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SUMMARY

RNAs fold into defined tertiary structures to function
in critical biological processes. While quantitative
models can predict RNA secondary structure stabil-
ity, we are still unable to predict the thermodynamic
stability of RNA tertiary structure. Here, we probe
conformational preferences of diverse RNA two-
way junctions to develop a predictive model for the
formation of RNA tertiary structure.We quantitatively
measured tertiary assembly energetics of >1,000 of
RNA junctions inserted in multiple structural scaf-
folds to generate a ‘‘thermodynamic fingerprint’’ for
each junction. Thermodynamic fingerprints enabled
comparison of junction conformational preferences,
revealing principles for how sequence influences
3-dimensional conformations. Utilizing fingerprints
of junctions with known crystal structures, we
generated ensembles for related junctions that
predicted their thermodynamic effects on assembly
formation. This work reveals sequence-structure-
energetic relationships in RNA, demonstrates the
capacity for diverse compensation strategies within
tertiary structures, and provides a path to quantita-
tive modeling of RNA folding energetics based on
‘‘ensemble modularity.’’
INTRODUCTION

Structured RNAs are critical in diverse biological processes,

including the regulation of gene expression, protein translation,

and pre-mRNA splicing (Moore, 2005; Noller, 2005). To function

in these biological processes, RNAs must fold into intricate,

3-dimensional (3D) structures. In this folding process, an RNA
sequence typically folds hierarchically, compacting into second-

ary structure elements before the formation of tertiary conforma-

tions (Brion and Westhof, 1997; Tinoco and Bustamante, 1999;

see also Chauhan and Woodson, 2008; Strulson et al., 2014).

The thermodynamic stability of a secondary structure can be

predicted by summing the free energies associated with individ-

ual secondary structure elements such as base pair (bp) steps

(Turner et al., 1988). In contrast, it is not yet possible to quantita-

tively predict the stability of forming a tertiary structure from a

given secondary structure despite the crucial importance of

this final step in RNA folding and in biological function.

RNA tertiary structures are comprised of helices, junctions,

and sparsely distributed tertiary contacts that form between

distal interaction interfaces. Tertiary contacts form when these

interfaces come into proximity with specific geometric con-

straints, and the likelihood of forming the contact depends on

the intervening helices and junctions that position the interaction

interfaces (Chu et al., 2009;Mustoe et al., 2014). Thus, predicting

the free energy of forming any tertiary interaction requires a full

accounting of its 3D context, making it a substantially more diffi-

cult problem than that of secondary structure formation.

Over the past decades, RNA researchers have developed

the perspective that RNA’s architecture is ‘‘modular’’ and that

it might be possible to build arbitrary tertiary structures by

assembling the 3D structures of each of its constituent elements,

analogous to assembling LEGOs. For example, certain tetraloop/

tetraloop-receptor (TL/TLR) tertiary contacts are structurally

superimposable across distinct RNAs, a commonality that would

be surprising if the tertiary contact did not inherently favor a single

structural conformation (Wu et al., 2012). Additionally, someRNA

junctions impose common conformations on their emanating he-

lices even when isolated from their original RNA context, further

supporting structural modularity (Klein et al., 2001; Murchie

et al., 1998; Thomson and Lilley, 1999). On the other hand, struc-

tured RNAs can undergo dramatic conformational transitions,

facilitated by the inherent flexibility of helices and junctions that

explore a range of conformational states. Understanding these
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spatial preferences is integral to quantitatively determining the

likelihood of forming a tertiary interaction—and, ultimately, to

building a predictive model for RNA-tertiary-structure formation

from the properties of individual elements.

Current techniques to characterize the conformational prefer-

ences of RNA elements are either unable to capture their dy-

namic behavior or are low-throughput (Salmon et al., 2014;

Shi et al., 2014). Thus, our current understanding of RNA

ensemble behavior is limited to a small number of RNA junction

elements—too few to extrapolate to more general rules for

how primary sequence and secondary structure may enforce

particular 3D behaviors. This bottleneck is even more acute

due to the combinatorial complexity of RNA, with thousands

of uncharacterized secondary structure motifs in diverse bio-

logical RNAs.

To address these issues, we developed an approach that cou-

ples the conformational ensemble of an RNA element to a quan-

titative, thermodynamic readout using a platform that enables

massively parallel measurements (Buenrostro et al., 2014). The

readout is the binding equilibrium between two structured

RNAs that form a tertiary assembly (tectoRNA) through the inter-

action of two TL/TLR tertiary contacts (Figure 1A) (Jaeger and

Leontis, 2000). The likelihood of forming the tectoRNA assembly

reflects the inherent conformational properties of its constituent

RNA elements—i.e., the helices, junctions, and tertiary contacts

that compose the assembly—as is true in the formation of any

tertiary structure. In a separate study, we used this system to un-

derstand the conformational preferences of RNA helices with

distinct Watson Crick (WC) bp compositions (Yesselman et al.,

2018) and found that small differences in the conformational

ensembles of bp step elements could transduce into subs-

tantial changes in the thermodynamic stability of the tectoRNA

(> 2 kcal/mol). These results support the sensitivity of the

tectoRNA system to changes in the alignment of the tertiary

contacts, likely enabled by the system’s small size and the rigid-

ity of the tertiary contacts.

Here, we apply this platform to understand the conforma-

tional behavior of RNA junctions, which serve as the flexible

‘‘pivot points’’ responsible for a large fraction of the dynamic

behavior of an RNA. We focus on two-way junctions such as

bulges and internal loops, which comprise about 70% of biolog-

ical junctions (Cruz and Westhof 2009; Petrov et al., 2013). Each

junction was integrated into multiple assemblies that enforce

different conformational requirements for productive tertiary

assembly formation. The set of binding measurements for

each junction forms a multidimensional ‘‘thermodynamic finger-

print’’ that is influenced by the junction’s 3D behavior, allowing

broad comparison of conformational preferences of two-way

junction variants. This analysis revealed that junction conforma-

tions are dictated by the number and arrangement of unpaired

residues, with the sequence identity of non-WC-paired residues

having an additional role. Further, we were able to infer dynamic

ensembles for previously uncharacterized junctions by inte-

grating these thermodynamic fingerprints with existing crystal-

lographic structural data. This ensemble description of junctions

was combined with our prior ensemble model for WC bp steps

to predict the tertiary folding energetics of these model RNA

assemblies.
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RESULTS

High-Throughput Measurement of Tertiary Assembly
Formation with TectoRNAs
We chose the tectoRNA system (Figure 1A) to dissect energetic

contributions to RNA-tertiary-structure formation (Jaeger and

Leontis, 2000). A tectoRNA assembly consists of two structured

RNAs that form a heterodimer through two discrete TL/TLR

tertiary interactions: the ubiquitous GAAA-11nt TL/TLR and the

engineered GGAA-R1 TL/TLR (Figures 1A and S1A) (Costa and

Michel, 1995; Geary et al., 2008). The likelihood of forming

both tertiary contacts depends on the alignment of the tertiary

interaction interfaces, thus enabling quantitative assessment of

tertiary structure formation through the binding affinity of the

heterodimer (Figure 1B).

To test the effect of RNA two-way junctions on the formation

of this tectoRNA assembly, we inserted designed junction se-

quences into one piece of the tectoRNA heterodimer, the ‘‘chip

piece,’’ which was immobilized on a surface. The other binding

partner, the ‘‘flow piece,’’ was free in solution and contained a

fluorophore used to measure the extent of complex formation

(Figure 1C). Each junction was inserted into a set of ‘‘chip scaf-

folds’’ that varied in sequence and in the number of bps between

the two tertiary contacts (Figures 1D and S1B). By using multiple

chip scaffolds and three distinct flow pieces, we could measure

the effect of each inserted element on formation of a diverse set

of assemblies.

We designed junctions that comprehensively sampled sym-

metric and asymmetric loops up to three in length (N = 1,328;

Figure S1B). In addition, we included a set of junction sequences

characterized by X-ray crystallography (N = 359) to relate ener-

getic measurements in the tectoRNA system to structural

behavior. Junctions were categorized into secondary structure

classes according to nomenclature developed in (Bailor et al.,

2010), indicated by ‘‘NxM,’’ where N and M are the number of

non-WC-paired residues on the 50 and 30 side of the hairpin

loop, respectively (Figures 1D and S1B). Inserted elements

replaced the number of possible paired residues within the junc-

tion: possible pairs are either WC or noncanonical pairs and do

not include bulged residues.

