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Single-cell multiomic analysis identifies regulatory
programs in mixed-phenotype acute leukemia
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Identifying the causes of human diseases requires deconvolu-
tion of abnormal molecular phenotypes spanning DNA acces-
sibility, gene expression and protein abundance’, We present
a single-cell framework that integrates highly multiplexed
protein quantification, transcriptome profiling and analysis
of chromatin accessibility. Using this approach, we establish
a normal epigenetic baseline for healthy blood development,
which we then use to deconvolve aberrant molecular features
within blood from patients with mixed-phenotype acute leu-
kemia“®, Despite widespread epigenetic heterogeneity within
the patient cohort, we observe common malignant signatures
across patients as well as patient-specific regulatory features
that are shared across phenotypic compartments of individual
patients. Integrative analysis of transcriptomic and chroma-
tin-accessibility maps identified 91,601 putative peak-to-gene
linkages and transcription factors that regulate leukemia-
specific genes, such as RUNX1I-linked regulatory elements
proximal to the marker gene CD69. These results demonstrate
how integrative, multiomic analysis of single cells within
the framework of normal development can reveal both
distinct and shared molecular mechanisms of disease from
patient samples.

To identify pathologic features within neoplastic cells, we first
aimed to establish molecular features of normal development for
comparison. As mixed-phenotype acute leukemias (MPALSs) pres-
ent with features of multiple hematopoietic lineages, we first con-
structed independent immunophenotypic, transcriptomic and
epigenetic maps of normal blood development using droplet-based
cellular indexing of transcriptomes and epitopes by sequenc-
ing (CITE-seq)® (combined single-cell antibody-derived tag and
RNA sequencing) and single-cell assay for transposase-accessible
chromatin using sequencing (scATAC-seq; single-cell chromatin-
accessibility profiling)” on bone marrow and peripheral blood
mononuclear cells (BMMCs and PBMCs, respectively; Fig. 1a). For
CITE-seq analyses, we simultaneously generated 10x Genomics 3’
single-cell RNA sequencing® (scRNA-seq) and antibody-derived
tag sequencing’® (scADT-seq; Supplementary Table 3) libraries from
35,882 BMMCs (n=12,602), CD34"-enriched BMMCs (n=28,176)
and PBMCs (n =14,804). On average, 1,273 informative genes (2,370
unique transcript molecules) were detected per cell and replicates

were highly correlated (Supplementary Fig. 1a—e). We then selected
a feature set of transcripts to mitigate batch effects and linearly pro-
jected retained transcript counts into a lower-dimensional space
using latent semantic indexing”'"’ (LSI; Methods). Cells were clus-
tered using Seurat’s shared nearest neighbor (SNN) approach'’,
annotated using a manually curated maker gene list and visualized
using uniform manifold approximation and projection (UMAP)*
(Fig. 1b and Supplementary Fig. 1f).

We next established an epigenetic map of normal hematopoiesis
by measuring chromatin accessibility across 35,038 single BMMCs
(n=16,510), CD34* BMMCs (n=10,160) and PBMCs (n=8,368)
using droplet scATAC-seq (10x Genomics)’. These cells exhibited
a canonical fragment-size distribution with clearly resolved sub-,
mono- and multinucleosomal modes, a high signal-to-noise ratio
at transcription start sites (TSSs), an average of 11,597 uniquely
accessible fragments per cell on average, a majority (61%) of Tn5
insertions aligning within peaks and high reproducibility across
replicates (Supplementary Fig. 2a-h). Using LSI, Seurat’s SNN clus-
tering and UMAP, we generated a chromatin-accessibility map of
hematopoiesis that complements the transcriptional map of hema-
topoiesis (Fig. 1c and Supplementary Fig. 2i).

To validate the proposed transcriptomic and epigenetic single-
cell maps of hematopoiesis, we directly visualized lineage-restricted
cell-surface marker and transcription-factor (TF) enrichment
across each map. As anticipated, both scADT- and scRNA-seq mea-
surements of surface makers demonstrate CD3D enrichment across
bone marrow and peripheral T cells; CD14 enrichment within the
monocytic lineage; broad up regulation of CD19 across the B cell
lineage; and CD8A enrichment within cytotoxic T lymphocytes®
(Fig. 1d). Estimates of gene activity on the basis of correlated varia-
tion in promoter and distal-peak accessibility (Cicero'’) broadly
recapitulates this pattern, confirming that lineage specification
is consistently reflected across the phenotypic, transcriptional
and epigenetic maps of hematopoietic development (Fig. 1d). We
then visualized our scADT-seq data of BMMCs and PBMCs using
UMAP and found that we could broadly recapitulate our transcrip-
tomic hematopoietic map (Supplementary Fig. 1g,h). To further
support these cell-type identifications and developmental map-
pings, we show concordance between three separate single-cell
measurements, including direct transcript measurements from the
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scRNA-seq dataset, inferred gene-activity scores from the scATAC-
seq dataset and TF activity using chromVAR?", for key develop-
mental TFs, including CEBPB in monocytic development, GATA1
within the erythroid lineage and TBX21 in NK and CD8* T mem-
ory cells, as well as PAX5 in B cell and plasmacytoid dendritic
cell development (Fig. le). High-resolution single-cell multiomic
tracks for key marker genes in each of the identified lineages fur-
ther support these identifications (Fig. 1f,g and Supplementary
Fig.3a-h).Collectivelytheseresultsshowthattheproposed multiomic
maps of healthy hematopoiesis are consistent and broadly capture
essential phenotypic, transcriptomic and epigenetic features of
blood development.

Recent work has shown that immunophenotypically distinct
subpopulations of MPAL blasts have similar genomic lesions within
a patient, and that cells from one lineage can reconstitute the alter-
nate lineage in xenograft models'®, suggesting that MPAL lineage
plasticity may be epigenetically regulated. To explore the nature of
this regulatory and phenotypic dysfunction, we assayed six MPAL
samples including three T-myeloid MPALs (MPAL1-MPALS3),
1 B myeloid MPAL (MPAL4) and one T-myeloid MPAL sampled
before CALGB chemotherapy (MPAL5) and after post-treatment
relapse (MPAL5R) (Supplementary Table 1). Across these samples,
we observed extensive immunophenotypic heterogeneity (via diag-
nostic flow cytometry analysis) including bilineal patterns (multiple
blast populations expressing both lymphoid and myeloid lineage
antigens), biphenotypic patterns (a dominant blast population that
simultaneously expresses both lymphoid and myeloid antigens)
and both patterns (Supplementary Fig. 4a—f). We then performed
whole-exome sequencing (WES) and found mutational profiles
similar to previous studies'®'” (Supplementary Fig. 4g). To further
profile our MPAL samples, we performed CITE-seq (18,056 cells)
and scATAC-seq (35,423 cells) on either peripheral blood or bone
marrow aspirates from these patients with MPAL, observing reason-
able data quality per cell as compared to that obtained for healthy
samples (Supplementary Fig. 5a-m).

Using our transcriptomic and chromatin landscapes of healthy
hematopoiesis, we next sought to develop an analytical framework
to identify the hematopoietic developmental signature at single-cell
resolution. First, the chromatin and gene expression signatures of
single cells are projected into the LSI subspace of our ATAC- and
RNA-based healthy hematopoietic map, and the results are then
visualized using UMAP (Fig. 2a and Supplementary Fig. 6a). Next,
by determining the closest hematopoietic cells to the projected cells
we can identify the hematopoietic developmental compartment.
This method does not require defining discrete cell -type boundaries
and uses a large feature set to robustly position cells within the con-
tinuous landscape of hematopoiesis. To validate this approach, we
first projected downsampled published bulk RNA-seq and ATAC-
seq data'® from subpopulations identified by fluorescence-activated

cell sorting (FACS) into our chromatin and transcription hemato-
poietic maps and found high concordance with our healthy hema-
topoietic map and cluster definitions (Supplementary Fig. 6b). To
further validate our approach, we projected published scRNA-seq"’
and scATAC-seq”* data from different platforms and different
genomes on our chromatin and transcription hematopoietic maps
and found striking agreement (Supplementary Fig. 6¢). Lastly, we
used our iterative LSI approach on 299,337 cells from the Human
Cell Atlas (HCA) ‘Census of Immune Cells’ bone marrow data*
(Supplementary Fig. 6d). By projecting our own hematopoietic
data into the subspace defined by these HCA data (Supplementary
Fig. 6d) we observe that our cohort reasonably repopulates the
hematopoietic manifold created from this completely distinct set of
donors. These results show that our dataset and method can accu-
rately identify the hematopoietic signature for chromatin and gene
expression at a single-cell resolution.

