.2.3.4) with an increased resolution of 0.6. We then summed 
the individual clusters single cells, computed the logCPM transformation, 
‘edgeR::cpm(mat,log = TRUE,prior.count = 3)’ and identified the top 2,500 variable 
genes across these clusters. We repeated this one more time (resolution 1.0)  
and saved the final features and clusters. To align our clusters better with the 
scATAC-seq data, we merged a total of 26 clusters from 31 initial clusters (included 
in Supplemental Data). These LSI dimensions were used as input to the uwot 
implementation of UMAP (n_neighbors = 35, n_components = 2, min_dist = 0.45) 
and plotted in ggplot2 using R. The objective of this analysis is to optimize feature 
selection, which minimizes batch effects, and enable projection of future data into 
the same manifold as described further below.

scATAC-seq and scRNA-seq analytical methods. Latent semantic indexing 
projection for scATAC-seq and scRNA-seq. We designed the above analytical 
approach to clustering of single-cell data because it optimized feature selection 
and enabled projection of new non-normalized data into a low-dimension 
manifold. To enable these analyses, when computing the TF-IDF transformation 
on the hematopoietic hierarchy, we kept the colSums, rowSums and SVD from 
the previous run and then when projecting new data into this subspace, we 
first identified which row indices to zero out on the basis of the initial TF-IDF 
rowSums. We then computed the ‘term frequency’ by dividing by the colSums 
in these features. Next, we computed the ‘inverse document frequency’ from 
the previous TF-IDF transform (diagonal(1 + ncol(mat)/ rowSums(mat))) and 
computed the new TF-IDF transform. We projected this TF-IDF matrix into the 
SVD subspace that was previously generated. To do this calculation, we computed 
the new coordinates by “t(TF_IDF) %*% SVD$u %*% diag(1/SVD$d)”, where  
TF_IDF is the transformed matrix and SVD is the previous SVD run, using irlba 
in R (v.3.5.1). We computed the projected matrix by “SVD$u %*% diag(SVD$D) * 
t(V)” where V is the projected coordinates above. For projecting bulk RNA-seq,  
we downsampled previously published data to 5,000 reads in genes 100 times and 
then made a sparse matrix for projection as single-cell data. For projecting  
bulk scATAC-seq, we downsampled previously published data to 10,000 reads  
in peaks 100 times and then made a binary sparse matrix for projection as  
single-cell data.

HCA immune census bone marrow projection. We downloaded the HCA bone 
marrow immune census data (https://data.humancellatlas.org/explore/projects/
cc95ff89-2e68-4a08-a234-480eca21ce79)23 comprising around 300,000 cells from 
eight different donors (filtered for at least 1000 UMI). We used our iterative  
LSI approach (resolutions = 0.2, 0.6, 1.0 and 2,500 variable genes; UMAP  
n_neighbors = 75, min_dist = 0.2, metric = “euclidean”) to create a UMAP manifold 
that we could then project our scRNA-seq data onto. We LSI projected our scRNA-
seq data onto this subspace and found that our cohort reasonably repopulates the 
hematopoietic manifold created on completely separate donors. This result shows 
that our analysis approach is scalable and that our healthy hematopoietic data 
reasonably recapitulates the biological diversity along hematopoiesis.

Classification of AML scRNA-seq. We wanted to evaluate our LSI projection of 
abnormal cells into a healthy subspace by using data from van Galen et al.19. We 
first projected their healthy bone marrow scRNA-seq from a different platform 
and genome and found remarkable agreement with their classifications and our 
independent hematopoietic manifold. We then projected their ‘disease’ cell AML 
scRNA-seq into our manifold and found reasonable agreement for more terminal 
states and less agreement in the ‘hematopoietic stem cell (HSC)’ and ‘progenitor-
like’ classifications. We reasoned that this difference could be due to defining 
discrete populations in a continuous subspace. We then reclassified their AML 
‘disease’ scRNA-seq by finding the nearest neighbors between their cells in our 
projected SVD subspace and our scRNA-seq data. We grouped our clusters into 
more broad groupings for interpretability (‘Progenitor-like’ is clusters 1–6,  
‘GMP-like’ is clusters 7 and 8, ‘cDC-like’ is cluster 10, ‘Monocyte-like’ is clusters 
11–13). For differential analyses we compared against their projected scRNA-seq 
healthy bone marrow to minimize batch differences in the comparison.