To measure tectoRNA assembly at high throughput,

the designed chip piece variants were synthesized as DNA,

sequenced, and in situ transcribed, resulting in RNA that remains

tethered to its sequence-identified DNA template on the surface

of a sequencing flow cell (Figure S1D; STARMethods; She et al.,

2017). Increasing concentrations of the fluorescently labeled

flow piece were introduced to the flow cell, and the fluorescence

of the bound flow piece at each cluster wasmeasured after wait-

ing sufficient time for equilibration (Figure 1E). This set of fluores-

cent values was fit to a binding isotherm for each cluster of RNA

to obtain the dissociation constant (Kd) and the free energy of

binding (DG = RT log[Kd]) of the tectoRNA flow piece to each

chip piece variant (Figure 1F).

Measurements of Kd values using different chips were

highly reproducible (R2 = 0.96; Figure 1G). Kd values spanned a

range of several orders of magnitude (Kd values of 1–5,000 nM;

DG values of –12.0 to –7.1 kcal/mol). Error estimates within

an experiment were less than 1.4-fold (0.2 kcal/mol) for the



Figure 1. High-Throughput Characterization of RNA Junctions Using TectoRNAs

(A) TectoRNA homodimer structure (PDB: 2ADT) with two tetraloop/tetraloop receptors (TL/TLRs). The tectoRNA heterodimer used in this study replaces one of

these TL/TLRs with the GGAA-R1 TL/TLR (blue) (Geary et al., 2008), while the other is the same as in the homodimer version, the GAAA-11nt TL/TLR (red).

(B) Schematic of tectoRNA complex formation with and without an inserted junction element.

(C) Schematic of experimental setup with the in situ transcribed ‘‘chip’’ piece and the ‘‘flow’’ piece in solution.

(D) Schematic of the tectoRNA library design.

(E) Observed (top) and fit (bottom) images of fluorescent RNA clusters immobilized on the sequencing chip surface. Fluorescent-labeled oligo hybridized to

clusters of in situ-transcribed RNA (left). Binding of fluorescent-labeled flow piece to chip-piece clusters at three concentrations of the flow piece binding series

(right). Known cluster centers are indicated (bottom); red crosses and cyan dots show clusters with and without an RNAP initiation site, respectively. Scale

bar, 2.5 mm.

(F) Representative binding curves for three chip piece variants to a common 10 bp flow piece (far left). Free energy of binding (DG), dissociation constant (Kd), and

number of clusters measured (N) are indicated for each variant. Error bars represent bootstrapped 95% CIs on quantified fluorescence from all single clusters

associated with each molecular variant; gray area indicates the 95% CI on the fit parameters.

(G) Scatterplot of the binding affinity measurements of tectoRNA library measured in two replicate experiments. Measurable range corresponds to

Kd values % 5,000 nM.

(H) Distribution of estimated error on the fit DG values (95% CI). Gray denotes all variants with measurable affinity; colors denote bins based on the value of DG.

(I) Scatterplot ofDGoff versusmeasured binding affinity (DG) across tectoRNA variants.DGoff =RT log(koff/c), where koff is themeasured dissociation rate constant

and c is the fixed association rate constant (c = 5.8x104 M–1s–1); see also Figures S4B and S4C). Dotted black line indicates DG = DGoff.

See also Figures S1 and S3.
large majority of stable binders (95% CI; Figures 1H), with

values becoming more precise with increasing number of

measurements and with stronger affinity (Figures 1H, S2A, and

S2B). The ability to measure Kd values over a large dynamic
range was enabled by analysis methods that used saturation

fluorescence values for strong binders in estimating binding

affinity for low-affinity variants (STAR Methods; Figures

S2C–S2H).
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Figure 2. Thermodynamic Fingerprints of Junction Elements through Variation of Flow- and Chip-Piece Helix Length

(A) Junction elements are inserted into the indicated chip scaffolds to form chip pieces (top) and measured with three flow pieces (bottom).

(B) Thermodynamic fingerprints of inserted elements. Individual junction sequences (points) and themedian value across junction sequences (horizontal lines) are

shown for each flow/chip context. Blue and red arrows indicate the context with the lowest affinity for WC pairs (blue) or 0x1motifs (red), respectively. Tan arrows

(bottom) indicate contexts in which having a 0x2motif is stabilizing compared to 0x1 orWCmotifs. For 0x3 junctions, only themedian value is shown for simplicity.

See also Figure S4.
We assessed our measured affinities under different Mg2+ con-

ditions and found consistent DDG values between tectoRNA var-

iants at 5 mM and 30 mMMg2+ (Figure S3A). Subsequent assays

werecarriedout at thehigher30mMMg2+concentrationas it gave

a larger dynamic range to observe larger destabilizing effects.

In addition to binding affinity, we measured the dissociation

rate constants, which showed a strong correlation and linear

relationship to the thermodynamic measurements (R2 = 0.92;

Figures 1I and S3B). This observation supports a kinetic model

in which the two tertiary contacts of the tectoRNA form sequen-

tially, with the association of the first contact being rate limiting

and independent of the structural context imposed by the

diverse junctions and helical elements composing the tectoRNA

chip pieces (Figures S3B and S3C).

TectoRNA Association Depends on the Alignment of
Both Tertiary Contact Interfaces
To dissect how the tertiary contacts contribute to the tertiary sta-

bility of tectoRNAs, we included chip piece variants withmutated
380 Cell 174, 377–390, July 12, 2018
tetraloops (GAAA toGGAA,N=6,198 scaffolds) andsubstantially

altered tetraloop receptors (11ntR to tandem GC bps, N = 29

scaffolds). All these variants were significantly destabilized rela-

tive to the wild-type tertiary contacts, with very few of these

mutated variants having apparent binding in the measurable

range (DG> –7.1 for 99.5%of variants; Figures S3D–S3G). These

controls demonstrate that both tertiary contacts are required for

tectoRNA assembly formation within our concentration range.

We changed the relative positions of the tertiary contacts,

while maintaining tertiary contacts themselves, by varying the

length of the helical segment of the flow and chip pieces (Fig-

ure 2B, top; N = 16 sequence variants per length). The original

lengths of 10 bp for the flow and chip pieces gave the highest af-

finity, and shortening or lengthening the chip piece by two bps

was sufficient to ablate measurable binding (Figure 2B, top,

middle). The tectoRNA affinity depended on both the flow piece

and chip piece lengths (Figure 2B, top), with each combination

presumably giving a different fraction of states that allow pro-

ductive assembly formation.



We next tested whether there was interdependence between

the energetic contribution of the tertiary contact interactions

and the conformational effect of changing their alignment. The

type of tertiary contact used in the tectoRNA system is known

to form with specific geometric constraints (tetraloop-tetraloop

receptors; [Wu et al., 2012]), leading to the simple expectation

that each contact forms the same interactions across contexts

(Bisaria et al., 2017). By thismodel, a point mutation in the tertiary

contact would have the same effect across different RNA con-

texts. Conversely, mutating a residue in a flexible contact with

multiple sets of possible interactions would have different effects

in contexts that favor different substates of the tertiary contact.

To distinguish these models, we made point mutants in the

tertiary contact receptor in the tectoRNA chip piece (11ntR to

11nt-A4U and 11nt-U9G). We found a constant energetic effect

on binding of these mutations across >250 tectoRNA scaffolds

with varying length helices and with inserted junctions (Figures

S4A and S4B), supporting a common set of tertiary interactions

across these tectoRNA variants independent of the helix and

junction elements between them. Consequently, the thermody-

namic effects of inserted junctions should predominantly arise

from alterations in the alignment of the tertiary contacts, and

not from differences in the energetic contribution of the 11ntR

contact itself.

