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SUMMARY

High-throughput sequencing methods have revolutionized our ability to catalog the diversity
of RNAs and RNA–protein interactions that can exist in our cells. However, the relationship
between RNA sequence, structure, and function is enormously complex, demonstrating the
need for methods that can provide quantitative thermodynamic and kinetic measurements of
macromolecular interaction with RNA, at a scale commensuratewith the sequence diversity of
RNA.Here,we discuss a class ofmethods that extend the core functionality ofDNA sequencers
to enable high-throughput measurements of RNA folding and RNA–protein interactions. Top-
ics discussed include a description of the method and multiple applications to RNA-binding
proteins, riboswitch design and engineering, and RNA tertiary structure energetics.
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1 BACKGROUND

Our ability to catalog the immense diversity of RNAs
that exist in the cell has accelerated at a spectacular rate with
the advent of high-throughput sequencing methods, allow-
ing themapping of a universe of previously uncharacterized
transcripts. Likewise, sequencingmethods have enabled the
mapping of the diverse proteins that interact with RNA in
vivo, providing a window into a network of protein–RNA
interactions critical to gene expression regulation (Butter
et al. 2009; Castello et al. 2012). However, our understand-
ing of the detailed relationship between the sequence of
RNA and its structure and function is limited, both in terms
of how complex RNAs fold into 3D structures and also how
RNA sequence and structures determine protein–RNA in-
teractions. A predictive, quantitative understanding for
these functional determinants (both 3D structure and pro-
tein interaction) will be needed before we can truly under-
stand, and engineer, RNA functions.

However, the sequence–structure–function relation-
ship in RNA is complex—perhaps not as fundamentally
combinatorial and interactive as protein, but much more
challenging than double-stranded, or even single-stranded,
DNA. RNA makes diverse intramolecular interactions—
Watson-Crick base pairs, noncanonical base pairs, tertiary
interactions, etc.—that define the 3D structures RNA takes
on (Turner et al. 1988; Tinoco and Bustamante 1999),
which in turn sets the landscape for its function. For exam-
ple, critical RNAs in translation, splicing, and chromatin
organization and compaction must form precise tertiary
structures to achieve their biological function (Staley and
Guthrie 1998; Kieft et al. 2001; Noller 2005). In higher
eukaryotes, these biological functions are rarely achieved
in the absence of RNA-binding proteins, which help to
coordinate and regulate gene expression at multiple stages
in the life cycle of an RNA (Moore 2005; Keene 2007), and
further entangle the RNA folding process with the physical
determinants of RNA–protein interactions. Furthermore,
RNA sequences form conformationally dynamic structures,
with biologically functional conformational transitions and
multiple nonnative folded states (Winkler and Breaker
2005; Solomatin et al. 2010). Protein binding can affect
the occupancyand rate of exchange between these structural
states, while conversely the structure of the RNA helps to
define protein binding affinity and specificity. Therefore,
there exists a need for methods that can begin to provide
generalizable, broad insights into the complex relationship
between RNA sequence, dynamic conformations, and pro-
tein binding, creating a principled framework for under-
standing RNA’s diverse functions within the cell.

However, the challenge is vast. A productive approach
to these problems requires measurements that can account

for these multiple structural states at an immense scale—
commensurate with the combinatorial sequence complexity
of nucleic acids. And although a variety of high-throughput
methods have been developed to measure RNA structure
and RNA–protein binding, few allow for reporting of these
interactions in terms of the thermodynamic and kinetic
constants that must govern physical behaviors in the cell.
Transcriptome-wide RNA structure measurements have
relied on proximity cross-linking (Ramani et al. 2015) or
base accessibility (Ding et al. 2014), each of which provides
constraints on the behavior of the ensemble of RNA struc-
tures, but these methods require averaging over many
different structures and thus cannot quantify occupancy
across different structural states and cannot be easily read
out in terms of binding energies and kinetic constants.
In vivo approaches to quantify RNA–protein interac-
tions through cross-linking and immunoprecipitation
(CLIP, eCLIP, iCLIP, etc.) (Hafner et al. 2010;VanNostrand
et al. 2016) have mapped enrichment of RNA-binding
protein (RBP) binding at high throughput, but often
suffer from poor sequence resolution, biased cross-linking
efficiency, large variability in the abundance of different
potential binding sites, and indirect targeting of binding
interactions with an antibody. In vitro approaches can solve
a number of these uncertainties, and medium-throughput
approaches for quantitative measurement have been en-
abled by microfluidic methods (Martin et al. 2012). High-
er-throughput measurements of relative RBP affinity have
been achievedwith sequencing-enrichment approaches like
RNAcompete, RNA-bind-and-seq, RNA SELEX, HiTS-
Kin, and HiTS-Eq (Ellington and Szostak 1990; Ray et al.
2009; Lambert et al. 2014; Jankowsky and Harris 2017; Lou
et al. 2017). These methods have enabled measurements
of relative RBP affinity across randomized libraries; howev-
er, they often require immense sequencing resources for
readout and the enrichment readout is not as generalizable
as direct measurements of biophysical parameters.