Using this LSI-projection framework and landscapes of healthy
hematopoiesis, we next sought to deconvolve the normal and leuke-
mic signatures of MPAL samples at a single-cell resolution. First, the
leukemic single cells were projected into the hematopoietic linear
LSI subspace. Next, we identified a non-redundant set of healthy
hematopoietic cells that were nearest-neighbor normal cells to each
leukemic cell, irrespective of their cell-type boundaries. Lastly, we
computed the differences between the leukemic cells and near-
est normal cells to identify the leukemic specific signature. We
first tested our approach by analyzing recently published scRNA-
seq data from samples from patients with acute myeloid leukemia
(AML)". By projecting the AMLs into our healthy hematopoietic
map, we see general agreement with previous classifications without
the need for potentially arbitrary cell-type boundaries on normal
hematopoiesis (Supplementary Fig. 7a-c). We next wanted to clas-
sify our phenotypically diverse samples from patients with MPAL
using our hematopoietic maps. First, we clustered our MPALs with
our hematopoietic data to classify cells as ‘disease-like’ MPAL cells
or ‘healthy-like’ cells (Supplementary Fig. 8a). These classifications
generally agreed with the fraction of cells classified as blasts by
morphology or flow cytometry (Supplementary Fig. 8b). We then
projected our MPAL single cells onto our hematopoietic maps and
discovered broad epigenetic and gene-expression diversity. To fur-
ther resolve this diversity, we grouped MPAL cells within individual
patients into broad hematopoietic developmental compartments:
progenitor-like (comprising human stem cell and multipotent pro-
genitor-like cells), lymphoid-like (comprising lymphoid-primed
multipotent progenitors), erythroid-like (includes megakaryo-
cyte-erythroid progenitors), myeloid-like (includes granulocyte-
monocyte progenitors) and T/natural killer (NK)-like (includes
differentiated T and NK cells*") (Fig. 2a,b and Supplementary
Fig. 8a). The scADT-seq data resolve the dominant subpopulations in
the bilineal MPAL1 and MPALS5; however, it does not fully capture

>
>

Fig. 1| Multiomic epigenetic and phenotypic analysis of human hematopoiesis. a, Schematic of multiomic profiling of chromatin accessibility,
transcription and cell-surface antibody abundance on healthy bone marrow and PBMCs using CITE-seq (combined single-cell RNA and antibody-derived
tag sequencing for each single cell, scRNA-seq and scADT-seq, respectively) and scATAC-seq. b, scRNA-seq LS| UMAP projection of 35,882 single

cells across healthy hematopoiesis. Below are the biological classifications for the scRNA-seq clusters (see Supplementary Table 1). €, Top, scATAC-

seq LSI UMAP projection of 35,038 single cells across healthy hematopoiesis. Bottom, the biological classifications for the scATAC-seq clusters (see
Supplementary Table 1). d, Surface-marker overlay on single-cell RNA UMAP (as in b) of ADT antibody signal (top; center-log ratio (CLR) normalized),
single-cell RNA (middle; log,(gene expression) (Exp)) and single-cell ATAC log,(gene-activity scores (GA)) for CD3D, CD14, CD19 and CD8A (bottom).
e, TF overlay on single-cell ATAC UMAP (as in €) of TF chromVAR deviations (top), gene-activity scores (middle) and single-cell RNA for CEBPB, GATAT,
TBX21and PAX5 (bottom). f,g, Multiomic track of CD14 (specific in these clusters for monocytes) across monocyte development from HSC progenitor
cells (f; n=1,425-4,222) and multiomic track of CD19 (specific in these clusters for pre-B cells) across B cell development (g; n=62-2,260). Multiomic
tracks; average track of all clusters displayed (left top), binarized 100 random scATAC-seq tracks for each locus at a resolution of 100 bp (left bottom),
scRNA-seq log, violin and box plots of normalized expression for each cluster and scADT-seq CLR violin and box plots of protein abundance for each
cluster (right). Violin plots represent the smoothed density of the distribution of the data. In box plots, the lower whisker is the lowest value greater than
the 25% quantile minus 1.5 times the interquartile range (IQR), the lower hinge is the 25% quantile, the middle is the median, the upper hinge is the 75%
quantile and the upper whisker is the largest value less than the 75% quantile plus 1.5 times the IQR.
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the transcriptional diversity in the other MPALs 2—4 (Supplementary
Fig. 8c). We visualized these projected MPALs colored by these
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classifications (Fig. 2b). Comparing MPAL gene expression to
this healthy nearest-neighbor set allowed the identification of

broad hematopoietic compartments, observing the expected pathogenic differential gene expression for MPALs from different

high concordance between the scRNA-seq and scATAC-seq

compartments. In total, we identified 4,616 genes that were

a b scRNA-seq (35,882 cells) c scATAC-seq (35,038 cells)
o CITE-seq
Q
= ~
e
£ 2 Basophil
[0
R s g
b=
3
%)
+ o o
c c c
S 7T —Anmama 2 o ?
3= c c :
[} [ Q i
g 7T AAAAAA 2 £ 4 “@poc W
Ze E £ BRE )
Healthy % % GMP :
bone marrow = = Plasma
sCATAC-se =] =]
and blood > q s
5
(73
i
Q
g
£3
= 0
E = Monocytes " Monocytes
S - - - -
g UMAP dimension 1 UMAP dimension 1
d Surface markers Biological classification
CDh3D Ch14 CD19 SCRNA SCATAC ScRNA SCATAC SCRNA SCATAC
_ [ sc HSC [ epc cDC [ cosn CD8N
Q
H [ Earyerytn. | Eariyerytn.  [J] CO14mono1 | CD14mono 1 [T] CD4 N1 CD4 N1
E . Late eryth. Late eryth. . CD14 mono 2 | CD14 mono 2 . CD4 N2 CD4 N2
3 Early basophil | Early basophil |_] CD16mono | Unk. [l cosm CD4 M
a B cvever | cveamPe [ unk. Unk. ] cosem CD8 EM
[ cer CcLP1 M ce2 cLp2 [[] coscm | coscm
o [ ewe GMP M Fes Pre B W NK
c
o
s 3 ] emPeut. avPNewt. [ B B ] unk Unk.
% “E) . pDC pDC D Plasma Plasma
S S RNA ADT
Z N ; chr5:139,963,285-140,063,286 (bo.Ex)  (CLRAD)
< 25X -
Average‘ l 0 2 4 60 2 4
% al o A.I aal 1 l ‘ IR A SR
HsC ' i }; b,
2 3 1 I T
s e
& : DR :
CMP/LMPP 1 R S
) . A .
s -7
S 1 -3
]
ap b__ i.__
UMAP dimension 1 —F ~
CD14 Mono 1 § . i, >+ *
e TFs {
GATA1 TBX21 PAX5 N 4
CD14 Mono 2 H .
0T ALTOTehs ho e H .
M\ f"m m Strand
_ 4 € .;
E & e
3 e g chr16:28,893,259-28,993,260 SCRNA SCADT
- : ] A (log,Ex)  (CLR Ab.)
) " wverage
i o . 1 | [Presaso 24
o HSC i 2 h 5 : }_ }_
£ S — : I ;
[} B N
2 2 CMP/LMPP : | . i }_ }_
5] € - - . —
o £ : ; i -3
: I BN =
6] <§( — = o
2 CLP2 i H b .
: TE H
- |
c - k] -
(] = 'y
‘B E}
g .
X
o Plasma 89 %
i
UMAP dimension 1 .
scADT scRNA Cicero chromVAR
(CLR Ab.) (109,Fx) (10g,GA)  Deviation scores . Promoter region . Putative enhancer region
CITE-seq scATAC-seq
Min Max Min Max Min Max Min Max

1460

NATURE BIOTECHNOLOGY | VOL 37 | DECEMBER 2019 | 1458-1465 | www.nature.com/naturebiotechnology



http://www.nature.com/naturebiotechnology

NATURE BIOTECHNOLOGY

LETTERS

significantly upregulated (log, fold change (LFC)>0.5 and false-
discovery rate(FDR) <0.01, see Supplementary Table 4) in at
least one MPAL subpopulation across the six patient samples, and
grouped these genes with k-means clustering (Fig. 2c). We further
categorized the most conserved differential genes, TFs and KEGG
pathways across the MPALs” (Supplementary Fig. 9a-c). Using
the same approach for the scATAC-seq data, we performed test-
ing of differential peaks for each MPAL subpopulation and found
72,196 significantly upregulated peaks (LFC>0.5 and FDR <0.05;
Supplementary Table 4) in atleast one MPAL subpopulation (Fig. 2¢).
Multiomic differential tracks for the cyclin-dependent kinase
CDKI11A and cyclin-dependent kinase inhibitor CDKN2A, genes
that are recurrently mutated in MPAL'**, demonstrate these leuke-
mia-specific ATAC-seq and RNA-seq differences (Supplementary
Fig. 9d,e). Additionally, we calculated Pearson correlations of the
differential genes and peaks and found that transcription and acces-
sibility differs significantly across patients, but is relatively con-
served across subpopulations within patients. (Fig. 2d).

To compare the leukemic programs of the MPAL hematopoietic
compartments to previous studies, we downsampled bulk leuke-
mia RNA-seq and projected onto our transcriptomic hematopoi-
etic UMAP for childhood AMLs, B acute lymphoblastic leukemias
(B-ALLs), early T cell precursor T acute lymphoblastic leukemias
(ETP T-ALLs), non-ETP T-ALLs and MPALs"® (Supplementary
Fig. 10a,b). We calculated differential expression with respect
to the closest normal cell populations to identify their respective
leukemic programs. Next, we performed LSI on variable malig-
nant genes across all the leukemia subtypes, including MPAL1-
MPALS, and then visualized these patients with UMAP (Fig. 2e
and Supplementary Fig. 10c,d). Interestingly, we found large differ-
ences in the leukemic programs across various leukemias includ-
ing T-ALLs and B-ALLs, as well as across different cytogenetic
subtypes. In addition, we found that the MPALs assayed in this
study were representative of previously characterized MPALs'®
(Fig. 2e). Given that we were insufficiently powered to detect unique
leukemic differences between AML and our MPAL samples when
analyzing downsampled bulk data, we compared the malignant
transcriptomic profiles identified from reanalyzed AML scRNA-
seq data'® with our MPALs to dissect further these unique malig-
nant signatures (Fig. 2c and Supplementary Fig. 7c). To this end, we
identified genes that were more commonly universally upregulated
in AMLs or in MPALs, or jointly upregulated in both leukemias
(Fig. 2f, Supplementary Fig. 7c and Supplementary Table 4). These
gene sets provide fine-grained phenotypic resolution for comparing
the differences and similarities between AML and MPAL leukemic
programs and suggest possible insight into why MPALs respond
poorly to AML treatment®’*.