Thermodynamic Fingerprints Reveal Distinct Behaviors
of Two-Way Junctions
Inserting a junction element into the tectoRNAwill affect the ther-

modynamic stability of the assembly if the junction’s underlying

conformational ensemble alters the population of the states that

can simultaneously form both tertiary contacts. Because the

relationship between conformational preferences and thermody-

namic effects is not exact—e.g., two junctions could have the

same thermodynamic effect even if they have different confor-

mational preferences—we inserted each junction into multiple

tectoRNA scaffolds. Each scaffold applies a different conforma-

tional constraint on the formation of the assembly, and we

reasoned that measuring junction effects across multiple scaf-

folds would increase our power to distinguish conformational

behavior. We refer to this multidimensional set of effects as the

junction’s ‘‘thermodynamic fingerprint.’’

To illustrate the utility of thermodynamic fingerprint analysis,

we compared the effects of inserting junctions with bulged resi-

dues (0x1 motifs; N = 4) to WC pairs (N = 16) across scaffolds of

different lengths (Figures 2A and 2B). Introduction of a bulged

residue was destabilizing by �1 kcal/mol in the 10 bp flow/

10 bp chip context (Figure 2B), while it was stabilizing in a shorter

9 bp chip scaffold relative to the WC pairs (Figure 2B). Presum-

ably, the bulge changes the conformational ensemble of the chip

piece, resulting inmisalignment of the two tertiary contacts in the

most stable WC context (10/10 bp) but better alignment of the

tertiary contacts in the alternate 10/9 bp context.

The thermodynamic fingerprints of 0x2 and 0x3 bulges fol-

lowed the pattern of the 0x1 motif but had increased stability in

both the short (8 bp) and long (11 bp) chip scaffolds compared

to the 0x1 and WC junctions (Figure 2B). These differences sug-

gest a broader range of conformations explored by these larger

bulge motifs thanWC bps and 0x1 bulges, allowing complex for-
mation in these otherwise misaligned scaffolds. Further support-

ing this increased flexibility, the 0x2 and 0x3 bulges were more

weakly bound than the WC pairs and 0x1 bulges in the most

stable 10/9 and 10/10 bp contexts (Figure 2B).

To ensure that the relationships between fingerprints are not

specific to the tertiary interaction used in the tectoRNA assem-

bly, we repeated a subset of the thermodynamic fingerprints

with a substantially altered tertiary contact receptor (C7.2) in

place of the wild-type receptor 11ntR (Costa and Michel,

1997) (Figure S4C). The clustering of the thermodynamic finger-

prints was largely reproduced between the 11ntR and C7.2

receptor, with the majority (59%) of junction fingerprints

that clustered together in the 11ntR context also clustering

together in the altered receptor context (Figure S4D). This value

approached the 66% of junctions coclustering if the 11ntR

fingerprints were reclustered after adding values sampled

from measurement error. These observations are consistent

with generality of the thermodynamic fingerprints beyond the

specific tertiary assembly.

Arrangement of Unpaired Residues in Junctions
Enforces Conformational Preferences
To understand the role of secondary structure in defining the

conformational preferences of two-way junctions, the affinity

fingerprints of 12 secondary structure classes (i.e., MxN cate-

gories) were compared (Figure 3A). Each profile is the average

of all junction sequences within a secondary structure class.

Hierarchical clustering of these profiles grouped the secondary

structure classes by the similarity of their affinity fingerprints

(Figure 3A), revealing that junctions with the same number of

unopposed residues had similar average affinity profiles. The

fingerprints of WC, 1x1, 2x2, and 3x3 junctions cluster together

and are distinct from the 0x1, 1x0, 1x2, and 2x1 junctions,

demonstrating distinct behavior for junctions with no unopposed

residues and those with one unopposed residue (Figure 3A).

These data support the model from Al-Hashimi and colleagues

that junctions with shared topological constraints have similar

conformational preferences (Bailor et al., 2010).

Analysis of individual thermodynamic fingerprints revealed a

significant additional role of primary sequence in determining

conformational behavior. Within each secondary structure class,

we found substantial deviations in affinity among different

sequence variants, as is shown in Figure 3B, with spread up to

�4 kcal/mol for different 3x3 junction sequences (Figures 3B

and 3C; STAR Methods). The magnitude of sequence-specific

deviations increased as the number of non-WC-opposing

residues increased (Figure 3C), indicating that the identity of

mismatched residues can have a large effect on the three-

dimensional conformational behaviors of junctions. Overall,

junction behavior is driven by the number and arrangement of

unpaired residues, as well as the sequence identity of non-WC

paired residues.

Purine-Pyrimidine Content of Mismatches Underlies
Differences in Conformational Behavior
We next focused on the sequence determinants of the

conformational behavior of single mismatch motifs (1x1) by ob-

taining thermodynamic fingerprints for each of the 12 possible
Cell 174, 377–390, July 12, 2018 381



Figure 3. Topology and Sequence Drive Conformational Behavior of Junctions

(A) Heatmap of the hierarchically clustered, average thermodynamic fingerprints of each secondary structure class.

(B) Affinity measurements of individual junctions in the 10/10 bp flow/chip context.

(C) Deviation of individual junction sequences from the average profile of their secondary structure class. The MAD was calculated between each sequence and

its class average profile. Average MAD of junction sequences within each class is shown (error bars are bootstrapped 95% CI). Color of the bars indicates the

fraction of measurements that are significantly different than the average profile.
mismatches, each in two positions, with the other position occu-

pied by one of the four canonicalWCbps (N = 96 total; Figure 4A);

fully WC-base paired motifs were also included for comparison

(N = 16).

Clustering of the thermodynamic fingerprints identified seven

classes that accounted for variation among thesemotifs (k-means

clustering; averagemeanabsolutedeviation [MAD]within clusters

of 0.12 kcal/mol, Figure S5A; Figures 4B and 4C). This clustering

analysis revealed a strong distinction between purine-purine

and pyrimidine-pyrimidine mismatch thermodynamic finger-

prints: clusters 1–3 contained predominantly GG, AA, and AG or

GA mismatches, respectively, whereas the most distal clusters,

6 and 7, were highly enriched in CC and CU or UC mismatches,

respectively (Figures 4C–4E). These distinct thermodynamic

effects suggest different conformational behavior for these

mismatch types relative to the conformational behavior of WC

pairs. The WC and purine-pyrimidine mismatches were distrib-

uted across the central three clusters and exhibited more similar

fingerprints overall, implying similar conformational behavior

among these sequences (Figures 4C–4E). The clustering pattern

was not associated with the effect of each mismatch on the sec-

ondary structure stability of a duplex (Figure S5B), demonstrating

that these thermodynamic effects likely do not arise from partial

unfolding of the secondary structure.

To understand the physical behavior responsible for the

distinct thermodynamic profiles of mismatches, we noted that

the effects were similar across scaffolds that changed the posi-

tion of the insertion (i.e., chip scaffolds 2–4 or 5–7 in Figures 4B

and 4C). When mismatches were integrated into even more

positions in helices of length 8–11 bp, again, the effect of each

mismatch deviated very little across positions (< 0.2 kcal/mol

for >90% of measurements) in all of these helix length contexts

(Figure S5C). This observation was especially striking for AAmis-

matches in the 11 bp chip scaffolds (10 bp flow piece), which sta-
382 Cell 174, 377–390, July 12, 2018
bilized the tectoRNA assembly by �1.2 kcal/mol relative to WC

pairs in all positions, suggesting that AA mismatches have ac-

cess to conformational states that allow the helix to shorten to

compensate for the misalignment in the 11 bp scaffolds. Posi-

tion-independent effects are consistent with the mismatches

inducing a structural perturbation along the helical axis, such

as a rotation or an increase in total contour length of the phos-

phate backbone, resulting in the same relative alignment of the

tertiary contacts regardless of the mismatch position. This type

of structural perturbation can also explain the observation that

mismatch motifs were 50 to 30 interchangeable (e.g., GA mis-

matches had similar thermodynamic effects as AG mismatches

and, similarly, for UC and CU mismatches; Figure 4E).