A recently developed class of techniques has enabled
direct, fluorescence-based, quantitative measurement of
binding affinity and kinetics toRNA,with the sameor larger
experimental capacity as sequencing-based approaches.
Two highly related approaches in this class are RNA-MaP
(quantitative analysis of RNA on a massively parallel array)
(Buenrostro et al. 2014) and HiTS-RAP (high-throughput
sequencing and RNA affinity profiling) (Tome et al. 2014);
In this review, we will refer to this class of methods collec-
tively as RNA-HiTS, for an RNA array on a high-through-
put sequencer.

These methods make use of the core functionality of
the high-throughput DNA sequencers (i.e., clonal amplifi-
cation andmassively parallel fluorescence quantification) to
enable high-throughput, fluorescence-based detection of
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nucleic acid substrates for diverse applications. RNA-HiTS
was born from work on DNA–protein interactions that
used a high-throughput sequencer to characterize protein
binding to a vast swath of DNA sequences (Nutiu et al.
2011)—the first demonstration of the power of the sequenc-
ing instrument for quantitative determination of affinity
landscapes of mutant nucleic acid sequences. Other appli-
cations of sequencing infrastructure include selection of
specific oligonucleotide sequences within a pool of targets
(Matzas et al. 2010), detection of mRNA sequence using
fluorescently labeled transfer RNAs (tRNAs) (Uemura et al.
2010), and determination of the length of poly(A) tails
among different classes of mRNAs (Subtelny et al. 2014).
RNA-HiTS technology substituted diverse RNA targets for
the original dsDNA targets in Nutiu et al. (2011), ultimately
enabling equally comprehensive andquantitative character-
ization of binding to RNA (Buenrostro et al. 2014; Tome
et al. 2014).

2 TECHNIQUES

2.1 Illumina PlatformsGenerate Arrays of Sequence-
Identified DNAClusters on the Surface of a Chip

During the process of high-throughput sequencing on
an Illumina GAII(x) DNA Sequencer, millions of individ-
ual DNA strands are first immobilized on aflow cell surface,
then clonally amplified to generate a “cluster” of DNA con-
taining approximately 1000 identical molecules (Fig. 1A).
During the sequencing process, the nucleic acid sequence of
each clonal cluster is determined by step-wise sequencing-
by-synthesis of one strand of each DNA molecule on the
surface of the flow cell. Fluorescently labeled nucleotides are
incorporated such that each incorporation cycle allows de-
termination of the identity of one base of theDNA sequence
(Fig. 1A). Typical sequencing reactions proceed for at least
30 cycles per read (up to 300 cycles), andmultiple reads can
be performed starting from different priming sequences to
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Figure 1. Harnessing the Illumina sequencing platform for systems-level biochemistry of RNA. (A) Schematic for
DNA sequencing on an Illumina platform. DNA fragments with sequencing adapters on 5′ and 3′ ends anneal to
complementary oligonucleotides covalently attached to the sequencing flow cell surface. Molecules are clonally
amplified by polymerase chain reaction (PCR) to form “clusters” on the chip surface, which are then sequenced
by sequential incorporation of reversibly terminated, fluorescent nucleotides. (B) RNA-HiTS extends the Illumina
sequencing platformby transcribing clusters of DNA into RNAdirectly on the surface of the sequencing chip. (1) The
second strand of DNA is regenerated with a DNA polymerase. (2) An RNA polymerase is initiated by allowing
binding to an initiation sequence designed into the DNA fragment. (3) The RNA polymerase is allowed to extend
until it stalls at a “roadblock,” resulting in stable display of the nascent RNA transcript (gray). (C) Two methods for
stalling the RNA polymerase. (Left) A biotinylated primer is used for second-strand synthesis (see B); streptavidin is
then bound to this biotin before transcription, making a “roadblock” that stalls the Escherichia coli RNA polymerase
during the extension step. (Right) A Tus protein binds a Ter sequence element designed into each DNA fragment,
which stalls T7 RNA polymerase.
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detect barcodes for demultiplexing or to read from both
ends of the molecule for paired-end sequencing.