Having compared our leukemic transcriptomic programs to
other studies we wanted to identify the key TFs that regulate these

programs. First, we identified which TFs were differentially enriched
in each k-means cluster of differentially accessible peaks observed
in Fig. 2c (Fig. 3a and Supplementary Table 5). We found that
RUNX]I motifs were highly enriched in both cluster 4 and 10—the
two clusters corresponding to the most commonly shared accessible
elements across MPAL subset populations. In addition, RUNX1I is
significantly upregulated in about half (7 of 17) of the MPAL sub-
populations. RUNX1 is one of the most frequently mutated genes
across hematologic malignancies acting as both a tumor suppres-
sor with loss-of-function mutations in AML?”, myelodysplastic syn-
drome® and ETP T-ALL’*?, and as a putative oncogene in non-ETP
T-ALL*?*. Furthermore, wild-type RUNXI has been implicated as a
potential driver of leukemogenesis in core-binding factor leukemia*
and mixed-lineage leukemia’.

To link RUNX1I and other putative regulatory TFs to their leu-
kemic programs we first developed an analytical framework that
utilizes both our transcriptomic and chromatin single-cell data to
link putative regulator peaks to target genes. We used our matched
scATAC-seq and scRNA-seq data for all MPALs and concordant
hematopoietic maps, and aligned each cell into a common sub-
space using canonical correlation analyses (CCA)'*'"*”*. For each
scATAC-seq cell, we identified the nearest scRNA-seq neighbor
(Fig. 3b and Supplementary Fig. 11a,b). We found that the map-
ping of scATAC-seq cell clusters to scRNA-defined cell clusters
was highly consistent (single-cell overlap of 52% across 26 clusters;
Supplementary Fig. 12a-d). We then aggregated our scATAC-seq
cells on the basis of nearest neighbors in the LSI subspace using
Cicero' and created a corresponding scRNA-seq aggregate for each
cluster using the constructed CCA alignment. We next identified
91,601 peak-to-gene links by correlating accessibility changes of
ATAC peaks within 250kb of the gene promoter with the expres-
sion of the gene independently for both healthy and MPAL aggre-
gates (Fig. 3b and Supplementary Table 5). This analysis revealed
peak-to-gene links that were specific to healthy hematopoiesis, oth-
ers that were specific to MPALs and a conserved subset that was
shared across both hematopoiesis and MPALs. We hypothesize that
the MPAL-specific peak-to-gene links may be important for leu-
kemic gene regulation. Overall, the identified set of peak-to-gene
links had similar distributions for peaks mapped per gene, genes
mapped per peak, number of skipped genes and the peak-to-gene as
previously observed in a similar linkage analyses’ (Supplementary
Fig. 12e). To further support these peak-to-gene links, we used pre-
viously published H3K27ac HiChIP in primary T cells and a human
coronary artery smooth muscle (HCASM) cell line and found that
the T/NK-biased peak-to-gene links were more enriched in T cells
than the HCASM cell line”® (Supplementary Fig. 12f). We next
examined GTEx expression quantitative trait locus (eQTL) map-
pings within our inferred peak-to-gene links, finding enrichment
of eQTLs in several functionally related categories such as whole

>
>

Fig. 2 | Multiomic projection of MPALs into hematopoiesis identifies normal and leukemic programs. a, Schematic for projection of MPAL single cells
onto hematopoiesis for both scRNA-seq and scATAC-seq classified into broad hematopoietic compartments. b, Left, MPAL single-cell projections

into hematopoiesis for both scRNA-seq and scATAC-seq. Right, the proportion of MPAL cells that were broadly classified as healthy or disease and

their respective hematopoietic compartment (range is from O to 1). ¢, Left, scRNA-seq heat map of upregulated genes (LFC > 0.5 and two-sided t test
FDR < 0.01) log,(fold changes) comparing MPAL disease subpopulations to closest non-redundant normal cells. Differential genes were clustered using
k-means clustering (k=10) on the basis of their log,(fold changes). Right, scATAC-seq heat map (ordered by scRNA-seq hierarchal clustering on the left)
of differentially upregulated accessible peaks (LFC > 0.5 and two-sided t test FDR < 0.01) log,(fold changes) comparing MPAL disease subpopulations

to the closest non-redundant normal cells. Differential peaks were clustered using k-means clustering (k=10) on the basis of their log,(fold changes).

d, Pearson correlation of the log,(fold changes) (from ¢) for differentially upregulated genes and peaks across all MPAL subpopulations. e, LS| UMAP of
differentially upregulated gene-expression profiles across bulk leukemias'® (circle, n=321) and MPAL samples assayed in this study (outlined triangle,
n=17), colored by WHO 2016 classifications®. f, Left, MA plot (log-ratio (M) by mean average (A)) comparing the proportion of malignant (upregulated)
gene-expression profiles in AML and MPALs. The x axis represents, for each upregulated gene, the average proportion of subpopulations from patients
with AML and MPAL that are broadly upregulated (LFC > 0.5). The y axis represents, for each upregulated gene, the difference in the proportion of
upregulated subpopulations from patients with MPAL and AML (LFC > 0.5). Right, genes that are more malignantly biased to either AMLs or MPALs and

genes that are conserved across both AMLs and MPALs.
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blood and lymphocytes (Supplementary Fig. 12g). To demonstrate
the utility of these peak-to-gene links, we linked differentially acces-
sible regions to known leukemic genes such as the surface protein
CDY6, the leukemic stem cell marker ILIRAP, the cytokine receptor

MPAL single cells
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FLT3 and apoptosis regulator MCL1 (Supplementary Fig. 13a-d).
Overall, these analyses, show that the peak-to-gene links are highly
enriched in immune regulation and across other previously pub-

lished linkage datasets™*.
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Having established a high-quality set of peak-to-gene links, we  subpopulations. Next, we selected all linked differential accessibility
aimed to identify the set of malignant genes putatively regulated by  sites that contain the RUNXI1 motif. Finally, for each linked gene
RUNX]I. First, we utilized our peak-to-gene links to identify differ- ~we combined all linked peaks to create a differential linkage score
ential peaks linked to a differential gene within at least two MPAL ~ (Methods) and compared this score to the proportion of MPAL
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Fig. 3 | Integrative scATAC-seq and scRNA-seq analyses nominate putative TFs that regulate leukemic programs. a, Top, number of accessible peaks in
each k-means cluster. Bottom left, hypergeometric TF motif enrichment FDR in differentially accessible peaks across each k-means cluster identified in
Fig. 2c. TFs are also identified as being differentially expressed and enriched in at least three MPAL hematopoietic compartments. Bottom right, proportion
of differentially upregulated TF gene-expression profiles across MPAL hematopoietic compartments. b, Left, schematic for alignment of scATAC-seq and

scRNA-seq data to link putative regulatory regions to target genes. First, scATAC-seq data are converted from accessible peaks to inferred gene-activity
scores using Cicero. Second, these gene activity scores and scRNA-seq expression are aligned into a common subspace using Seurat's CCA. Third, each
scATAC-seq cell is assigned its nearest scRNA-seq neighbor. Fourth, ATAC-seq peaks within 2.5-250 kb of a gene promoter are correlated within the
healthy hematopoietic and MPAL k-neaest-neighbor groupings. Lastly, significant peak-to-gene links are identified by correlating peaks to genes on
different chromosomes. Right, heat maps of 91,601 peak-to-gene links across hematopoiesis and MPALs. Top, peak-to-gene links that are identified only
within hematopoiesis. Middle, peak-to-gene links that are unique to MPALs. Bottom, peak-to-gene links identified in both hematopoiesis and MPALs.