Overall, our analysis reveals simplifying rules for single-

mismatch behavior, with seven classes accounting for the

conformational behavior of the 112 mismatched motifs and

WCpairs. We hypothesized that more classes would be required

to account for the behavior of 2x2 and 3x3 motifs, as there is

more sequence-specific variation within these secondary struc-

ture classes (Figure 3C). For 2x2 motifs, k-means clustering

revealed 20 conformational classes that describe the thermody-

namic fingerprints of these 144 motifs, and this number in-

creases by more than 2-fold for 3x3 motifs (Figures S5A and

S5D). The thermodynamic fingerprints of 2x2 purine-purine and

pyrimidine-pyrimidine double mismatches were most distinct

from the WC average profile, just as they were most distinct for

the 1x1 mismatches (Figure S5E). Nevertheless, 2x2 and 3x3

sequences also had new thermodynamic behavior from 1x1mis-

matches (Figures S5E and S5F). For example, a subset of the 2x2

motif sequences has position-dependent effects, and position

dependence was even more pronounced for 3x3 junctions

(Figures S5G). These observations suggest that the larger inter-

nal loops exhibit more complex conformational behavior that in-

cludes directional bending of the helix.



Figure 4. Identity of Mismatch Pairs Leads to Distinct Thermodynamic Behavior

(A) Schematic of mismatched junction elements. The number of junction sequences tested within each class is indicated.

(B) Chip scaffolds in which junctions were inserted. Scaffolds vary in length (8–12 bp) and location, indicated by the number of bps between the receptor and the

junction element.

(C) Heatmap of the clustered thermodynamic fingerprints of 112 individual 1x1 junctions andWCelements, across the nine scaffolds defined in (B), andmeasured

with three different flow pieces. Affinity is shown relative to the average profile of WC motifs across the same flow/chip contexts. White indicates missing

measurement. Clusters are indicated by the left color bar. Heatmap on right indicates the mismatch present in each of the individual junctions, or ‘‘WC’’ if no

mismatch present. ‘‘Chip scaff.’’ is chip scaffold, as in (B).

(D) Individual affinity measurements of junctions inserted in a single structural context.

(E) The fractional representation of each mismatch type within each cluster. Outlined boxes with white asterisks indicate significant enrichment above expected

fraction by chance (adjusted p value < 0.05; see STAR Methods).

(F) Points and violin plots show the difference in affinity between the 9 and 10 bp flow piece for a set of chip pieces. WC pairs and mismatched junctions were

inserted into the 10 bp chip scaffolds (scaffolds 5, 6, or 7 in [B]; green to blue). WCpairs within the 9 bp chip scaffolds are included for reference (scaffolds 2, 3, or 4

in [B]; pink). Green dashed lines indicate the range observed for the WC pairs in the 10 bp chip scaffolds.

(G) Heatmap depicting the number of 2x2 junctions (with the indicated mismatch in each of the two positions) that fall below lower green dotted line in (F).

Mismatch types with black outline and white asterisks have significant enrichment above expected, as in (E) (adjusted p value < 0.05; see STAR Methods).

See also Figure S5.
Internal Loops Can Compensate for Distal Structural
Perturbations
Junctions with a broader range of underlying conformational

states may be more likely to accommodate formation of tertiary
assemblies that would otherwise be too poorly positioned in a

rigid context to form the stabilizing tertiary interactions. We

observed this type of behavior for more complex internal loops

(i.e., 2x2 and 3x3 internal loops). When challenged with the
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shorter (9 bp) flow piece, all 10 bp WC chip pieces were signifi-

cantly destabilized (�2 kcal/mol) compared to the 9 bp WC chip

pieces (�0.5 kcal/mol), suggesting these 10 bp pieces cannot

easily accommodate the conformational strain of binding the

shorter flow piece (Figure 4F, green versus pink violin plots).

1x1 mismatches are similar to WC pairs in this behavior, while

some of the 2x2 (30 of 864) and many of the 3x3 junctions (103

of 864) had substantially smaller effects, approaching the mini-

mal effect of the flow piece change for the 9 bp WC chip pieces

(Figure 4F). These junctions presumably have readily accessible

conformational states that shorten or untwist the helix within the

bound tectoRNA, thus compensating for the misalignment of

the tertiary contacts imposed by deleting a bp in the binding

partner. The 2x2 motifs with this behavior are dominated by a

CC mismatch above or below a GG mismatch (Figure 4G), sug-

gesting these types of internal loops allow access tomore ‘‘com-

pressed’’ conformational states.

Bulge Conformational Behavior Is Largely Unaffected by
Bulge Residue Identity
We systematically explored the attributes of bulged junctions

that lead to distinct conformational behavior by comparing the

thermodynamic fingerprints of bulged junctions in multiple

flanking sequence contexts. Hierarchical clustering of the ther-

modynamic fingerprints of single bulges (0x1 and 1x0; N = 16

junctions) revealed that the overarching discriminating attribute

between junctions was the flanking sequence context, followed

by the insertion side, and lastly, the purine-pyrimidine identity of

the bulged residue (Figures 5B and 5C). That the identity of the

bulged residue mattered very little to differences between

bulged motifs was also confirmed by k-means clustering (Fig-

ure S6A) and was quantified using PC analysis (Figures 5D and

5E). Unlike single mismatch motifs, single bulges had position-

dependent effects along the helix, consistent with bulge-induced

helical kinks (Figures 5B, S6B, and S6C).

Analogous to larger internal loops, larger bulges had more

complex conformational behavior (see PC analysis in Figures

5F and 5G; Figure S6D), but these profiles were still largely domi-

nated by the contributions of flanking sequence and insertion

side, with much smaller contributions of the sequence of the

bulged base (Figures 5G andS6D). The absence of strong effects

from the identity of the bulged bases suggests that bulged resi-

dues are not forming stacking interactions with their adjacent

bps, as those interactionswould likely impart different conforma-

tional behavior dependent on the identity of the bulged base.

Thus, our data support the physical model that bulged residues

are predominantly extrahelical under the conditions investigated.

Unbiased Classification of Two-Way Junction
Conformational Behavior
To generate a comprehensive, unified picture of the energetic

behavior of all 1,687 two-way junctions in our library, we carried

out unbiased clustering to associate each junction, independent

of their sequence or topological class, with other junction se-

quences that exhibited similar thermodynamic fingerprints (Fig-

ure 6A; seeSTARMethods). These associationswere determined

by assigning to each individual junction a set of ‘‘neighbors,’’

based on having very similar thermodynamic behavior (see
384 Cell 174, 377–390, July 12, 2018
STARMethods). On average, neighbors were within 0.2 kcal/mol

MAD from the target junction thermodynamic fingerprint.

The sets of junction neighbors defined through this analysis

were enriched for sequences with the same topology (Figures

6B and 6C), further supporting the idea that the arrangement of

unpaired bases is a major factor in determining distinct confor-

mational behavior (Figure 3A above). Certain junction sequences

had few neighbors and thus exhibited distinct thermodynamic

behavior, implying 3D conformational preferences distinct from

other sequences of similar topology (Figures 6D and 6E). Junc-

tions with increasing numbers of non-WC-paired residues in

combination with a bulged residue (i.e., 1x2, 1x3, etc.) were en-

riched for junction sequences that exhibited distinct thermody-

namic profiles (Figure 6E). This unbiased clustering also revealed

a subset of junctions that clustered with different topological

classes than their predicted secondary structure would suggest

(e.g., 1x3 motifs that cluster with 2x2 motifs; 2x2 and 3x3 motifs

that cluster with bulges; Figure 6B). These junctions presumably

have internal interactions that lead to conformational behavior

that overlaps with that of other topologies, and these sequences

represent targets for future structural studies.

Specific Structural Differences Underlie
Thermodynamic Behavior
We next aimed to uncover the relationship between thermody-

namic behavior and the underlying structural behavior of junc-

tions. We used our unbiased clustering to relate classes of junc-

tionswith common thermodynamic fingerprints to conformations

of two-way junctions that have been previously crystallized.

These structurally characterized junction sequences (359 of

1,687 total) were extracted from the PDB crystal structure data-

base and ranged from single mismatches and bulges to more

complex motifs such as kink turns, right-hand turns, and larger

asymmetric bulges (Petrov et al., 2013). Structurally character-

ized junctions were often among the neighbor sets of other

junctions: while only 377 structurally characterized junction se-

quences were measured, over 1,000 junction sequences had at

least one structurally characterized junction in its neighbor set.