Classification of MPAL single cells with scATAC-seq and scRNA-seq. We wanted 
to classify MPAL single cells on the basis of their disease state and hematopoietic 
progression. First, we aimed to determine which cells were healthy-like and 
disease-like. To do this analysis, we clustered all of the healthy hematopoietic cells 
with the MPAL of interest using our LSI workflow as described above (scRNA,  
25 principal components (PCs), 1,000 variable genes, and Seurat’s SNN resolution 
of 0.2, 0.8 and 0.8; scATAC, 25 PCs, 25,000 variable peaks and Seurat’s SNN 
resolution of 0.8 and 0.8). We then defined clusters to be healthy-like if a high 
percentage (>80% for scRNA-seq and >90% for scATAC) of the cells were from 
the normal hematopoietic data. MPAL single cells belonging to these clusters were 
classified as healthy-like and the remaining cells were classified as disease-like. We 
note that we did not detect significant copy-number amplifications with scATAC-
seq using a previously described approach7, and the proportion of cells classified 
as disease-like was consistent with flow cytometry and morphological estimations 
of the percentage of blast cells (Supplementary Fig. 8b). To accurately characterize 
these MPAL as disease-like by their hematopoietic state, we established 
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‘hematopoietic compartments’ across our scRNA-seq and scATAC-seq maps 
that broadly characterized the hematopoietic continuum. The borders for these 
compartments were determined empirically using ‘fhs’ in R, guided by the initial 
clusters and agreement across the scRNA-seq and scATAC-seq classifications. 
After classifying the normal hematopoietic continuum, we then broadly classified 
the MPAL disease-like cells on the basis of their projected nearest neighbor in 
the UMAP subspace. These classifications were used subsequently in differential 
analyses. We note that this approach identifies a cumulative set of leukemia-
specific changes relative to similar hematopoietic cells and does not discriminate 
among intermediate changes along a leukemic developmental trajectory. We note 
that this method of classification is potentially limited as compared to classification 
on the basis common structural variants or mutations. Furthermore, identifying 
disease cells that are partially transformed may likewise be challenging.

Identifying differential features with scATAC-seq and scRNA-seq. To identify 
differential features for previously published AML data and MPALs, we 
constructed a nearest-neighbor healthy aggregate using the following approach. 
First, we used FNN to identify the nearest 25 cells using ‘get.knnx(svdHealthy, 
svdProjected, k = 25)’ on the basis of Euclidean distance between the projected 
cells and hematopoietic cells in LSI SVD space. For each projected population, we 
used a minimum of 50 and maximum of 500 cells (random sampling) as input. 
Next, we took the unique of all hematopoietic single cells and if this number was 
greater than 1.25 times the number of the projected populations, we took the 
nearest 24 cells and repeated this procedure until this criterion was met. Then the 
projected population and non-redundant hematopoietic cells were downsampled 
to an equal number of cells (maximum 500). For scATAC-seq, we binarized 
the matrix for both the projected populations and hematopoietic matrices. 
Next, we scaled the sparse matrices to 10,000 total counts for scRNA-seq and 
5,000 total promoter counts for scATAC-seq (promoter peaks defined as peaks 
within 500 bp of TSS from hg19 10x v.3.0.0 gene transfer format file). Next, we 
computed row-wise two-sided t tests for each feature. We then calculated the FDR 
using p.adjust(method = “fdr”). We then computed the log2mean and log2(fold 
changes) for each feature. We chose these parameters on the basis of a previous 
study comparing analytical methods for differential expression48. For scRNA-
seq, differential expression was determined by FDR < 0.01 and absolute log2(fold 
changes) greater than 0.5. For scRNA-seq, differential expression was determined 
by FDR < 0.05 and absolute log2(fold changes) greater than 0.05.

To identify differential genes for bulk leukemia RNA-seq, we downsampled 
the gene counts to 10,000 counts randomly for 250 times. We then projected and 
used the above framework to resolve differential genes with log2(fold change) > 3 
and FDR < 0.01. We then removed genes that were differential in 33% or higher of 
the normal samples to attempt to capture biased genes. In addition, we removed 
genes differential in 50% or higher of the leukemia samples. This filtering biases 
our identified malignant genes to those that are variable across the leukemic types 
as opposed to conserved across all leukemic types. We then took the average 
malignancy for each remaining gene for each leukemic type and used the top 300 
variable malignant genes across the leukemic types for the heat map and LSI. For 
computing differential LSI, we binarized each gene as malignant or not for the 300 
variable malignant genes and computed the TF-IDF transform followed by SVD 
(LSI). We then visualized this in two dimensions using the uwot implementation of 
UMAP (50 SVD dimensions, n_neighbors = 50, min_dist = 0.005).