¢, Schematic for identifying genes that are putatively regulated by the TF of interest. d, Putative RUNX1-target genes (n=732) differentially upregulated
in at least one MPAL subpopulation. The x axis represents the proportion of MPAL subpopulations that are differential in both scRNA-seq and a linked
accessible peak. The y axis represents the cumulative linkage score between differentially upregulated peaks linked to differentially upregulated genes.

e, CD69 multiomic differential track. Top, T cell T helper 17 H3K27ac HiChlIP virtual 4C of enhancer interaction signal (EIS) of the CD69 locus, the line
represents the average signal and shading represents the range of the signal times /2 between biological replicates (n=2). Middle, aggregated scATAC-
seq tracks showing MPAL disease subpopulations (red) and aggregated nearest-neighbor healthy (gray). Right, violin plots of the distribution log2
normalized expression of CD69 for MPAL disease subpopulations (red) and closest normal cells (gray); the black line represents the mean and asterisks
denote significance (LFC > 0.5 and FDR < 0.01 from Fig. 2c). Violin plot of the log,-normalized expression and the black line represents the mean log,-
normalized expression. Bottom, HL60 AML line ChlP-seq data across the CD69 locus, CD69 peak-to-gene links, RUNX1-identified malignant peak-to-gene
links for CD69 and jurkat CRISPR activation of three CD69 enhancers® (ET-E3 are shown in green and the KLRF locus negative control is shown in red).
Peak-to-gene links are colored by Pearson correlation of the peak accessibility and gene expression (Methods). f, Kaplan-Meier curve for patients with
AML from TCGA (n=179) stratified by putative RUNXI-target genes (n=732); top 33% versus bottom 33%, average z score log,(expression) (log-rank

test P=0.023).

subpopulations that exhibited differential expression and accessibil-
ity in at least one linked peak and target gene (a measure of how
common this RUNX1-driven dysfunction is across MPAL subsets)
(Fig. 3¢). Using this approach, we found 732 genes putatively regu-
lated by a RUNX1-containing distal element in at least two MPAL
subsets, and found that CD69, which is implicated in lymphocyte
activation through initiation of JAK-STAT signaling® and lym-
phocyte retention in lymphoid organs*, was both highly enriched
in the calculated differential linkage score and was observed to be
differentially upregulated in almost every MPAL subpopulation
(Fig. 3d and Supplementary Table 5). To further support the pre-
dicted RUNXI1 regulation of CD69 (refs. *>*°), we incorporated
T cell H3K27ac HiChIP¥, CRISPR-activation-validated CD69
enhancers”'* and RUNX1 ChIP-seq® into our multiomic differ-
ential track. These orthogonal datasets support RUNX1 binding
to these linked distal regulatory regions (Fig. 3e). Finally, by using
the 732 identified RUNXI-target genes to stratify patients with
AML from The Cancer Genome Atlas (TCGA)* by expression, we
observed significantly decreased survival (P=0.023) in donors with
a high RUNX1-target-gene signature*® (Fig. 3f). This analysis sug-
gests that RUNX1 is an important TF that putatively upregulates a
portion of the leukemic signature in MPAL and potentially AML.

Collectively, this work establishes an experimental and analyti-
cal approach for deconstructing cancer-specific features using inte-
grative analysis of multiple single-cell technologies. We find that
MPAL malignant programs are largely conserved across pheno-
typically heterogenous cells within individual patients; this obser-
vation is consistent with a previous report'® that MPAL cells likely
originate from a multipotent progenitor cell, thereby sharing a com-
mon mutational landscape while populating different regions of
the hematopoietic tree. We used integrative single-cell analyses to
further define putative TF regulation of these malignant programs.
We inferred that RUNX1 acts as a potential oncogene in MPAL, reg-
ulating malignant genes associated with poor survival. We antici-
pate that similar approaches will be used in future studies to both
identify the differentiation status of different tumor types (that is,
identify the closest normal cell type) and enable molecular dissec-
tion of molecular dysfunction in pathogenic cellular subtypes, with
the ultimate goal of identifying personalized therapeutic targets
through integrative single-cell molecular characterization.
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Methods

Experimental methods. Description of healthy donors. PBMCs, BMMCs and
CD34* bone marrow cells were obtained from healthy donors with informed
consent and compliance with relevant ethical regulations (AllCells). Individual
information for each donor is provided in Supplementary Table 1. All healthy
cells used in this study were cryopreserved (fresh frozen in either Bambanker
freezing medium or 10% DMSO with 90% serum). Thawed cells were not filtered
for viability before loading into droplets. High-quality cells were identified
bioinformatically.

Description of patients and donors with leukemia. Patient samples were collected
with informed consent in accordance with all relevant ethical regulations regarding
human research participants under a protocol approved by the Institutional Review
Board (IRB) at Stanford University Medical Center (Stanford IRB, 42949, 18329
and 6453). Peripheral blood and bone marrow aspirate samples were processed

by Lymphoprep (STEMCELL Technologies) gradient centrifugation and fresh
frozen in Bambanker medium. Diagnostic flow cytometry performed on bone
marrow aspirate samples were analyzed. In all cases, a retrospective review of
clinical parameters, hemogram data, peripheral blood smears, bone marrow
aspirates, trephine biopsies, results of karyotype and flow cytometry studies was
performed. Clinical follow-up information was obtained by retrospective review of
the medical record charts. Cases were classified using the 2016 WHO classification
of hematopoietic and lymphoid neoplasms’. Thawed cells were not filtered for
viability before loading into droplet assays. High-quality cells were identified
bioinformatically.

Combined single-cell antibody-derived tag and RNA sequencing. CITE-seq

was performed as previously reported* using the (version 2) Chromium

Single Cell 3’ Library and Gel Bead kit (10x Genomics, 120237). Six thousand
cells were targeted for each sample. Oligonucleotide-coupled antibodies were
obtained from Biolegend, indexed by PCR (ten cycles) with custom barcodes
(see Supplementary Table 3), quantified by PCR using a PhiX Control v3
(Illumina, FC-110-3001) standard curve and sequenced on an Illumina
NextSeq 550 together with scRNA-seq at no more than 60% of the total library
composition (1.5 pM loading concentration, 26 X 8 X 0x 98 base pair (bp)

read configuration).

Single-cell assay for transposase-accessible chromatin using sequencing. scATAC-seq
targeting 4,000 cells per sample was performed using a beta version of Chromium
Single Cell ATAC Library and Gel Bead kit (10x Genomics, 1000110). Each sample
library was uniquely barcoded and quantified by PCR using a PhiX Control v3
(Illumina, FC-110-3001) standard curve. Libraries were then pooled and loaded on
a NextSeq 550 Illumina sequencer (1.4 pM loading concentration, 33X 8x 16X 33
bp read configuration) and sequenced to either 90% saturation or 30,000 unique
reads per cell on average.

Whole-exome sequencing of patients and donors with leukemia. Genomic DNA

was extracted from diagnostic PBMCs or bone marrow samples using the Zymo
Clean and Concentrator kit. Library construction (Agilent SureSelect Human All
Exon kit), quality assessment and 150-bp paired-end sequencing (HiSeq4000) were
performed by Novogene. Reads with adaptor contamination, uncertain nucleotides
and paired reads with >50% low-quality nucleotides were discarded. Paired-end
reads were then aligned to the reference genome (GRCh37) using BWA software.
Genome Analysis Toolkit (GATK) was used to ignore duplicates with Picard-tool.
Filtered variants (single-nucleotide polymorphisms and indels) were identified
using GATK HaplotypeCaller and variantFiltration. Variants obtained from initial
analysis were further compared to dbSNP and the 1,000 Genomes database. Finally,
missense, stop—gain and frameshift mutations were compared against a custom
panel of 300 genes that are recurrently mutated in hematologic malignancies as
described previously'*"”.

Analytical methods. Fluorescence-activated cell sorting. Flow cytometry was
performed on a FACSCalibur or FACSCanto II (Becton Dickinson) cytometer
using commercially available antibodies (Supplementary Table 2). Lymphocytes
were identified by low side scatter and bright CD45 expression. The gate was
validated by backgating on CD3* or CD19* events. Blasts were identified by low
side scatter and dim CD45 expression. The gate was further assessed by backgating
on CD34* events. Gates were drawn by additionally using isotype controls and
internal positive and negative controls.

scADT-seq analysis. Raw sequencing data were converted to fastq format using
bcl2fastq (Illumina, v.2.20.0.422). ADTs were then assigned to individual cells and
antibodies (see reference antibody barcodes in Supplementary Table 3) allowing for
two and three barcode mismatches, respectively. Unique molecular counts for each
cell and antibody were then generated by counting only barcodes with a unique
molecular identifier (UMI). PBMC and BMMC ADT count data were transformed
using the centered log ratio (CLR) as previously described®. PBMCs and BMMCs
were visualized in two dimensions using the uwot implementation of UMAP" in R
(n_neighbors =50, min_dist=0.4).

NATURE BIOTECHNOLOGY

scATAC-seq. scATAC-seq processing. Raw sequencing data were converted to fastq
format using cellranger atac mkfastq (10x Genomics, v.1.0.0; Supplementary

Fig. 14). scRNA-seq reads were aligned to the GRCh37 (hg19) reference genome
and quantified using cellranger count (10x Genomics, v.1.0.0).

scATAC-seq quality control. To ensure that each cell was both adequately sequenced
and had a high signal-to-background ratio, we filtered cells with less than 1,000
unique fragments and enrichment at TSSs below 8. To calculate TSS enrichment?,
genome-wide Tn5-corrected insertions were aggregated +2,000 bp relative
(TSS-strand-corrected) to each unique TSS. This profile was normalized to the
mean accessibility +1,900-2,000 bp from the TSS, smoothed every 51 bp and the
maximum smoothed value was reported as TSS enrichment in R. We estimate that
the multiplet percentage for this study was around 4% (ref.”).

scATAC-seq counts matrix. To construct a counts matrix for each cell by each
feature (window or peaks), we read each fragment.tsv.gz fill into a GenomicRanges
object. For each Tn5 insertion, which can be thought of as the ‘start’ and ‘end’ of
the ATAC fragments, we used findOverlaps to find all overlaps with the feature by
insertions. Then we added a column with the unique id (integer) cell barcode to
the overlaps object and fed this into a sparseMatrix in R. To calculate the fraction
of reads/insertions in peaks, we used the colSums of the sparseMatrix and divided
it by the number of insertions for each cell id barcode using table in R.