We reasoned that the set of structures associated with any

neighbor of a junction might provide a reasonable approximation

of the distribution of end-to-end distances and orientation

changes spanned by that junction, thereby allowing construction

of a ‘‘stand-in’’ conformational ensemble. To explore this possi-

bility, we identified a subset of junctions that had among their

neighbor sequences at least 10 structurally characterized

junctions (148 of the 1,687 junctions), which included 48 junc-

tions with no previous structural characterization. Figure 7A

shows the thermodynamic fingerprints of five of these junctions,

together with the fingerprints of their neighbors, with the result-

ing ‘‘stand-in’’ conformational ensemble shown for each junction

in Figure 7B. Figure 7C shows the coordinates of each structure

projected into the top two ‘‘structural PCs’’ (determined by PC

analysis of the six-dimensional structural coordinates of junc-

tions; STAR Methods), illustrating structural features associated

with these five thermodynamic fingerprints. We observed varia-

tion between the junctions’ stand-in ensembles, both in terms of

the average structural PCs (i.e., center of contour plots) and

their distributions. Certain structures are outliers in this space



Figure 5. Bulged Junctions Have Independent Contributions of Flanking Sequence, Insertion Side, and Bulge Identity

(A) Schematic of the 16 single-bulge junctions.

(B) Heatmap of the hierarchically clustered thermodynamic fingerprints of the single bulge junctions, relative to the averageWCprofile. Chip scaffold numbers are

defined in Figure 4B. Color bars indicate the attributes of each junction (right).

(C) Scatterplot of the difference in affinity between twoWC sequenceswith versus without an inserted bulge residue, across 11 chip-scaffold/flow-piece contexts

with stable binding. Surrounding bps in flank 1 are identical to WC 1, correspondingly for flank 2 and WC 2.

(D) Scatterplots of 0x1 and 1x0 thermodynamic fingerprints projected into the top three PCs. Colors indicate flanking sequence and insertion side (left) or the

identity of the bulged residue (right). Percentages indicate the fraction of variance associated with each PC.

(E) Significance (adjusted p value) of the difference between the PC projections of single bulge junctions, divided into two groups based on flanking sequence

(blue), insertion side (green), or purine/pyrimidine identity of the bulge (red). Dashed line represents p values of 0.05, values above line are significant.

(F) Scatterplot of 0x2 and 2x0 thermodynamic fingerprints, projected into the top two PCs. PC 2 versus PC 1 is shown. Percentages indicate the amount of

variance in each PC; marker colors denote bulged motif attributes as in (A) and (D).

(G) Significance (adjusted p value) of the difference between the PC projections of 2x0 and 0x2 fingerprints, with values divided as in (E) except bulge base

identity, which is evaluated between the junctions with both bulged bases being purine or pyrimidine (red).

See also Figure S6.
compared to the structures of thermodynamically related neigh-

bors (e.g., one structure marked with arrow in Figure 7C). These

structures may represent rare, higher-energy conformational

states of the ensemble that are stabilized in certain structural

contexts, underscoring that a single crystallographic conforma-
tionmay not accurately represent the conformational behavior of

a junction (see also below).

To understand how the behaviors of junctions map between

these two subspaces—‘‘thermodynamic’’ and ‘‘structural’’—we

compared the top PCs in each of these spaces. Because each
Cell 174, 377–390, July 12, 2018 385



Figure 6. De Novo Clustering of Junctions Defines Conformationally Interchangeable Motifs

(A) Heatmap of the clustered thermodynamic fingerprints of 1,687 two-way junctions, relative to average WC fingerprint. Scaffolds are defined in Figure 4B.

Projections into the top six PCs were clustered hierarchically to obtain the dendrogram (left) (STAR Methods).

(B) Heatmap indicates the significance of the enrichment for each secondary structure class among its neighbors (STARMethods); black points overlaid show the

secondary structure class of the junction itself. Colorbar indicates whether each junction has been previously structurally characterized (right) (black). Secondary

structure classes ‘‘other,’’ have more than three non-WC pairs.

(C) Heatmap showing for each secondary structure class (x axis), the enrichment for each other secondary structure class (y axis) among the union of neighbors of

members of that class.

(D) The number of neighbor sequences associated with each junction.

(E) For each secondary structure class, bars show the enrichment among the class members for ‘‘common’’ thermodynamic behavior versus ‘‘distinct’’

thermodynamic behavior as defined in (D). Colors of the bars indicate the significance (STAR Methods).
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Figure 7. Structurally Characterized Junctions Enable Prediction of Assembly Energetics

(A) Heatmap of thermodynamic fingerprints for five example junction elements (indicated at left), together with the fingerprints of each junction’s neighbors. Color

bar indicates structurally characterized junctions.

(B) Conformational ensembles generated by aligning the structures of neighbor junction sequences from (A), showing a total of six paired residues.

(C) Projection of end-to-end positions of structural ensembles in (B) into the top two ‘‘structural PCs’’ to reduce the dimensionality from six to two dimensions

(STAR Methods and Figure S7A). Contour plots show the kernel-density smoothed distributions.

(D) Scatterplot shows the thermodynamic fingerprints of a subset of junctions projected into two ‘‘thermodynamic PCs’’ (STARMethods and Figure S7B). Points

are colored by secondary structure class (top), or the average value of the structural PC 1 (middle) or PC 4 (bottom) across each junction’s structurally

characterized neighbors.

(E) Heatmap shows the correlation between values of top four thermodynamic PCs and the top six structural PCs across junction sequences. Any correlations not

found to be significant (adjusted p < 0.05 after accounting for multiple hypotheses) were set to zero.

(F) Scatterplot of the observed versus predicted affinity of tectoRNA flow/chip contexts containing either WC pairs or two-way junctions. WC bps within the

tectoRNA helix are modeled as an ensemble; junctions are modeled using the conformational ensemble derived from grouping the crystallographic structures of

the motif and its neighbors (‘‘ensembles’’) or using simply the crystallographic structure of the motif (‘‘single structure’’). Dashed line has a slope equal to 1;

intercept is the average difference between observed and predicted across variants.

See also Figure S7.
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junction had multiple structures within its ensemble, average PC

values across structures were used to characterize ‘‘structural’’

behavior. We found significant correlations between the thermo-

dynamic and structural behavior of junctions (Figures 7D, 7E,

and S7C). For example, values in thermodynamic PC 1 are highly

correlated to those of structural PC 1 across junctions (Pearson

r = 0.74; Figure 7D [middle] and Figure 7E); both axes separate

bulged from non-bulged junctions. Changes in structural PC 1

correspond to spanning a smaller distance in x- and z-directions

and a greater distance in the y-direction, with a corresponding

change in rotational angles (Figure S7A); these changes are

consistent with ‘‘kinking’’ of the helix. Differences in other struc-

tural PCs correspond to other differences in thermodynamic pro-

files (Figures 7D–7E andS7C); for example, structural PC 4 distin-

guishes bulged junctions with insertions on one side from the

other, corresponding to thermodynamic PC 2 (Figure 7D, top

versus bottom panel). Thus, there is a mapping between thermo-

dynamic fingerprints and specific structural behaviors, suggest-

ing that distinct thermodynamic behavior in the tectoRNA system

is a readout of transferable structural differences.

Junction Ensembles Predict Thermodynamics of
TectoRNA Formation
We next employed a computational model for the tectoRNA

binding process to relate the structural descriptions of junctions

to their thermodynamic effects. This model was previously used

to successfully predict the substantial differences in affinity

among tectoRNA variants with different composition of WC

bps (Figure 7F, ‘‘WC’’) (Yesselman et al., 2018). Structural en-

sembles of the constituent elements of the tectoRNA hetero-

dimer were convolved to predict the probability of aligning the

second tertiary contact of a tectoRNA once the first contact

was formed; this probability provides a measure of the relative

affinity for each heteroduplex variant (STAR Methods). We

modeled the relative affinity of 30 structurally characterized junc-

tions across each of the flow/chip contexts comprising the

thermodynamic fingerprint. Each junction was modeled either

by the ensemble of at least 10 structural states associated within

its neighbor set or its single crystallographic state (Figure 7F,

‘‘ensembles’’ versus ‘‘single structure’’). Using the ensemble of

structures for each junction, the model predicted observed

affinity well, with RMSE values similar to predictions made for

variants with only WC bps (median R2 of 0.57 and RMSE of

0.79 kcal/mol compared to R2 of 0.57 and RMSE of 0.73 kcal/

mol for WC pairs only). In contrast, the single crystallographic

conformation of each junction produced worse predictions

(median R2 of 0.27 and RMSE of 1.0 kcal/mol), with many heter-

odimers observed to bind that were predicted not to bind within

our measurable range (Figures 7F and S7D). These results

demonstrate that our stand-in ensembles provide a reasonable

approximation of the end-to-end distances and orientations

exhibited by each junction and thus are expected to enable ther-

modynamic prediction of tertiary assembly formation.