The GAII hardware platform integrates fluidics han-
dling and thermal control that enables molecular biology
reactions to take place on the surface of the chip, as well
as total internal reflection fluorescence (TIRF) imaging
for detection of nucleotide incorporation across clusters
in massive throughput. Initial implementations of RNA-
HiTS methods hijacked these instruments directly (Buen-
rostro et al. 2014; Tome et al. 2014). However, the GAII
platform is antiquated and unsupported, and newer, more
economical Illumina instruments like the MiSeq allow
much more rapid sequencing turnaround. However, these
newer instruments are highly integrated and do not support
the facile implementation of nonstandard molecular biol-
ogy and imaging workflows. Recently, our laboratory has
developed a modified, custom-built imaging station based
on the original Illumina GAII that decouples the platform
used for sequencing from the instrument used for custom
biochemistry applications (She et al. 2017). This imaging
station is built using components from the original Illumina
GAII(x) but is designed to interface with Illumina MiSeq
chips, with “home brew” image analysis software and hard-
ware interfaces.

2.2 In Situ Transcription to Display Nascent
Transcripts of RNA at High Throughput

The conversion of the native DNA array of a postse-
quenced chip to an RNA array requires in situ transcrip-
tion of the DNA clusters on the surface of the flow cell.
Broadly, this in situ transcription is performed in three
steps: beginning with single-stranded DNA molecules co-
valently attached to the sequencing flow cell surface, (1)
second-strand synthesis of the DNA molecules by primer
annealing and extension by a DNA polymerase is carried
out, (2) an RNA polymerase is initiated in a sequence-
specific manner, and then (3) a nascent RNA transcript
is extended until the RNA polymerase reaches a “road-
block” that stably halts the polymerase on the DNA tem-
plate (Fig. 1B).

This “roadblock” has been implemented in two distinct
ways. In the first, a biotinylated primer can be used to prime
second-strand synthesis, and subsequently this biotin may
be bound by streptavidin before RNA polymerase initiation
and extension (Fig. 1C) (Buenrostro et al. 2014). The RNA
polymerase (in this case Escherichia coli RNAP) stalls when
it encounters this terminal biotin–streptavidin roadblock
(Greenleaf et al. 2008), allowing stable display of the nascent
RNA transcript. Furthermore, this workflow aims to allow
only a single RNAP molecule to initiate at the engineered
promoter, producing a single piece of RNA stably tethered

to its DNA template. In an alternate stalling scheme, the
replication terminator protein Tus is bound to a 32-bp
Ter sequence element engineered into the DNA library
(Mohanty et al. 1996; Mulugu et al. 2001). T7 RNA poly-
merase then stalls when it encounters the bound Tus pro-
tein (Fig. 1C) (Tome et al. 2014).

After transcription, DNA oligos may be annealed to
common sequences on all transcripts to help stabilize the
desired secondary structure of the RNA, to provide a read-
out of transcription efficiency (Fig. 2A), or to otherwise
label the transcribed RNA.

2.3 Performing Kinetic and Thermodynamic
Measurements and Quantifying Images

The TIRF imaging platform enables direct measurement of
association of any fluorescently labeled binding partner
to every RNA cluster on the surface of the chip. This direct
observation of binding allows relatively straightforward
measurement of kinetic and thermodynamic parameters.
For example, the equilibrium dissociation constants (Kd)
can be measured by applying different concentrations of
the binding partner to the chip, waiting sufficient time for
equilibration, then imaging fluorescence observed at each
cluster (Fig. 2B,C). Quantifying the bound fluorescence
across concentrations and fitting these data to a binding
curve enables inference of the Kd and the standard free-
energy change of forming the bound complex (ΔGo =RT
logKd) (Fig. 2C). Dissociation rate constant (koff ) can like-
wise be directlymeasured by subsequently diluting the fluo-
rescently bound binding partner from solution, then
sequentially imaging of the loss of bound fluorescence
over time. In principle, association rate constants can be
measured in a similar manner, or can be calculated from
kon = koff/Kd.