scATAC-seq union peak set from latent semantic index clustering. We adapted a
previous workflow for generating a union peak set that will account for diverse
subpopulation structure>”'’ (Supplementary Fig. 14). First, we created 2.5-kb
windows genome wide using ‘tile(hgl9chromSizes, width =2500) in R. Next, a
cell-by-2.5-kb-window sparse matrix was constructed as described above. The top
20,000 accessible windows were kept and the binarized matrix was transformed
with the term frequency-inverse document frequency (TF-IDF) transformation®.
In brief, we divided each index by the colSums of the matrix to compute the

cell ‘term frequency’. Next, we multiplied these values by log(1+ ncol(matrix)/
rowSums(matrix)), which represents the ‘inverse document frequency’. This
normalization resulted in a TF-IDF matrix that was then used as input to the irlba
singular value decomposition (SVD) implementation in R. The 2nd to 25th SVD
dimensions (1st dimension is correlated with the depth of cell reads') were used
for creating a Seurat object and initial clustering was performed using Seurat’s
SNN graph clustering (v.2.3.4) with ‘FindClusters’ at a default resolution of 0.8. If
the minimum cluster size was below 200 cells, the resolution was decreased until
this criterion was reached leading to a final resolution of 0.8~ (where N represents
the iterations until the minimum cluster size is 200 cells). For each cluster, peak
calling was performed on Tn5-corrected insertions (each end of the Tn5-corrected
fragments) using the MACS2 callpeak command with parameters ‘--shift -75
--extsize 150 --nomodel --call-summits --nolambda --keep-dup all -q 0.05’ The
peak summits were then extended by 250 bp on either side to a final width of

501 bp, filtered by the ENCODE hg19 blacklist (https://www.encodeproject.org/
annotations/ENCSR636HFF/) and filtered to remove peaks that extend beyond the
ends of chromosomes.

Overlapping peaks called were handled using an iterative removal procedure
as previously described”. First, the most significant (MACS2 score) extended peak
summit is kept and any peak that directly overlaps with that significant peak is
removed. This process reiterates to the next most significant peak until all peaks
have either been kept or removed owing to direct overlap with a more significant
peak. The most significant 200,000 extended peak summits for each cluster were
quantile normalized using ‘trunc(rank(v))/length(v)’ in R (where v represents the
vector of MACS2 peaks scores). These cluster peak sets were then merged and
the previous iterative removal procedure was used. Lastly, we removed any peaks
whose nucleotide content had any ‘N’ nucleotides and any peaks mapping to chrY.

scATAC-seq-centric latent semantic indexing clustering and visualization. scATAC-
seq clustering was performed by adapting the strategy of Cusanovich et. al>'° to
compute the term TF-IDF transformation. In brief, we divided each index by the
colSums of the matrix to compute the cell ‘term frequency’ Next, we multiplied
these values by log(1 4 ncol(matrix)/rowSums(matrix)), which represents the
‘inverse document frequency’. This resulted in a TF-IDF matrix that was used as
input to the irlba SVD implementation in R. The first 50 SVD dimensions were
used as input into a Seurat object and initial clustering was performed using
Seurat’s (v.2.3.4) SNN graph clustering ‘FindClusters’ with a resolution of 1.5 (25
SVD dimensions for healthy hematopoiesis and 50 for healthy hematopoiesis and
MPALs). We found that in some cases, there was batch effect between experiments.
To minimize this effect, we identified the top 50,000 variable peaks across the
initial clusters (summed cell matrix for each cluster followed by edgeR log(counts
per million) (CPM) transformation®’). These 50,000 variable peaks were then

used to subset the sparse binarized accessibility matrix and recompute the TF-IDF
transform. We used SVD on the TF-IDF matrix to generate a lower-dimensional
representation of the data by retaining the first 50 dimensions. We then used these
reduced dimensions as input into a Seurat object and then final clusters were
identified by using Seurat’s (v.2.3.4) SNN graph clustering ‘FindClusters’ with a
resolution of 1.5 (50 SVD dimensions for healthy hematopoiesis and 50 for healthy
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hematopoiesis and MPALs). These same reduced dimensions were used as input
to the uwot implementation of UMAP (n_neighbors =55, n_components =2,
min_dist=0.45) and plotted in ggplot2 using R. We merged scATAC-seq clusters
from a total of 36 clusters for hematopoiesis to 26 final clusters that best agreed
with the scRNA-seq clusters. The objective of this analysis is to optimize feature
selection, which minimizes batch effects, and enable projection of future data into
the same manifold as described further below.

scATAC-seq visualization in genomic regions. To visualize scATAC-seq data, we
read the fragments into a GenomicRanges object in R. We then computed sliding
windows across each region we wanted to visualize every 100 bp ‘slidingWindow
s(region,100,100). We computed a counts matrix for Tn5-corrected insertions as
described above and then binarized this matrix. We then returned all non-zero
indices (binarization) from the matrix (cell X 100-bp intervals) and plotted them
in ggplot2 in R with ‘geom_tile. For visualizing aggregate scATAC-seq data, the
binarized matrix above was summed and normalized. Scale factors were computed
by taking the binarized sum in the global peak set and normalizing to 10,000,000.
Tracks were then plotted in ggplot in R.

chromVAR. We measured global TF activity using chromVAR". We used the
cell-by-peaks and the Catalog of Inferred Sequence Binding Preferences (CIS-BP)
motif (from chromVAR motifs ‘human_pwms_v1’) matches within these peaks
from motifmatchr. We then computed the GC-bias-corrected deviations using
the chromVAR ‘deviations’ function. We then computed the GC-bias-corrected
deviation scores using the chromVAR ‘deviationScores’ function.

Gene-activity scores using Cicero and co-accessibility. We calculated gene activities
using the R package Cicero'. In brief, we used the sparse binary cell-by-peaks
matrix and created a cellDataSet, detectedGenes and estimatedSizeFactors. We
then created a ‘cicero_cds’ with k=50 and the ‘reduced_coordinates’ being the

LSI SVD coordinates (hematopoiesis =25, hematopoiesis and MPALs = 50). This
function returns aggregated accessibility across groupings of cells on the basis of
nearest-neighbor rules from the R package FNN. We then identified all peak—peak
linkages that were within 250kb by resizing the peaks to 250kb and 1bp and using
‘findOverlaps’ in R. We calculated the Pearson correlation for each unique peak-
peak link and created a connections data.frame where the first column is peak_i,
the second column is peak_j and the third column is co-accessibility (Pearson
correlation). We created a gene data.frame from the TxDb ‘“TxDb.Hsapiens.UCSC.
hgl19.knownGene€’ in R, resized each gene from its TSS and created a window
+2.5kb centered at the TSS and annotated the ‘cicero_cds” using ‘annotate_cds_
by_site’ We then calculated gene activities with ‘build_gene_activity_matrix’ (co-

access cutoff of 0.35). Lastly we normalized the gene activities by using ‘normalize_

gene_activities’ and the read depth of the cells, log normalized these gene activities
scores for interpretability by computing log,(GA X 1,000,000 4 1), where GA is the
gene activity score.

scRNA-seq. scRNA-seq processing. Raw sequencing data were converted to fastq
format using cellranger mkfastq (10x Genomics, v.3.0.0; Supplementary Fig.

14). scRNA-seq reads were aligned to the GRCh37 (hg19) reference genome and
quantified using cellranger count (10x Genomics, v.3.0.0). We kept genes that were
present in both 10x gene transfer formatfiles v.3.0.0 for hg19 and hg38 (https://
support.10xgenomics.com/single-cell-gene-expression/software/release-notes/
build). Mitochondrial and ribosomal genes were also filtered before further
analysis. Genes remaining after these filtering steps we refer to as ‘informative’
genes and enable cross genome comparison.

ScRNA-seq quality control. We wanted to filter out cells whose transcripts were
lowly captured and first plotted the distribution of genes detected and UMIs for
all experiments. On the basis of these plots, we chose to filter out cells that had
less than 400 informative genes detected and 1,000 UMIs. In addition, to lower
multiplet representation, we filtered cells with above 10,000 UMIs. We estimate
that the multiplet percentage for this study was around 6% (ref. *). We then plotted
the correlation for each replicate experiment and found high reproducibility.

ScRNA-seq-centric latent semantic indexing clustering and visualization. We
initially tested a few methods for clustering scRNA-seq but settled on an
approach that enabled us to effectively capture the hematopoietic hierarchy
without substantial alteration of transcript expression (Supplementary Fig.