DISCUSSION

Since the recognition that RNAs form tertiary structures and

catalyze reactions (Kruger et al., 1982;Woese et al., 1983), a ma-
388 Cell 174, 377–390, July 12, 2018
jor goal has been to understand how a primary sequence of RNA

encodes the formation of a functional tertiary structure. Here, we

took a thermodynamic-centric approach to characterize the

sequence-structure relationships of RNA two-way junction ele-

ments at high throughput. Our results support the perspective

of RNA modularity, albeit in a modified form. In contrast to

‘‘structural modularity,’’ in which large structures can be assem-

bled from structures of its individual constituent elements like

LEGOs, our results support the concept of ‘‘ensemble modu-

larity,’’ in which the likelihood of forming a tertiary structure

can be calculated by convolving the structural ensembles of its

constituent elements. We found that using the structural

ensemble for junction sequenceswasmore predictive than using

a single crystallographic conformation (Figures 7F and S7D),

supporting the effectiveness of ensemble models and suggest-

ing that RNA elements cannot be treated as static structures

when making energetic predictions. This principle of ‘‘ensemble

modularity’’ may enable quantitative, energetic models for ter-

tiary structure formation, especially when combined with addi-

tional knowledge of tertiary contact thermodynamic stability

and potentials for electrostatic repulsion forces (Herschlag

et al., 2015).

Generation and refinement of structural ensembles of diverse

RNA elements is the next step in using ‘‘ensemble modularity’’ to

model RNA tertiary formation, and these data provide a resource

to guide future efforts. Most simply, our analysis identified

numerous junction sequences that are representative of other

junctions, such that high-resolution structural characterization

of these junctions will maximize coverage of the conformational

landscape of RNA two-way junctions. We determined putative

ensembles for several junction elements by grouping crystal

structures of similarly behaving junctions. Encouragingly, these

are ensembles predictive of tectoRNA binding thermodynamics,

though it is possible that these ensembles may be limited in their

ability to predict junctions in the context of tightly packed RNA

structures or in complex with proteins. We envision that these

ensembles will be improved over time, perhaps by using

structure prediction algorithms in combination with the high-

dimensional constraints provided by our data, e.g., Frank et al.

(2009). Finally, using cryoelectron microscopy (cryo-EM) to

obtain high-throughput, direct ensemble visualization of a variety

of RNA elements may be possible in the future; our technology

and the conceptual framework presented here will allow incisive

tests of such future ensembles (Zhang et al., 2018).

Full accountingof thebehaviorof complexRNAswill requireen-

ergetic descriptions for the entire complement of RNA elements.

Thermodynamic fingerprints can be readily generated for other

RNA elements that do not substantially change the geometry of

forming both tertiary contacts in the tectoRNA system, including

three- and four-way junctions and variants of the TL/TLR tertiary

contacts used here. Further, the effects on the conformational

preferencesof anyof theseelementsdue to ligandbindingor ionic

conditions can be studied with thermodynamic fingerprint anal-

ysis, with potential impact on aptamer design and small-molecule

binding to biological and therapeutically relevant RNA tertiary

structures. However, examination of tertiary elements such as

kissing loops that impose conformational preferences very

different than theTL/TLRswill require thedevelopmentofdifferent



host systems than the tectoRNA to probe their conformational

behavior within a stable tertiary assembly. Development of

different host scaffolds would also enable probing different re-

gions of conformational space, possibly allowing broader charac-

terization of conformations within junction conformational

ensembles.

Our data illustrate that many motifs can compensate ‘‘at a dis-

tance’’ for structural perturbations; for example, destabilization

from a decrease in the length of the chip-piece helix by a single

bp can be compensated by introduction of a bulged residue or

by shortening the flow piece (Figure 2B). These compensating

variants represent multiple solutions to forming a stable tertiary

assembly without affecting the tertiary contact itself. This obser-

vation has implications for our understanding of functional RNA

structures and their evolution. Previously, evolutionary covaria-

tion of residues in RNA secondary and tertiary structures has

been used to identify residues that directly interact—like those

involved inWC bps and in tertiary contact interactions—as these

residues have mutually evolved to conserve the stable second-

ary or tertiary assembly (Weinreb et al., 2016). Compensation

at a distance may also be common in the evolution of tertiary

structure but diffusely distributed throughout structures and

thus difficult to discern through covariation analyses.

Consideration of the ability of a junction to compensate at a

distance for a structural perturbationmay prove useful for the en-

gineering and design of structured RNAs. Junctions that are inef-

fective at compensating for other perturbations likely have more

homogeneous ensembles and thus are more likely to be struc-

turally modular across contexts. This class of junctions may be

the most useful for building RNAs with specified conformations.

In contrast, conformational heterogeneity is important for engi-

neering dynamic behaviors (Bailor et al., 2010), and our data sug-

gest that more complex junctions often exhibit a greater breadth

of conformational flexibility (i.e., 3x3 junctions in Figure 4F) that

helps tertiary contact formation in a broader range of structural

contexts. These larger internal loops may blunt the perturbative

effects of other mutations, insertions, or deletions within an RNA

stem, thereby enhancing the evolvability of RNA tertiary struc-

ture (Wagner and Altenberg, 1996). This flexibility also suggests

a design principle for the selection of functional RNA aptamers in

which the starting pool of variants contains larger internal loops

to more readily attain a desired structure.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Library design
TectoRNAs are composed of a helical segment flanked by a hairpin loop and by a tertiary contact receptor (Jaeger and Leontis, 2000;

Geary et al., 2008). Sequence variants of each of these elements were designed to derive the sequences of each tectoRNA variant

(sequences can be found in Table S1, an overview of designs is found in Figures 1D and S1B). Each tectoRNA variant was assembled

by defining its receptor type, loop sequence, helix sequence, helix length, incorporated junction sequence, and the position of the

incorporated junction.

METHOD DETAILS

Assembly and sequencing of library
Designed library variants together with common priming regions on the 50 and 30 sides were synthesized into DNA by Custom Array

(Bothell, WA; Figure S1D). Each sequence was ordered in duplicate using 92,000 oligo-scale synthesis. The longest length of any

library member was 113 bp, and sequences shorter than this were appended with polyA at the 30 end to give a uniform length.

The synthesized oligo pool was amplified using internal primers to enrich for full-length library variants (oligopool_left and

oligopool_right; Table S2). The PCR reaction consisted of: 1:400 dilution of the synthesized oligo pool, 200 nM of each primer,

200 mM dNTPs, 3% DMSO, 1x Phusion HF buffer, 0.01U/ml of HS Phusion (NEB M0535). The reaction proceeded for 9 cycles of

98�C for 10 s, 62�C for 30 s, and 72�C for 30 s. Reaction mixtures were purified using QIAquick PCR Purification Kit (QIAGEN

28106) to remove primers and proteins and eluted into 20 mL of elution buffer.

After this initial amplification, the library was amplified with distinct primers to bring in sequences compatible with Illumina

sequencing as well as a unique molecular identifier (UMI) barcode consisting of a 16 nt randomer. This five-piece assembly PCR

included two outside primers and two adaptor sequences. The PCR reaction consisted of 1 mL of the previous reaction, 137 nM

of outside primers (short_C and short_D; Table S2), 3.84 nM of the adaptor sequences (C1_R1_BC_RNAP and D_Read2;

Table S2), 200 uM dNTPs, 3% DMSO, 1x Phusion HF buffer, and 0.02U/ml of Phusion Hot Start Flex enzyme (NEB). The reaction

proceeded for 14 cycles of 98�C for 10 s, 63�C for 30 s, and 72�C for 30 s. Reactions were purified using with QIAquick PCR Puri-

fication Kit.