A necessary step to quantifying fluorescence of each
cluster is to align the positions of clusters obtained from
the sequencing data with each fluorescent image (Fig. 2D).
An initial cross-correlation provides a rough alignment that
accounts for overall offsets between the sequencing data and
the images, and then subsequent iterations of cross-corre-
lation of progressively finer grids of subtiles then account
for any optical aberrations introduced in different imaging
stations. Together, these values are fit to a continuous offset
map that can be used to obtain precise alignment of se-
quence data and experimental images (She et al. 2017).
Subsequently, subtiles are fit to a sum of 2D Gaussian func-
tions to determine the integrated fluorescence of each clus-
ter. This strategy also allows for a subtile-specific
background fluorescence value to be determined to account
for any differences in overall fluorescence in different re-
gions of the chip.
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2.4 Library Considerations and Requirements

The first step in any RNA-HiTS experiment is to generate a
diverse library of sequenceable DNA fragments that will
serve as the basis of the RNA array. The generation of this
DNA library has two distinct steps. First, one must design
and synthesize the variable region that will be transcribed in
situ. Next, this variant library must be converted into a
sequenceable library. We will deal with each of these steps
in turn.

Variable DNA sequences that serve as the core of a
RNA variant library can be created in three ways: (1) a full
or partial randomization of nucleic acid synthesis, (2) an
array-based programmed library synthesis, and (3) the se-

lection of a diverse set of natural sequences. A completely
randomized nucleic acid sequence library is often not
feasible—experiments can generally probe on the order
of 106 different sequences at most (assuming an average
of 10 replicate clusters per sequence variant and 107 total
clusters per chip), which corresponds to a completely
random sequence of only 10 bases. Structured RNA motifs
like hairpin stems will often exceed this limit and have
considerable sequence constraints to maintain base-
pairing, making targeted sequence variations as opposed
to random N-mers often more informative and interpret-
able. One way to focus investigational throughput around
interesting functional variations is to produce a library
of sequence variants “centered” on a known consensus se-
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Figure 2. Performing kinetic and thermodynamic measurements and quantifying images. (A) After in situ tran-
scription, transcribed RNAsmay be labeledwith fluorescent oligonucleotides complementary to a common sequence
to all library variants (simulated data below). (B) Application of afluorescently labeled binding partner to the flow cell
enables detection of the thermodynamics and kinetics of binding to each transcribed library variant. (C) A typical
equilibrium binding experiment proceeds by applying a specific concentration of the binding partner to the flow cell,
waiting for equilibrium, detecting bound fluorescence at each cluster of RNA, and then repeating at multiple
concentrations of binding partner. After image quantification, fluorescentmeasurements are fit to a binding isotherm
to obtain the observed equilibrium dissociation constant, Kd. (D) Image quantification workflow. First, images are
alignedwith the sequencing data through hierarchical cross-correlation. Images are then fit to a sumof 2DGaussians,
with each Gaussian centered at the position of each cluster. Scale bar, 2.5 µm.
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quence motif with error-prone polymerase chain reaction
(PCR) (Cirino et al. 2003; Tome et al. 2014), or with doped-
in synthesis (Buenrostro et al. 2014), each of which can
introduce single, double, and some fraction of triple and
higher-ordermutations to the knownmotif. However, these
classes of “dirty” synthesis are constrained by the statistics
of random incorporation: In general, the consensus se-
quence will be highly represented, whereas higher-order
mutationswill have amuch lower representation depending
on sequence length and the error rate.

More recently, high-throughput oligo synthesis plat-
forms have given researchers access to programmed parallel
synthesis of up to 106 unique oligonucleotide sequences.
These commercially available technologies allow research-
ers to design a library of sequence variants that will each be
synthesized independently with approximately equal repre-
sentation. This synthesis method allows the designer to ask
multiple questionswithin each library—that is, by introduc-
ing variation in multiple known consensus sequences to
assess evolutionary paths between the sequences or by
changing the sequences flanking the consensus sequence
to assess the context dependence of mutational effects. Cur-
rently, commercially available oligonucleotide pools are
generally limited to sequences <200 nt in length, and
whereas synthesis error rates can introduce additional un-
wanted variation, efforts for improving fidelity are ongoing.

A final method takes advantage of the diversity of
sequence variants inherent to biological genomes. For ex-
ample, the Saccharomyces cerevisiae genome can be enzy-
matically digested to form the variable transcribed region in
an RNA-HiTS experiment (She et al. 2017). This approach
enabled assessment of binding to targets embedded in their
physiologically relevant, local sequence context that could
affect local structure formation.

The second step in library generation requires the con-
struction of a DNA fragment amenable to sequencing and
transcription, which is achieved by adding common se-
quences to the entire library of variants at the 5′ and 3′

end. Each library variant must have an RNAP initiation
site at the 5′ end of the variable transcribed region, and if
using Ter/Tus stalling, the 32-bp Ter element at the 3′ end
of the transcribed region. Both stalling methods require a
sufficient number of base pairs between the stall site of
the RNAP polymerase and the 3′ end of the RNA target,
as the RNAP polymerase transcripts have a footprint that
leaves approximately 25 bases of RNAwithin the exit chan-
nel (Greenleaf et al. 2008), preventing access by the fluores-
cently labeled binding partner.