14). We first log normalized the transcript counts by first depth normalizing to
10,000 and adding a pseudocount before a log, transform (log,(counts per ten
thousand transcripts 4 1)). Next, we identified the top 3,000 variable genes and
performed the TF-IDF transform on these 3,000 genes. We performed SVD on
this transformed matrix keeping the first 25 dimensions and used this as input
to Seurat’s SNN clustering (v.2.3.4) with an initial resolution of 0.2. We summed
the individual clusters single cells and computed the logCPM transformation,
‘edgeR::cpm(mat,log =TRUE,prior.count = 3); and identified the top 2,500 variable
genes across these initial clusters. These variable genes were used as input for a
TF-IDF transform and an SVD was performed on this transformed matrix
keeping the first 25 dimensions, which were used as input to Seurat'’s SNN
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clustering (v.2.3.4) with an increased resolution of 0.6. We then summed

the individual clusters single cells, computed the logCPM transformation,
‘edgeR::cpm(mat,log = TRUE,prior.count=3)’ and identified the top 2,500 variable
genes across these clusters. We repeated this one more time (resolution 1.0)

and saved the final features and clusters. To align our clusters better with the
scATAC-seq data, we merged a total of 26 clusters from 31 initial clusters (included
in Supplemental Data). These LSI dimensions were used as input to the uwot
implementation of UMAP (n_neighbors =35, n_components =2, min_dist=0.45)
and plotted in ggplot2 using R. The objective of this analysis is to optimize feature
selection, which minimizes batch effects, and enable projection of future data into
the same manifold as described further below.

scATAC-seq and scRNA-seq analytical methods. Latent semantic indexing
projection for scATAC-seq and scRNA-seq. We designed the above analytical
approach to clustering of single-cell data because it optimized feature selection
and enabled projection of new non-normalized data into a low-dimension
manifold. To enable these analyses, when computing the TF-IDF transformation
on the hematopoietic hierarchy, we kept the colSums, rowSums and SVD from
the previous run and then when projecting new data into this subspace, we

first identified which row indices to zero out on the basis of the initial TF-IDF
rowSums. We then computed the ‘term frequency’ by dividing by the colSums

in these features. Next, we computed the ‘inverse document frequency’ from

the previous TF-IDF transform (diagonal(1 +ncol(mat)/ rowSums(mat))) and
computed the new TF-IDF transform. We projected this TF-IDF matrix into the
SVD subspace that was previously generated. To do this calculation, we computed
the new coordinates by “t(TF_IDF) %*% SVD$u %*% diag(1/SVD$d)”, where
TF_IDF is the transformed matrix and SVD is the previous SVD run, using irlba
in R (v.3.5.1). We computed the projected matrix by “SVD$u %*% diag(SVD$D) *
t(V)” where V is the projected coordinates above. For projecting bulk RNA-seq,
we downsampled previously published data to 5,000 reads in genes 100 times and
then made a sparse matrix for projection as single-cell data. For projecting

bulk scATAC-seq, we downsampled previously published data to 10,000 reads

in peaks 100 times and then made a binary sparse matrix for projection as
single-cell data.

HCA immune census bone marrow projection. We downloaded the HCA bone
marrow immune census data (https://data.humancellatlas.org/explore/projects/
cc95{f89-2e68-4a08-a234-480eca21ce79)* comprising around 300,000 cells from
eight different donors (filtered for at least 1000 UMI). We used our iterative

LSI approach (resolutions =0.2, 0.6, 1.0 and 2,500 variable genes; UMAP
n_neighbors =75, min_dist=0.2, metric = “euclidean”) to create a UMAP manifold
that we could then project our scRNA-seq data onto. We LSI projected our scRNA-
seq data onto this subspace and found that our cohort reasonably repopulates the
hematopoietic manifold created on completely separate donors. This result shows
that our analysis approach is scalable and that our healthy hematopoietic data
reasonably recapitulates the biological diversity along hematopoiesis.

Classification of AML scRNA-seq. We wanted to evaluate our LSI projection of
abnormal cells into a healthy subspace by using data from van Galen et al.”’. We
first projected their healthy bone marrow scRNA-seq from a different platform
and genome and found remarkable agreement with their classifications and our
independent hematopoietic manifold. We then projected their ‘disease’ cell AML
scRNA-seq into our manifold and found reasonable agreement for more terminal
states and less agreement in the ‘hematopoietic stem cell (HSC)’ and ‘progenitor-
like’ classifications. We reasoned that this difference could be due to defining
discrete populations in a continuous subspace. We then reclassified their AML
‘disease’ scRNA-seq by finding the nearest neighbors between their cells in our
projected SVD subspace and our scRNA-seq data. We grouped our clusters into
more broad groupings for interpretability (‘Progenitor-like’ is clusters 1-6,
‘GMP-like’ is clusters 7 and 8, ‘cDC-like’ is cluster 10, ‘Monocyte-like’ is clusters
11-13). For differential analyses we compared against their projected scRNA-seq
healthy bone marrow to minimize batch differences in the comparison.

Classification of MPAL single cells with scATAC-seq and scRNA-seq. We wanted

to classify MPAL single cells on the basis of their disease state and hematopoietic
progression. First, we aimed to determine which cells were healthy-like and
disease-like. To do this analysis, we clustered all of the healthy hematopoietic cells
with the MPAL of interest using our LSI workflow as described above (scRNA,

25 principal components (PCs), 1,000 variable genes, and Seurat’s SNN resolution
0f 0.2, 0.8 and 0.8; scATAC, 25 PCs, 25,000 variable peaks and Seurat’s SNN
resolution of 0.8 and 0.8). We then defined clusters to be healthy-like if a high
percentage (>80% for scRNA-seq and >90% for scATAC) of the cells were from
the normal hematopoietic data. MPAL single cells belonging to these clusters were
classified as healthy-like and the remaining cells were classified as disease-like. We
note that we did not detect significant copy-number amplifications with scATAC-
seq using a previously described approach’, and the proportion of cells classified
as disease-like was consistent with flow cytometry and morphological estimations
of the percentage of blast cells (Supplementary Fig. 8b). To accurately characterize
these MPAL as disease-like by their hematopoietic state, we established


https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
http://www.nature.com/naturebiotechnology

LETTERS

‘hematopoietic compartments’ across our scCRNA-seq and scATAC-seq maps

that broadly characterized the hematopoietic continuum. The borders for these
compartments were determined empirically using ‘ths’ in R, guided by the initial
clusters and agreement across the scRNA-seq and scATAC-seq classifications.
After classifying the normal hematopoietic continuum, we then broadly classified
the MPAL disease-like cells on the basis of their projected nearest neighbor in

the UMAP subspace. These classifications were used subsequently in differential
analyses. We note that this approach identifies a cumulative set of leukemia-
specific changes relative to similar hematopoietic cells and does not discriminate
among intermediate changes along a leukemic developmental trajectory. We note
that this method of classification is potentially limited as compared to classification
on the basis common structural variants or mutations. Furthermore, identifying
disease cells that are partially transformed may likewise be challenging.

Identifying differential features with scATAC-seq and scRNA-seq. To identify
differential features for previously published AML data and MPALs, we
constructed a nearest-neighbor healthy aggregate using the following approach.
First, we used FNN to identify the nearest 25 cells using ‘get.knnx(svdHealthy,
svdProjected, k=25)’ on the basis of Euclidean distance between the projected
cells and hematopoietic cells in LSI SVD space. For each projected population, we
used a minimum of 50 and maximum of 500 cells (random sampling) as input.
Next, we took the unique of all hematopoietic single cells and if this number was
greater than 1.25 times the number of the projected populations, we took the
nearest 24 cells and repeated this procedure until this criterion was met. Then the
projected population and non-redundant hematopoietic cells were downsampled
to an equal number of cells (maximum 500). For scATAC-seq, we binarized

the matrix for both the projected populations and hematopoietic matrices.

Next, we scaled the sparse matrices to 10,000 total counts for scRNA-seq and
5,000 total promoter counts for scATAC-seq (promoter peaks defined as peaks
within 500 bp of TSS from hg19 10x v.3.0.0 gene transfer format file). Next, we
computed row-wise two-sided ¢ tests for each feature. We then calculated the FDR
using p.adjust(method =“fdr”). We then computed the log,mean and log,(fold
changes) for each feature. We chose these parameters on the basis of a previous
study comparing analytical methods for differential expression*. For scRNA-
seq, differential expression was determined by FDR <0.01 and absolute log,(fold
changes) greater than 0.5. For scRNA-seq, differential expression was determined
by FDR <0.05 and absolute log,(fold changes) greater than 0.05.

To identify differential genes for bulk leukemia RNA-seq, we downsampled
the gene counts to 10,000 counts randomly for 250 times. We then projected and
used the above framework to resolve differential genes with log,(fold change) >3
and FDR <0.01. We then removed genes that were differential in 33% or higher of
the normal samples to attempt to capture biased genes. In addition, we removed
genes differential in 50% or higher of the leukemia samples. This filtering biases
our identified malignant genes to those that are variable across the leukemic types
as opposed to conserved across all leukemic types. We then took the average
malignancy for each remaining gene for each leukemic type and used the top 300
variable malignant genes across the leukemic types for the heat map and LSI. For
computing differential LSI, we binarized each gene as malignant or not for the 300
variable malignant genes and computed the TF-IDF transform followed by SVD
(LSI). We then visualized this in two dimensions using the uwot implementation of
UMAP (50 SVD dimensions, n_neighbors =50, min_dist=0.005).