Matching scATAC-seq–scRNA-seq pairs using Seurat’s canonical correlation 
analyses. To integrate our epigenetic and transcriptomic data we built on previous 
approaches for integration10,37. We found the approach that worked best for our 
integrative analyses was using Seurat’s CCA. We performed integration for each 
biological group separately because (1) it improved alignment accuracy and 
(2) required much less memory. First, for both the gene-activity scores matrix 
and scRNA-seq matrix, a Seurat object was created using ‘CreateSeuratObject’, 
normalized with ‘NormalizeData’ and the top 2,000 most variable genes or 
activities ranked by dispersion with ‘FindVariableGenes’ were. We defined the 
union of the top 2,000 most variable genes from scRNA-seq and gene scores 
from scATAC-seq and found this increased the concordance downstream (as 
defined by cluster-to-cluster mapping in hematopoiesis and single-cell Spearman 
correlations). These genes were then used for running CCA using ‘RunCCA’ with 
the number of canonical correlations to compute as 25. We then calculated the 
explained variance using ‘CalcVarExpRatio’ grouping by each of the individual 
experimental protocols scATAC-seq (gene-activity scores) and scRNA-seq. We 
then filtered cells where the variance explained by CCA was less than twofold 
as compared to principal component analysis. We aligned the subspaces with 
“AlignSubspace” and 25 dimensions to align with reduction.type = “cca” and 
grouping.var = “protocol”. For each scATAC-seq cell the nearest scRNA-seq cell was 
identified on the basis of minimizing the Euclidean distance. We created a UMAP 
using the aligned CCA coordinates as input into the uwot UMAP implementation 
with n_neighbors = 50, min_dist = 0.5, metric = “euclidean” and plotted the output 
with ggplot2 in R. To enable more robust correlation-based downstream analyses, 
we used our initial k-nearest-neighbor groupings (nGroups = 4998, KNN = 50) 
from Cicero14 to group scATAC-seq accessibility, gene-activity scores, scRNA-seq 
closest neighbor and chromVAR15 deviation scores.

Peak-to-gene linkage. Cicero14 allows us to infer gene-activity scores by linking 
distally correlated ATAC peaks to the promoter peak. While this measure is 
extremely useful, it does not actually mean it is correlated to gene expression. To 
circumvent this limitation, we used our grouped scATAC-seq and grouped linked 
scRNA-seq to identify peak-to-gene links. First we log normalized the accessibility 
and gene expression with log2(counts per 10,000 + 1) and then we resized each of 
the gene GenomicRanges to the start using resize(gr,1,“start”) and then resizing 
the start to a ±250-kb window using ‘resize(gr, 2 * 250000 + 1, “center”)’. We 
then overlapped all ATAC-seq peaks using ‘findOverlaps’ to identify all putative 
peak-to-gene links. We then split the aggregated ATAC and RNA matrices by 
whether the majority of the cells were from MPAL or hematopoietic single cells 
and correlated the peaks and genes for all putative peak-to-gene links. We used 
a previously described approach for computing a null correlation on the basis of 
trans correlations (correlating peaks and genes not on the same chromosome)2. 
In brief, for each chromosome, 1,000 peaks not on the same chromosome are 
identified and correlated to every gene on that chromosome. Each putative peak-
to-gene correlation is converted into a z score by using the mean and s.d. of the null 
trans correlations. These are then converted to P values and adjusted for multiple-
hypothesis testing using the Benjamini–Hochberg correction ‘p.adjust’ in R. We 
retained links whose correlation (Pearson) was above 0.35 and FDR < 0.1 (the same 
correlation cutoff as co-accessibility in Cicero14) in either MPAL or hematopoietic 
aggregations. We then kept all peak-to-gene links that were greater than 2.5 kb in 
distance. We identified peak-to-gene links that are only present in hematopoiesis, 
MPALs or both. To visualize the peak-to-gene links we plotted all of them as a heat 
map with ComplexHeatmap. To determine the column order we first computed 
principal component analysis for the first 25 principal components using irlba. 
We computed Seurat11 SNN clustering with a resolution of 1 and computed the 
cluster means. We then computed the order of these clusters using hclust and 
the dissimilarity 1 − R as the distance. Next, we iterated through each cluster and 
performed hclust with the dissimilarity calculations to get a final column order. 
The peak-to-gene links were grouped by k-means clustering with 10 input centers, 
100 iterations and 10 random starts for healthy, disease and the overlapping links. 
We did this biclustering because it enabled us to plot smaller rasterized chunks of 
the heat map without overwhelming the memory; individual rasterized k-means 
clusters were put together after analysis.