The DNA sequencing error rate can present an issue for
an RNA-HiTS experiment, especially for a library of highly
related sequences, as sequencing errors can lead to clusters
being assigned to the wrong molecular variant, producing

spurious results. A per-base error rate of∼0.1% ormore can
be expected for Illumina sequencing. For a variable region
of 100 nt, such a rate might produce misassignment of
a substantial fraction (1/10th) of library variants. One strat-
egy to remove the impact of sequencing error is to introduce
a uniquemolecular identifier (UMI) to eachmolecule with-
in the library, comprising a random sequence of 16 nt.
On incorporation of thisUMI to eachmemberof the library,
the library is diluted to ∼8 × 105 molecules and then ream-
plified, creating a “bottlenecked” population of PCR ampli-
cons, with each UMI represented many times in the library.
Sequencing this bottlenecked library allows for confident
assessment of the specific sequence variant associated
with each UMI, and downstream analysis requires only
the sequence of the UMI to identify the molecular variant.

In general, the number of sequenced clusters should
exceed the number of variants by at least 10-fold, in order
to make multiple distributed measurements for each mo-
lecular variant in the library to enable a principled under-
standing of measurement noise.

3 APPLICATIONS

3.1 Sequence and Structural Determinants
of Protein–RNA Interactions

3.1.1 MS2 Coat Protein to Mutated RNA Targets

An overarching goal of RNA-HiTS technology has been to
make a generalizable, predictive model of protein–RNA
interaction affinity across any possible RNA sequence var-
iant. The first protein targeted for this analysis was the MS2
coat protein (Buenrostro et al. 2014), a protein that was
initially discovered to play a bifunctional role in viral coat
assembly and translational repression in the bacteriophage
MS2. The high affinity and specificity of this interaction has
made it useful in biotechnology applications including af-
finity purification, live-cell RNA imaging, and synthetic
biology (Bardwell and Wickens 1990; Bertrand et al.
1998). The MS2 protein binds an RNA motif consisting
of a stem loop structure with a single bulged residue (Fig.
3A). Starting with this consensus sequence, RNA-HiTS en-
abled the quantitative measurement of MS2 interaction
with all single, double, and a subset of triple and higher-
order mutants to comprehensively assess the contribution
of each residue to the free-energy landscape of the binding
process. The effects of each single mutant revealed high
mutational sensitivity to a subset of single stranded residues
important for docking into the single-stranded protein.
Double-mutant effects revealed epistasis between specific
base-paired residues, showing the importance of maintain-
ing base-pairing throughout the stem for MS2 protein rec-
ognition and binding.
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These observations allow direct quantification of pri-
mary sequence and secondary structure determinants of
protein recognition and binding using a simple regression
model that estimates the effect of a transition or a trans-
version of each residue, and the effect of converting a base
pair to either a noncanonical base pair or to an otherwise
disrupted base pair (Fig. 3B). This full model was predictive
of the higher-order mutation effects.

The free-energy change in forming a bound complex
can be decomposed into two contributions: the free-energy
change between the starting state and the transition state
(ΔGon

‡ ), and the free-energy change between the transition
state and the final state (ΔGoff

‡ ), such that ΔG=ΔGoff
‡ –ΔGon

‡

(Fig. 3C). Each of theseΔG‡ terms is linked to the kinetics of
forming the complex, with the first step affecting the asso-
ciation rate constant, and the second step affecting the
dissociation rate constant: ΔGon

‡ =RT log kon and ΔGoff
‡ =

RT log koff. Thus, measuring the kinetic rate constants in
addition to equilibrium binding allows quantification of
mutational effects on each of these steps of the binding
process (Fig. 3C). In the MS2 coat protein experiment, dis-
sociation rate constants (koff ) were measured for each mu-
tant, revealing that mutation effects predominantly resulted
from changes in the association rate constant, kon, suggest-
ing that MS2 must wait for the formation of a binding
competent RNA secondary structure before association.
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Figure 3. Sequence and structural determinants of protein–RNA interactions. (A) (Left) Crystal structure of the MS2
coat protein–RNA interaction (PDB: 2BU1) (Grahn et al. 2001). (Right) Primary sequence and secondary structure of
the consensus MS2 RNA binding site. (B) Linear regression analysis of single and double mutants of the consensus
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Mutational effects can be used to constrain the func-
tional landscape in which evolution must operate to gener-
ate ormaintain high affinity binding.Many doublemutants
within the MS2 hairpin had very small effects and thus
represent equivalent “solutions” to the evolutionary “prob-
lem” of creating a stable RNA–protein interaction. Howev-
er, the mutational paths that connect each pair of double
mutants were observed to have very different “roughness”
in this functional binding space, depending on the order
in which the mutations accumulated. These types of data
provide quantitative insight into complexities and path de-
pendences of natural and engineered methods for evolving
high-affinity binding partners.