Matching scATAC-seq—-scRNA-seq pairs using Seurat’s canonical correlation
analyses. To integrate our epigenetic and transcriptomic data we built on previous
approaches for integration'®”. We found the approach that worked best for our
integrative analyses was using Seurat’s CCA. We performed integration for each
biological group separately because (1) it improved alignment accuracy and

(2) required much less memory. First, for both the gene-activity scores matrix
and scRNA-seq matrix, a Seurat object was created using ‘CreateSeuratObject;,
normalized with ‘NormalizeData’ and the top 2,000 most variable genes or
activities ranked by dispersion with ‘FindVariableGenes’ were. We defined the
union of the top 2,000 most variable genes from scRNA-seq and gene scores

from scATAC-seq and found this increased the concordance downstream (as
defined by cluster-to-cluster mapping in hematopoiesis and single-cell Spearman
correlations). These genes were then used for running CCA using ‘RunCCA’ with
the number of canonical correlations to compute as 25. We then calculated the
explained variance using ‘CalcVarExpRatio’ grouping by each of the individual
experimental protocols scATAC-seq (gene-activity scores) and scRNA-seq. We
then filtered cells where the variance explained by CCA was less than twofold

as compared to principal component analysis. We aligned the subspaces with
“AlignSubspace” and 25 dimensions to align with reduction.type =“cca” and
grouping.var = “protocol”. For each scATAC-seq cell the nearest scRNA-seq cell was
identified on the basis of minimizing the Euclidean distance. We created a UMAP
using the aligned CCA coordinates as input into the uwot UMAP implementation
with n_neighbors =50, min_dist=0.5, metric = “euclidean” and plotted the output
with ggplot2 in R. To enable more robust correlation-based downstream analyses,
we used our initial k-nearest-neighbor groupings (nGroups =4998, KNN =50)
from Cicero' to group scATAC-seq accessibility, gene-activity scores, scCRNA-seq
closest neighbor and chromVAR" deviation scores.

NATURE BIOTECHNOLOGY

Peak-to-gene linkage. Cicero'* allows us to infer gene-activity scores by linking
distally correlated ATAC peaks to the promoter peak. While this measure is
extremely useful, it does not actually mean it is correlated to gene expression. To
circumvent this limitation, we used our grouped scATAC-seq and grouped linked
scRNA-seq to identify peak-to-gene links. First we log normalized the accessibility
and gene expression with log,(counts per 10,000+ 1) and then we resized each of
the gene GenomicRanges to the start using resize(gr,1,“start”) and then resizing
the start to a +250-kb window using ‘resize(gr, 2 * 250000+ 1, “center”). We

then overlapped all ATAC-seq peaks using findOverlaps’ to identify all putative
peak-to-gene links. We then split the aggregated ATAC and RNA matrices by
whether the majority of the cells were from MPAL or hematopoietic single cells
and correlated the peaks and genes for all putative peak-to-gene links. We used

a previously described approach for computing a null correlation on the basis of
trans correlations (correlating peaks and genes not on the same chromosome)*.

In brief, for each chromosome, 1,000 peaks not on the same chromosome are
identified and correlated to every gene on that chromosome. Each putative peak-
to-gene correlation is converted into a z score by using the mean and s.d. of the null
trans correlations. These are then converted to P values and adjusted for multiple-
hypothesis testing using the Benjamini-Hochberg correction ‘p.adjust’ in R. We
retained links whose correlation (Pearson) was above 0.35 and FDR < 0.1 (the same
correlation cutoff as co-accessibility in Cicero') in either MPAL or hematopoietic
aggregations. We then kept all peak-to-gene links that were greater than 2.5kb in
distance. We identified peak-to-gene links that are only present in hematopoiesis,
MPALSs or both. To visualize the peak-to-gene links we plotted all of them as a heat
map with ComplexHeatmap. To determine the column order we first computed
principal component analysis for the first 25 principal components using irlba.

We computed Seurat'' SNN clustering with a resolution of 1 and computed the
cluster means. We then computed the order of these clusters using hclust and

the dissimilarity 1 — R as the distance. Next, we iterated through each cluster and
performed hclust with the dissimilarity calculations to get a final column order.
The peak-to-gene links were grouped by k-means clustering with 10 input centers,
100 iterations and 10 random starts for healthy, disease and the overlapping links.
We did this biclustering because it enabled us to plot smaller rasterized chunks of
the heat map without overwhelming the memory; individual rasterized k-means
clusters were put together after analysis.

Enrichment of peak-to-gene links in GTEx eQTLs. We adopted a previous approach
for identifying the enrichment of our peak-to-gene links in GTEx eQTL data. In
brief, we downloaded GTEx eQTL data (version 7) from https://gtexportal.org/
home/datasets and the *.signif_variant_gene_pairs.txt.gz files were used. We also
downloaded gencode v19 (matched to these eQTLs) and identified all gene starts
and the nearest gene starts to each peak and eQTL using ‘distanceToNearest.

We filtered all eQTLs that were further than 250kb from their predicted gene

to be consistent with our linkage approach. To calculate a conservative overlap
enrichment, we further pruned all eQTL links that were to its nearest gene. We
then created a null set (n=250) of peak-to-gene links by randomly selecting distal
ATAC-seq peak-to-gene links (within 250kb) that were distance matched to the
links tested at a resolution of 5kb. We then calculated a z score and enrichment for
each peak-to-gene link set as compared to the null set and calculated an FDR using
‘p-adjust(method = “fdr”)’

Enrichment of peak-to-gene links in K27ac HiChIP metaV4C. We wanted to
determine the specificity of our peak-to-gene links in published chromatin
conformation data. We downloaded previously published naive T cell and HCASM
cell line H3K27ac HiChIP data. We then identified within each peak-to-gene

link subset the peaks that were most biased to T/NK cells. To do this analysis, we
calculated the z score for each peak in the peak-to-gene links, removed all links
below 100 kb and floored each peak coordinate (start or end) to its nearest 10-kb
window. We then ranked these links by the z score for the peak, deduplicated the
links at a resolution of 10kb and kept the top 500 remaining peak-to-gene links.
Next, we used juicer dump (no normalization “NONE”) at a 10-kb resolution

for each chromosome in the “hic’ file. We read each chromosome into an
individual ‘sparseMatrix” in R and scaled the sparse matrices such that the total

cis interactions summed up to 10 million paired-end tags (PETs). Then, for each
peak-to-gene link, the upstream or downstream window (column or row) (whether
the peak was upstream or downstream of the gene promoter) was identified. To
scale the distance of each interaction for interpretability, we linearly interpolated
the data to be on a scale from —50% to 150% to visualize the focal interaction. The
mean interaction signal was reported and repeated for both replicates. The mean
and s.d. across both replicates were calculated and plotted with ggplot in R.

Identifying TF malignant target genes and survival analysis. We wanted to create

a framework for identifying TFs that potentially directly regulate malignant
genes. To do this analysis, we first identified a set of TFs whose hypergeometric
enrichment in differential peaks were high across the MPAL subpopulations
(comparing upregulated peaks against all peaks) and that were identified as being
transcriptionally correlated with the accessibility of their motif (see above). Next,
for a given TF and all identified peak-to-gene links, we further subsetted these
links by those containing the TF motif. For each MPAL subpopulation,
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we determined whether, for each peak-to-gene link, both the peak and gene

were upregulated. Then for each gene, we gave a binary score indicating

whether or not that MPAL subpopulation had at least one differential peak-to-gene
link (whose peak and gene are differentially upregulated), and reported

the proportion of subpopulations that were upregulated. In addition, for each gene
that has at least one differential peak-to-gene link we summed their

squared correlation R? and reported that as the differential linkage score.

We kept all genes that had least one MPAL subpopulation with corresponding
differential peak-to-gene links.

For survival analysis, we downloaded the RPKM TCGA-LAML data*®
(https://gdc.cancer.gov/about-data/publications/#/2groups=TCGA-
LAML&years=&order=desc). We downloaded the survival data from Bioconductor
RTCGA .clinical (“patient.vital_status”) and matched the RPKM expression using
TCGA IDs. Next, we took all genes that were identified as target genes
for RUNXI (n=732), and computed row-wise z scores for each gene. Next,
we took the column means of this matrix to get an average z score across all
RUNXI1-target genes. We then identified the top 33% and bottom 33% of donors
on the basis of this expression. We computed the P value using the R package
survival ‘survfit(Surv(times,patient.vital_status)~Runxl_TG_Expression,
LAML_Survival). We plotted the Kaplan-Meier curve using the R package
survminer ‘ggsurvplot’ in R.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data are deposited in the Gene Expression Omnibus (GEO) with the
accession code GSE139369. There are no restrictions on data availability or use.

Code availability
Code used in this study can be found on Github at https://github.com/
GreenleafLab/MPAL-Single-Cell-2019.
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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Confirmed
|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

< For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
/N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OOXKOOOS

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Cell Ranger ATAC 1.0.0 — Barcode Identification, Alignment, Filter, Deduplication




Data analysis macs2 2.1.1.20160309 — Peak Calling
R version 3.5.1 — R environment for all custom code
Irlba 2.3.2 — Running PCA/SVD on large matrices.
Reticulate 1.10 — Used for running Python UMAP implementation within R.
Rcpp 1.0.0 — Used for writing helpful C++ code to speed up operations.
matrixStats 0.54.0 — Used for mathematical operations on large matrices.
Cicero 1.0.13 — Used for calculating gene activity scores.
chromVAR_1.2.0 — Calculating TF deviation scores which can be associated with TF activity.
SingleCellExperiment 1.2.0 — R Data Class Environment used throughout analyses.
Motifmatchr 1.2.0 — Matching TF Motifs within peak regions.
Seurat 2.3.4 — SNN Graph Clustering Implementation.
GenomicFeatures 1.32.2 — Genomic Ranges Operations used for overlap analyses.
GenomicRanges 1.32.7 - Genomic Ranges Operations used for overlap analyses.
Matrix 1.2-14 — Sparse Matrix math implementations.
BSgenome 1.48.0 — Toolkit used for getting Genomic DNA sequences for motif matching and footprinting.
Rsamtools 1.32.3 — For manipulating BAM files within R.
edgeR 3.24.3 - Toolkit for analyzing differential RNA-seq.
FNN 1.1.3 - Identifying Nearest Neighbors.
uwot 0.1.4 - Creation of UMAP Embeddings in R.
BWA 0.7.17 - Alignment of Fastgs to genomic reference DNA.
stats (R 3.5.1) - R base statistical software.
survival 2.42-3 - Survival Analysis software used for TCGA analysis.
clusterProfiler 3.10.1- enrichment of GO/KEGG terms in gene sets.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

CODE AVAILABILITY
Code used in this study will be posted on GitHub for main analyses (https://github.com/GreenleafLab/MPAL-Single-Cell-2019).