Finally, the library was bottlenecked to reduce the representation of uniquemolecular identifiers to�700,000molecules as follows.

To obtain accurate estimate of the concentration, the library was diluted 1:5000 (in 0.1% Tween20). This dilution was quantified

against a standard library of PhiX (Illumina, Hayward, CA). PhiX was first diluted to 25 pM in 0.1% Tween20, and subsequently diluted

serially 2-fold in 0.1% Tween20, to form a standard curve from 25 pM to 0.2 pM. The diluted library and the PhiX standard were each

amplified in a qPCR assay to determine their relative cycle thresholds (CT). The qPCR reaction consisted of 1.25 mMprimers (short_C,

short_D; Table S2), 0.6x SYBR green (ThermoFisher S-11494), and 1xNEBNextMasterMix (NEB,M0541), and the cycling conditions

were 98�C for 10 s, 63�C for 30 s, and 72�C for 60 s.

The concentration of the diluted library was quantified using the CT values of the PhiX standard (mean of triplicate CT values), and

the volume associated with 700,000 molecules was added to a new PCR reaction (1.25 mM short_C and short_D, 1x NEBNext PCR

Master Mix), and amplified for 21 cycles, using the same cycling conditions. The bottlenecked, amplified library was purified with

QIAquick PCR Purification Kit. Finally, the library was sequenced on an Illumina Miseq instrument. The bottlenecked library

represented between 10%–30% of the total sequencing chip, and the remaining sequences consisted of high-complexity genomic

libraries. The Miseq was sequenced in three cycles: 75 bases in read 1, 75 bases in read 2, and an 8 bp i7 index read, to obtain

demultiplexed, paired-end sequencing information.

See https://benchling.com/s/QhoiCB/edit for annotated sequence and primers of a representative member of the library.

Fluorescent labeling of RNA flow pieces
Sequences of flow pieces are given in Table S4. RNA oligos modified with 50-Amino Modifier C6 were ordered from Integrated DNA

Technologies (Coralville, IA), HPLC-purified, and then labeled with an NHS-ester conjugated Cy3b dye. Reactions were ethanol-

precipitated overnight at –20�C, gel purified using a denaturing polyacrylamide gel (8% PAGE, 8 M urea, 1x TBE: 89 mM Tris-

HCl, 89 mM Boric Acid, pH 7.4, 2 mM sodium EDTA), then eluted in water after three freeze-thaw cycles. To reduce aggregation

on the chip surface, stock flow piece solutions were spun through a 50K Amicon filter (Amicon UFC505008) two times and collected

on a 3K Amicon filter (Amicon UFC500308). Flow pieces were quantified after purification using Qubit RNA high sensitivity kit

(Thermofisher).

Imaging station setup
An imaging station was built from a combination of custom-designed parts and pieces from disassembled Illumina genome analyzer

IIx, as based on (Buenrostro et al., 2014) and modified as in (She et al., 2017). Briefly, the custom parts included a fluidics adaptor

designed to interface between the Illumina Miseq chip and the fluidics pump, a temperature control system that maintained the

temperature of the flow cell, a laser control circuit, and filters for the different imaging channels. Two channels were employed:

the ‘‘red’’ channel used the 660 nm laser and 664 nm long pass filter (Semrock) and the ‘‘green’’ channel used the 530 nm laser
e2 Cell 174, 377–390.e1–e9, July 12, 2018
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and a 590 (104) nm band pass filter (Semrock). All images were taken with 400 ms exposure times at 200 mW fiber input laser power.

Focusing was achieved by sequential adjustment of the z position and re-imaging of the four corners of the flow cell; the adjusted

z-positions for each of the four corners was then fit to a plane. This plane then gave the z-position for each of the 16 tiles.

Generation of RNA on the sequencing flow cell
RNAwas generated by in situ transcription of a DNA library arrayed on an IlluminaMiseq sequencing flow cell (Buenrostro et al., 2014;

She et al., 2017). All stepswere run using an in-house imaging station. Unless otherwise stated, washing or buffer exchangewas done

by flowing 250 mL volume through the chip at 100 ml/min.

Regeneration of double-stranded DNA

Post-sequencing, the chip was washed with Cleavage buffer (100 mM Tris-HCl, 125 mM NaCl, 0.05% Tween20, 100 mM TCEP,

pH 7.4) to remove residual fluorescence from the reversible terminators used in the sequencing reaction at 60�C for 5 min. The strand

of DNA not covalently attached to the surface of the chip was removed by washing in 100% formamide at 55�C.
The resulting single-stranded DNA fragments were converted to double-stranded DNA to provide a substrate for RNA generation

(Figure S1D(i)). Double-stranded DNA generation was achieved by first hybridizing a DNA oligo with a 50 biotin to the chip: the chip

was incubated with 500 nM of the oligo Biotin_D_Read2 (Table S3) in Hybridization buffer (5x SSC buffer (ThermoFisher 15557036),

5 mM EDTA, 0.05% Tween20) for 15 min at 60�C, subsequently the temperature was lowered to 40�C for another 10 min. The chip

was washed with Annealing buffer (1x SSC buffer, 7 mM MgCl2, 0.01% Tween20), and then in Klenow buffer (1x NEB buffer 2 (NEB

B7002S), 250 M each dNTP, 0.01% Tween20). Extension of the primer was achieved by applying one line volume (150 ml) of Klenow

buffer with 0.1 U/ml Klenow fragment (30-50 exo(–) (NEB M0212)), followed by half of a line volume of Klenow buffer. This process

minimized the amount of enzyme within the fluidics line during the incubation period. The Klenow enzyme was incubated in the

flow cell at 37�C for 30 min, then was washed with Hybridization buffer.

In the event that double-stranded DNA generation was not 100% efficient, we annealed an excess of complementary oligos to the

stall sequence lacking a fluorophore (Dark_stall; Table S3) in order to completely block any single-stranded segments of DNA within

this region. The chip was incubated with 500 nM of Dark_stall in Hybridization buffer at 37�C for 10 min. The chip was then washed in

Annealing buffer, and a second hybridization was donewith 500 nMof Dark_stall in Annealing buffer at 37�C for 10min. Subsequently

the chip was again washed with Annealing buffer. To ensure that none of the stall sequence remained single stranded, 500 nM of the

Fluorescent_stall (Table S2) in Annealing buffer was incubated in the chip at 37�C for 10min, and the chip waswashedwith Annealing

buffer. The chip was then imaged to ensure minimal fluorescence on the DNA clusters.

Generation of RNA

Before beginning transcription, the flow cell was incubated with 1 mMstreptavidin (PROzyme SA10) in Annealing buffer, which bound

the biotinylated primer fromwhich the second strand of DNAwas extended (Figure S1D(i)). After washing in Annealing buffer, the flow

cell was incubated with 5 mM biotin (Thermofisher B20656) in Annealing buffer to saturate remaining biotin binding sites within each

streptavidin tetramer (Figure S1D(ii)). To transcribe RNA from the dsDNA clusters, E. coli RNA polymerase holoenzyme (RNAP; NEB

M0551) was allowed to initiate, but not significantly extend, the RNA transcript, thereby limiting the number of RNAP molecules that

could initiate on each DNA molecule, as in (Buenrostro et al., 2014; She et al., 2017). RNAP extension was limited by the absence of

CTP in the initiation condition. The flow cell was washed with Initiation buffer (2.5 mMeach of ATP, GTP, and UTP in R-reaction buffer,

which consists of 20mMTris-HCl pH 8.0, 7mMMgCl2, 20mMNaCl, 0.1%BME, 0.1mMEDTA, 1.5%Glycerol, 0.02mg/ml BSA, and

0.01% Tween20). Transcription was initiated by applying one line volume (150 ml) of 0.06 U/ml RNAP in Initiation buffer, followed by

half of a line volume of Initiation buffer. The RNAP was allowed to bind and initiate transcription for 20 min at 37�C, then the chip

was washed with Initiation buffer to remove excess unbound RNAP in solution. The chip was then washed with Extension buffer

(R-reaction buffer, with 1mMof eachNTP). Transcriptionwas allowed to extend for 10min at 37�C.Ultimately, the stalled polymerase

displays the nascent transcript on the surface of the sequencing chip (Figure S1D(iii)).