3.1.2 RNA Aptamers for GFP and NELF

RNA-HiTS allows characterization of synthetic RNA–
protein interactions. For example, Tome and colleagues
characterized the specificity of two RNA aptamers that
were each originally identified through in vitro selection:
aptamers to the green fluorescent protein (GFP) and to the
Drosophila negative elongation factor (NELF-E) (Shui et al.
2012; Pagano et al. 2014; Tome et al. 2014). Variants of each
aptamer were generated with error-prone PCR, resulting
in single, double, and some higher order mutants of each
sequence. Examining the effects on binding affinity of each
aptamer to their respective proteins identified regions with
substantial sensitivity to single pointmutants. The summed
effects of these single point mutations were predictive of
the effects of higher-order mutations in the NELF aptamer,
supporting an additive model whereby each residue con-
tributes additively to the affinity of this interaction. How-
ever, this linearity was not observed in the GFP aptamer,
which had sensitivity to changes in base-paired regions,
leading to significant epistasis between residues. These ob-
servations show the ability of RNA-HiTS to quantify and
define the potentially diverse bindingmechanisms thatmay
come out of an in vitro selection. Mutational analysis of the
GFP aptamer also revealed two point mutants with several-
fold higher affinity than the original aptamer, showing
RNA-HiTS’s capacity to optimize affinity over the original
selected aptamer. We envision that, in the future, the RNA-
HiTS technology may be used as part of the in vitro selec-
tion process (i.e., to characterize a broader diversity of
putative RNA targets at earlier rounds of selection).

3.1.3 Puf Binding to Designed Library of RNA

Puf family proteins are versatile posttranscriptional regula-
tors found throughout eukaryotes (Quenault et al. 2011).
The specificity of Puf–RNA interactions is thought to
be driven by an ∼8-nt consensus sequence found within

the 3′ UTR of genes (Wickens et al. 2002; Van Nostrand
et al. 2016). Binding preference for this consensus motif is
conferred by a highly modular protein structure composed
of eight amino acid repeats that each interact with a single
RNA nucleotide (Fig. 3D) (Wang et al. 2001). Thus, this
system provides an ideal testbed for developing an additive
model aimed at predicting binding free-energy fromprima-
ry nucleic acid sequence.

However, the high-precisionmeasurements afforded by
RNA-HiTS analysis revealed a substantially more complex
picture of the binding process, even for this simple interac-
tion, than could be captured by a simple linear model
(I Jarmoskaite, SK Denny, P Vaidyanathan P, et al., in
prep.). These complexities stemmed from three primary
sources: (1) RNA secondary structure formation can affect
the accessibility of the binding site; (2) alternate binding
registers with “flipped-out” residues can form stable com-
plexes; and finally (3) subtle, yet pervasive, energetic cou-
pling can occur between residues within the binding site.
Systematic identification and quantification of these dis-
tinct contributions resulted in a two-step model that first
enumerates the possible binding configurations, then pre-
dicts the binding free-energy of each configuration using a
linearly additivemodel with coupling terms (Fig. 3E,F). The
final observed affinity for any sequence is thus derived from
the ensemble of free energies for all binding configurations
(Fig. 3F), modulated by secondary structure formation as
predicted by algorithms such as Vienna fold (Gruber et al.
2008). This model predicted Puf occupancy that was line-
arly related to the observed occupancy of these sites as
determined in an in vivo cross-linking experiment, high-
lighting both the usage of this fully predictive model and
supporting the importance of thermodynamics in in vivo
settings (Van Nostrand et al. 2016).