Enrichment of peak-to-gene links in GTEx eQTLs. We adopted a previous approach 
for identifying the enrichment of our peak-to-gene links in GTEx eQTL data. In 
brief, we downloaded GTEx eQTL data (version 7) from https://gtexportal.org/
home/datasets and the *.signif_variant_gene_pairs.txt.gz files were used. We also 
downloaded gencode v19 (matched to these eQTLs) and identified all gene starts 
and the nearest gene starts to each peak and eQTL using ‘distanceToNearest’. 
We filtered all eQTLs that were further than 250 kb from their predicted gene 
to be consistent with our linkage approach. To calculate a conservative overlap 
enrichment, we further pruned all eQTL links that were to its nearest gene. We 
then created a null set (n = 250) of peak-to-gene links by randomly selecting distal 
ATAC-seq peak-to-gene links (within 250 kb) that were distance matched to the 
links tested at a resolution of 5 kb. We then calculated a z score and enrichment for 
each peak-to-gene link set as compared to the null set and calculated an FDR using 
‘p.adjust(method = “fdr”)’.

Enrichment of peak-to-gene links in K27ac HiChIP metaV4C. We wanted to 
determine the specificity of our peak-to-gene links in published chromatin 
conformation data. We downloaded previously published naive T cell and HCASM 
cell line H3K27ac HiChIP data. We then identified within each peak-to-gene 
link subset the peaks that were most biased to T/NK cells. To do this analysis, we 
calculated the z score for each peak in the peak-to-gene links, removed all links 
below 100 kb and floored each peak coordinate (start or end) to its nearest 10-kb 
window. We then ranked these links by the z score for the peak, deduplicated the 
links at a resolution of 10 kb and kept the top 500 remaining peak-to-gene links. 
Next, we used juicer dump (no normalization “NONE”) at a 10-kb resolution 
for each chromosome in the ‘.hic’ file. We read each chromosome into an 
individual ‘sparseMatrix’ in R and scaled the sparse matrices such that the total 
cis interactions summed up to 10 million paired-end tags (PETs). Then, for each 
peak-to-gene link, the upstream or downstream window (column or row) (whether 
the peak was upstream or downstream of the gene promoter) was identified. To 
scale the distance of each interaction for interpretability, we linearly interpolated 
the data to be on a scale from −50% to 150% to visualize the focal interaction. The 
mean interaction signal was reported and repeated for both replicates. The mean 
and s.d. across both replicates were calculated and plotted with ggplot in R.

Identifying TF malignant target genes and survival analysis. We wanted to create 
a framework for identifying TFs that potentially directly regulate malignant 
genes. To do this analysis, we first identified a set of TFs whose hypergeometric 
enrichment in differential peaks were high across the MPAL subpopulations 
(comparing upregulated peaks against all peaks) and that were identified as being 
transcriptionally correlated with the accessibility of their motif (see above). Next, 
for a given TF and all identified peak-to-gene links, we further subsetted these 
links by those containing the TF motif. For each MPAL subpopulation,  
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we determined whether, for each peak-to-gene link, both the peak and gene  
were upregulated. Then for each gene, we gave a binary score indicating  
whether or not that MPAL subpopulation had at least one differential peak-to-gene 
link (whose peak and gene are differentially upregulated), and reported  
the proportion of subpopulations that were upregulated. In addition, for each gene 
that has at least one differential peak-to-gene link we summed their  
squared correlation R2 and reported that as the differential linkage score.  
We kept all genes that had least one MPAL subpopulation with corresponding 
differential peak-to-gene links.

For survival analysis, we downloaded the RPKM TCGA-LAML data46 
(https://gdc.cancer.gov/about-data/publications/#/?groups=TCGA-
LAML&years=&order=desc). We downloaded the survival data from Bioconductor 
RTCGA.clinical (“patient.vital_status”) and matched the RPKM expression using 
TCGA IDs. Next, we took all genes that were identified as target genes  
for RUNX1 (n = 732), and computed row-wise z scores for each gene. Next,  
we took the column means of this matrix to get an average z score across all 
RUNX1-target genes. We then identified the top 33% and bottom 33% of donors 
on the basis of this expression. We computed the P value using the R package 
survival ‘survfit(Surv(times,patient.vital_status)~Runx1_TG_Expression,  
LAML_Survival)’. We plotted the Kaplan–Meier curve using the R package 
survminer ‘ggsurvplot’ in R.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data are deposited in the Gene Expression Omnibus (GEO) with the 
accession code GSE139369. There are no restrictions on data availability or use.

Code availability
Code used in this study can be found on Github at https://github.com/
GreenleafLab/MPAL-Single-Cell-2019.
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