DATA AVAILABILITY

Sequencing data will be deposited in the Gene Expression Omnibus (GEO). There are no restrictions on data availability or use. The main single-cell matrices are
stored as Bioconductor Summarized Experiment’s (scRNA, scATAC, chromVAR, Log Gene Scores) for each of the main analyses will be accessible from GitHub.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Our sample size was determined by the number of MPAL patients diagnosed at Stanford since 2011 (n = 5). We performed multi-omic
analyses on these samples in technical duplicate, profiling over 50,000 single cells.

Data exclusions  No inclusion or exclusion criteria were used for human studies. No data were excluded from the manuscript.

Replication All results presented in manuscript were reliably reproduced across technical duplicate. Additionally we compared differential results to
previously published data sets.

Randomization  No randomization of human participants was used.

Blinding No blinding was used.
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Reporting for specific materials, systems and methods c
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, %
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. é
Materials & experimental systems Methods @
n/a | Involved in the study n/a | Involved in the study —
|:| |Z Antibodies |:| ChiIP-seq %
g |:| Eukaryotic cell lines |:| Flow cytometry %
|:| Palaeontology |:| MRI-based neuroimaging 8
g |:| Animals and other organisms %
[ 1|IX Human research participants é
|Z |:| Clinical data <
Antibodies
Antibodies used FACS for MPAL Patients:

BD Biosciences Catalog - 340662 - CD3 (clone SK7) PE

BD Biosciences Catalog - 340738- CD7 (M-T701) FITC

BD Biosciences Catalog - 340952 - CD45 (clone 2D1) PerCP-Cy™5.5
BD Biosciences Catalog - 555824 - CD34 (clone 581) APC

BD Biosciences Catalog - 340722- CD19 (clone SJ25C1) APC

BD Biosciences Catalog - 340673- CD20 (clone L27) FITC

BD Biosciences Catalog - 340654 - CD79a (clone HM47) PE

BD Biosciences Catalog - 561708 - CD14 (M5E2) APC

BD Biosciences Catalog - 644386 - CD64 (clone 10.1) PE

Agilent - FO71401-1- MPO (clone MPO-7) FITC

Beckman Coulter - IMO775U - CD38 (clone LS198-4-3) FITC
Beckman Coulter - IM3524U - TdT (HT1 + HT4 + HT* + HT9) FITC

Antibody Derived Tags (ADT)-sequencing: all antibodies are from biolegend:

Antibody list for PBMC & BMMC

Category Specificity Name Clone Reactivity Barcode Sequence

TotalSeq™ Catalog - 300477 -B CD3 CD3_TotalB UCHT1 Human AACAAGACCCTTGAG

TotalSeq™ Catalog - 300565 -B CD4 CD4_TotalB RPA-T4 Human TACCCGTAATAGCGT

TotalSeq™ Catalog - 301069 -B CD8a CD8a_TotalB RPA-T8 Human ATTGGCACTCAGATG

TotalSeq™ Catalog - 301857 -B CD14 CD14_TotalB M5E2 Human GAAAGTCAAAGCACT

TotalSeq™ Catalog - 323051 -B CD15 CD15_TotalB W6D3 Human ACGAATCAATCTGTG

TotalSeq™ Catalog - 302063 -B CD16 CD16_TotalB 3G8 Human GTCTTTGTCAGTGCA

TotalSeq™ Catalog - 302647 -B CD25 CD25_TotalB BC96 Human GTGCATTCAACAGTA

TotalSeq™ Catalog - 302263 -B CD19 CD19_TotalB HIB19 Human TCAACGCTTGGCTAG

TotalSeq™ Catalog - 304161 -B CD45RA CD45RA_TotalB HI100 Human GATGAGAACAGGTTT

TotalSeq™ Catalog - 304257 -B CD45R0 CD45R0O_TotalB UCHL1 Human TGCATGTCATCGGTG

TotalSeq™ Catalog - 392423 -B CD56 (NCAM) Recombinant CD56_TotalB QA17A16 Human GTTGTCCGACAATAC
TotalSeq™ Catalog - 329961 -B PD-1 PD-1_TotalB EH12.2H7 Human AAGTCGTGAGGCATG

TotalSeq™ Catalog - 372727 -B TIGIT TIGIT_TotalB A15153G Human TGAAGGCTCATTTGT

TotalSeq™ Catalog - 351354 -B CD127 CD127_TotalB A019D5 Human ACATTGACGCAACTA

TotalSeq™ Catalog - 400291 -B Mouse_lgG2a MouselgG2a_TotalB MOPC-173 Mouse CTCTATTCAGACCAG
TotalSeq™ Catalog - 400185 -B Mouse_IgG1 MouselgG1_TotalB MOPC-21 Mouse ACTCACTGGAGTCTC
TotalSeq™ Catalog - 400379 -B Mouse_IgG2b MouselgG2b_TotalB MPC-11 Mouse ATCACATCGTTGCCA

Antibody list for CD34+ BM & MPAL samples

Category Barcode Specificity Clone Reactivity Barcode Sequence

TotalSeq™ Catalog - 100251 -A 0049 CD3 SK7 Human TATCCCTTGGGATGG
TotalSeq™ Catalog - 317451 -A 0045 CD4 SK3 Human GAGGTTAGTGATGGA
TotalSeq™ Catalog - 343123 -A 0066 CD7 CD7-6B7 Human TGGATTCCCGGACTT
TotalSeq™ Catalog - 301067 -A 0080 CD8a RPA-T8 Human GCTGCGCTTTCCATT
TotalSeq™ Catalog - 312231 -A 0062 CD10 HI10a Human CAGCCATTCATTAGG
TotalSeq™ Catalog - 367131 -A 0081 CD14 M5E2 Human TCTCAGACCTCCGTA
TotalSeq™ Catalog - 302259 -A 0050 CD19 HIB19 Human CTGGGCAATTACTCG
TotalSeq™ Catalog - 366629 -A 0052 CD33 P67.6 Human TAACTCAGGGCCTAT
TotalSeq™ Catalog - 304157 -A 0063 CD45RA HI100 Human TCAATCCTTCCGCTT
TotalSeq™ Catalog - 328135 -A 0060 CD90 (Thy1) 5E10 Human GCATTGTACGATTCA
TotalSeq™ Catalog - 306037 -A 0064 CD123 6H6 Human CTTCACTCTGTCAGG




Validation Highly optimized flow cytometric analysis was used for this study that has been shown to be specific in previous studies.

For the flow cytometry analysis of MPALs, we used lymphocytes as a control for validation for the antibodies. Additionally,
BD Biosciences, Agilent and Beckman Coulter have validated these antibodies directly by testing vs an isotype control.

For the antibody derived tags (ADT) we first performed this analysis on human peripheral blood and bone marrow segregating

known subpopulations. Additionally, Biolegend tests for every antibody by staining multiple target cells (with positive and
negative controls) and with serial dilutions to make sure the titer is appropriate.

Human research participants

Policy information about studies involving human research participants

Population characteristics Healthy human subjects were male and female, ages 20-50. MPAL patients were male and female, ages 20-75. MPAL patients
were diagnosed with mixed phenotype acute leukemia according to WHO 2016 classification.

Recruitment No selective recruitment of healthy subjects was performed. MPAL samples were obtained from patients at Stanford Hospital
and Clinics with acute leukemia. MPAL is an extremely rare leukemia and all patients with a diagnosis of MPAL were included in

the study, regardless of age. This study did not attempt to exclude healthy volunteers or patients based on sex, race, or ethnicity.

Ethics oversight This study was approved by the Stanford University Administrative Panels on Human Subjects in Medical Research, and written
informed consent was obtained from all participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z| All plots are contour plots with outliers or pseudocolor plots.

|Z A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Peripheral blood and bone marrow aspirate samples were processed by Lymphoprep (STEMCELL Technologies) gradient
centrifugation and fresh frozen in Bambanker media.
Instrument Flow cytometry was performed on a FACSCalibur or FACSCanto Il (Becton Dickinson, San Jose, Ca, USA) cytometer using
commercially available antibodies.
Software Data was analyzed using FlowJo v10 software.

Cell population abundance  No sorting was performed on various samples. 30,000 events were collected and analyzed on all MPAL samples.

Gating strategy Cells were first Live/Dead selected (using 7-AAD). Lymphocytes were identified by low side-scatter and bright CD45 expression.
The gate was validated by backgating on CD3-positive or CD19-positive events. Blasts were identified by low side-scatter and dim
CD45 expression. The gate was further assessed by backgating on CD34-positive events. Gates were drawn by additionally using
isotype controls and internal positive and negative controls.

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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