3.2 Protein–RNA Interactions across Transcriptome
Targets

The investigation of the relationship between protein bind-
ing in the context of in vivo–derived RNAs is another ex-
citing application of RNA-HiTS. The immense capacity of
these instruments opens the possibility of placing an entire
eukaryotic genome on the chip, and probing binding
to every theoretically possible transcript. This approach,
termed the transcribed genome array (TGA), was used to
examine binding preferences of the RNA binding domain
of Vts1 from S. cerevisiae (She et al. 2017), a member of
the Smaug family of proteins with conserved RNA binding
domains implicated in mediating RNA decay throughout
eukaryotes (Aviv et al. 2003; Oberstrass et al. 2006; Rendl
et al. 2008, 2012; Riordan et al. 2011). The entire S. cerevi-
siae genomewas fragmented into∼100-nt fragments result-
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ing in coverage of >30× per nucleotide. This library of
overlapping fragments formed the substrate for in vitro
transcription in the RNA-HiTS experiment.

Using this unbiased, transcriptome-wide approach,
approximately 300 sites within the genome were expected
to be significantly occupied within the cell, based on the
apparentKds observed and the estimated physiological pro-
tein concentration (130 nM); two-thirds of these sites fell
into the transcribed strand of an open reading frame. These
gene targets were significantly overlapping with those from
in vivo cross-linking and immunoprecipitation (RIP-seq)
experiments, suggesting that in vitro identified targets re-
capitulate in vivo binding events in aggregate (Aviv et al.
2006; Hogan et al. 2008). The functional relevance of these
binding events was assessed by comparing the expression
between vts1Δ and wild-type cells by RNA-seq. These data
showed that genes associated with TGA-identified binding
sites had significantly increased average expression, al-
though RIP-identified targets displayed no significant aver-
age expression change. Targets common to both analyses
had the greatest expression increase, suggesting that TGA
may help uncover the true positives within RIP-identified
targets. In addition, TGA identified many new targets, vir-
tually all of whichwere lowly expressed in vivo, highlighting
a crucial difference between TGA and in vivo immunopre-
cipitation experiments: Cross-linking and pulldown exper-
iments are often limited to probing only targets within
genes with high expression in the conditions that the cells
had been grown. Instead, TGA allows investigation of af-
finity to all possible transcripts simultaneously.

3.3 Design and Engineering of RNA Devices
Using Massively Parallel Rational Design

The flexibility of RNA-HiTS enables investigation of RNA
beyond its capacity to bind proteins. One exciting area of
application is in the field of biological engineering wherein
RNA is used as a programmable tool for control of biolog-
ical systems. The motivation for this molecular engineering
stemmed from the discovery of natural RNA riboswitches,
which are conceptually composed of two pieces: the struc-
tured aptamer that binds a small-molecule “effector,” and
a second region that undergoes a conformational change
in response to the effector, generally resulting in a change
of gene expression through various mechanisms (Tucker
and Breaker 2005). The separation between these two
functions (i.e., the aptamer domain and the resulting
functional consequence) supports that RNAs might enable
modular programming of specific computations within the
cell (Kim and Smolke 2017). However, the design of these
devices is currently limited by imperfect predictive under-

standing of these aptamers and their coupling to confor-
mational changes.

To make progress on this question, the RNA-HiTS
platform was used to measure the response of tens of
thousands of rationally designed RNA riboswitches. These
designs came from scientific “enthusiasts” playing the on-
line game EteRNA. This crowd-based rational approach
enables massively parallel, yet hypothesis-driven science,
as originally shown for RNA secondary structure folding
(Lee et al. 2014). EteRNA players were tasked with design-
ing RNA sequences that would satisfy the “challenge” of
forming the prespecified aptamer domain and changing
another domain’s conformation in response to the effector
molecule (see eternagame.org/web/). The player-generated
designs were tested using RNA-HiTS to detect the response
of each riboswitch, resulting in a score for each riboswitch;
players could then use these scores in subsequent rounds
to optimize their designs. In combination with RNA-HiTS,
this crowd-sourced approach produced thermodynamical-
ly optimal sensors, with binding of the aptamer domain
fully coupled to changes in the conformation of the readout
domain (JOL Andresen et al., in prep.).

3.4 Understanding Sequence Contributions
to RNA Tertiary Structure

A last compelling application of RNA-HiTS is in develop-
ing a predictive model for the RNA folding process.
Although the first step of hierarchical RNA folding (i.e.,
secondary structure formation) may be predicted fairly
accurately for the lowest free-energy state with readily avail-
able software (Turner et al. 1988; Gruber et al. 2008), mod-
els to predict RNA tertiary structure from this secondary
structure are substantially more limited in scope. Current
approaches have focused on obtaining structural character-
ization of the “modules” of RNA tertiary structure—that
is, recurrent RNA elements like helices and junctions that
have similar crystal structures in different RNAs—and then
using these structures like Legos to infer the conformation
of larger RNAs (Jaeger et al. 2001; Petrov et al. 2013; Miao
and Westhof 2017). However, the inherent flexibility of
RNA limits the applicability of these approaches to achieve
thermodynamic understanding of the stability of tertiary
structures (Herschlag et al. 2015). Furthermore, this ap-
proach is limited by the small number of elements for which
high-quality crystallographic information exists.

To approach these challenges, RNA-HiTS was used
to measure the sequence dependence of tertiary structure
formation at high throughput (Denny et al. 2018; Yessel-
man et al. 2018). RNA elements like helices and two-way
junctions were introduced as “guest” motifs into a “host”
system—together, they formed a minimal RNA tertiary as-
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sembly (tectoRNA), whose formation quantitatively de-
pends on the conformational preferences of the integrated
element (Jaeger and Leontis 2000; Geary et al. 2008). For
two-way junction elements, “thermodynamic fingerprints”
were constructed that represented amultidimensional read-
out of the junction’s conformational behavior. Unbiased
clustering of junction thermodynamic fingerprints revealed
classes of junctions with similar conformational preferenc-
es. Differences in conformational behavior were largely
driven by differences in secondary structure (as expected
fromBailor et al. 2010), but also by previously unrecognized
primary sequence attributes like mismatch identity. Con-
formational classes were also useful for inferring structural
behavior. Existing crystallographic conformations were as-
sociated with specific thermodynamic fingerprints, ulti-
mately enabling the identification of structural ensembles
describing the flexible and dynamic behavior of junctions
with similar thermodynamic fingerprints. These “boot-
strapped” ensembles, when combined with ensembles for
RNA helices and a statistical mechanics model for tectoR-
NA assembly formation, were predictive of measured ther-
modynamic fingerprints and outperformed the use of static
structures for predicting these behaviors.

4 CONCLUSION

Initial applications of the RNA-HiTS platform focused
on dissecting the sequence and structural determinants
of RNA–protein interactions. Collectively, these studies
allowed accurate quantification of the subtle contributions
to binding affinity of primary sequence effects, alternate
binding registers, secondary structure effects, and other ep-
istatic relationships between residues not directly involved
in base-pairing (Fig. 4). The quantitative contributions of
each of these elements were identified in the case of the GFP
aptamer and Vts1; and these contributions were further
modeled for any arbitrary sequence in the cases of MS2,
NELF-E, and PUM2. In the future, diverse other protein–
RNA interactions may be interrogated in such a system,
allowing a more complete mapping of the diverse physical
mechanisms that determine RNA–protein interactions.

RNA-HiTS data can complement in vivo cross-linking
and immunoprecipitation experiments, as seen in the cases
of Vts1 and Pum2, by identifying likely false-positive tar-
gets, as well as binding sites in lowly expressed transcripts
that are not able to be probed with cross-linking methods.
The manner by which the in vitro occupancy predicted
by RNA-HiTS measurements is affected by additional ef-
fects in vivo—such as RNA localization and sequestration,
cooperativity with other RNA binding proteins, as well as
helicases that might periodically “reset” the binding state—
remain to be systematically addressed. However, a system-

atic understanding of these other effects is fundamentally
impossible without a “baseline” of expected occupancy of
sites derived from thermodynamic parameters measured in
the absence of these confounders.

More broadly, we anticipate other areas of applications
of “systems biochemistry” approaches like RNA-HiTS.
Multiple groups have used sequencing arrays to investigate
DNA–protein interactions (Nutiu et al. 2011; Boyle et al.
2017), and we anticipate that extending this approach with
multicolor imaging capabilities will begin to unravel the
nature of transcription factor binding cooperativity, and
nucleic acid binding cooperative more generally. Beyond
transcription factors, proteins that can be engineered to
bind diverse nucleic acid targets (e.g., Cas9, Cpf1, TALEN,
Cas13, and AGO proteins) are of special interest. The
potential binding targets of each of these programmable
proteins span an immense combinatorial space, making
high-throughput and quantitative investigations a neces-
sary step in characterizing their behavior for applied and
therapeutic purposes.

With methods such as RNA-HiTS, the biochemical
and biophysical realms have been brought into the high-
throughput era. Now, we as RNA biologists must direct the
immense bandwidth afforded by these approaches to “carve
nature at its joints.” Thus, a significant challenge remains in
designing and engineering RNA libraries to provide maxi-
mal insight into the physical underpinnings of complex
RNA behaviors.
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