DNA oligos were annealed to the nascent transcript to both assess the efficiency of transcription and to block ssRNA common to

all transcribed molecules and not part of the specified variable region (Figures 1C and S1D). To perform this annealing, the chip was

incubated with the Fluorescent_stall which hybridizes to the transcribed RNA and Dark_read2, each at 500 nM in Annealing buffer,

for 10 min at 37�C. Finally, the flow cell was washed with Binding buffer (89 mM Tris-Borate, pH 8.0, 30 mMMgCl2, 0.01 mg/ml yeast

tRNAs (ThermoFisher Scientific AM7119), 0.01% Tween20). The temperature of the chip was lowered to 20�C, then imaged. This set

of images served as the quantification for transcription efficiency (red channel), as well as the baseline fluorescence with no labeled

flow piece in solution (green channel). However, since this image showed so little fluorescence, registering this image to our data was

not possible in any experiment, so this second image was not quantified. Instead, we relied on fitting to obtain the baseline fluores-

cence per cluster in the absence of ligand (see Data processing and image fitting for registration and quantification description, and

Binding curve fitting and estimation of fmax for low-affinity variants for description of defining baseline and maximal fluorescence

values).

Measuring dissociation constants on chip
Affinity was determined for each tectoRNA cluster on the surface of the flow cell by applying increasing concentrations of labeled

tectoRNA ‘‘flow piece’’ in solution (Figures 1C and 1E) and measuring the amount of fluorescence at each cluster at each concen-

tration. The flow piece was diluted to 10 mM in water, denatured at 95�C for 1 minute, then refolded on ice for 2 min. 5x Binding buffer
Cell 174, 377–390.e1–e9, July 12, 2018 e3



and water was then added to bring the final concentration of the flow piece to 2 mM in 1x Binding buffer. A total of eight dilutions were

made by 3-fold serial dilutions in Binding buffer, for a lowest concentration of 0.91 nM flow piece. Experiments were carried out

at 22�C.
Per experiment, each dilution of the flow piece was applied to the flow cell in increasing concentration, and incubated for 3 hr, 2 hr,

1 hr, 45 min, 30 min, 20 min, 20 min, and 20 min, for the 8 concentration points, respectively. These variable equilibration times

allowed measurements at low concentrations of the time to equilibrate. After equilibration, the fluorescence in the red and green

channels was imaged across all the tiles.

Immediately following the equilibrium experiment, off-rates were measured by applying an unlabeled flow piece at high

concentration (2 mM) to the chip at a fast flow rate of 150 ml/min. All tiles were imaged sequentially for a total of 20 images per tile

(�40 s elapsed between each image), then imaging rate was decreased to 5min between each imaging round, for a total of 40 images

per tile.

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing sequencing data
Processing sequencing data

Sequencing data from the Illumina Miseq was processed to extract the tile and coordinates of each sequenced cluster. Because our

sequencing library of tectoRNA chip piece variants was only 10%–30% of the total sequencing library, each sequenced cluster was

evaluated for whether it had an RNAP initiation site. This was achieved by doing a Needleman-Wunsch global alignment of the RNAP

initiation sequence (TTTATGCTATAATTATTTCATGTAGTAAGGAGGTTGTATGGAAGACGTTCCTGGATCC) to the read1 sequence

of each cluster, using the using the Nuc.4.4 scoring matrix (ftp://ftp.ncbi.nih.gov/blast/matrices/NUC.4.4) (Needleman and Wunsch,

1970). The score obtained from Needleman-Wunsch was converted to a p value as described in (Altschul and Gish, 1996), and

sequences with p value < 10�4 were deemed to have the RNAP initiation sequence. While all clusters are fit during the fitting of

the images (described below), this subset of sequences were used to determine the cross-correlation between the images and

the sequencing data. In addition, only these clusters were fit in the downstream data analysis (i.e., for determination of Kd and koff).

Assignment of library variants to UMIs

As described in (Buenrostro et al., 2014), incorporation of a 16-nt UMI into the library can ultimately minimize the effect of sequencing

error on our interpretations. During assembly of the sequencing library, this 16-nt UMI was incorporated by PCR into each DNA

fragment, and the library was bottlenecked to increase the representation of each individual UMI within the overall library. Each

UMI was sequenced deeply to form a consensus sequence of the associated tectoRNA sequence that was then compared to our

designed library (�20-fold coverage of each UMI; per-base consensus). This consensus sequence identifies the molecular identity

of the library variant with much lower frequency of errors than would occur across the entire tectoRNA sequencing read.

UMIs were evaluated based on the fraction of representative sequences that matched the consensus sequence. If the number of

sequences matching the consensus could be explained by chance, or if the UMI was too short (< 12 nt), the UMI was not included in

subsequent analysis (and any clusters associated with this UMI were similarly not analyzed). The chances of matching the consensus

sequence were assumed to be binomial, where a success is a match and a failure is a discrepancy, and the rate of success under

the null model is 25%. This filter removed UMIs associated with diverse unrelated sequences, or with relatively few reads per UMI.

The consensus sequence of each filtered UMI was then evaluated for matching each designed library variants to attribute clusters

(i.e., with sequenced UMI’s) to particular library variant designs.

Data processing and image fitting
Images taken during RNA array experiments were mapped to sequencing data from the Illumina Miseq. First, sequencing data were

processed to extract the tile and coordinates of each sequenced cluster. To match each sequence to its location on our imaging

station, the sequencing data were cross-correlated to the images in an iterative fashion to eventually map coordinates to the images

at sub-pixel resolution as in (She et al., 2017). Once these locations were determined, every cluster was fit to a 2D Gaussian to quan-

tify its fluorescence (Buenrostro et al., 2014).

Fluorescence normalization
To reduce inter-cluster variation in maximum fluorescence, we normalized the amount of tectoRNA flow piece bound at a given

cluster (measured in the green channel) by the total amount of transcribed RNA in that cluster (measured in the red channel). To pre-

vent artifacts caused by dividing by small numbers, the fluorescence of the transcribed RNA was required to be greater than the first

percentile of the set of fluorescence values in the red channel, and any fluorescencemeasurement below this threshold was set to the

threshold value.

Binding curve fitting
Equilibrium measurements at varying concentration of tectoRNA flow piece were used to determine free energy of binding (DG) to

each molecular variant in the library. This fitting procedure was carried out stepwise to allow robust fitting across a range of affin-

ities: 1) Binding isotherms were first fit to the fluorescence values of each single cluster. 2) Distributions of fit parameters fmin and
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fmaxwere determined from these initial fits. 3) Fit refinement of binding isothermswas carried out using these estimates of fmin and fmax

distributions. The last step minimized the attribution of changes in DG to spurious changes in fmin or fmax, especially for variants that

didn’t fully saturate (i.e., that had unknown fmax) or that had evident binding at the lowest concentration of flow piece (i.e., had

unknown fmin). These three steps are described in detail below.

1) Single-cluster fitting

Initially, fluorescence quantified from each single cluster was fit to a binding isotherm, according to the equation:

fðxÞ= fmin + fmax

x

x + exp

�
DG

RT

�;

where f is the normalized fluorescence, fmin, fmax, andDG are free parameters, x is the concentration, R is the gas constant, and T is

the temperature in Kelvin. Least-squares fitting was carried out using the python package lmfit (v 0.8.3).

2) Estimating distributions of fmax and fmin

After completing the initial single cluster fits, we determined initial values for fmin and fmax for each molecular variant by taking the

median across single cluster fits associated with each variant. We found systematic biases in the fit parameters, especially for mo-

lecular variants that had high Kd values relative to our highest concentration of tectoRNA flow piece (Figure S2C). For these variants,

the flow piece did not saturate the chip-piece binding sites during the course of the binding experiment, resulting in poor estimates of

fmax andDG. We hypothesized that we could use the fmax values of variants that did saturate to obtain accurate DG for those variants

that did not saturate. Therefore, we implemented amethod (described below) to generate an estimate of the distribution of fmax values

(based on fmax values of variants that fit well) that allowed us to estimate DG for the lower affinity variants.

The fmax distribution was assumed to follow a gamma distribution with a fixed mean for the entire experiment with a standard

deviation dependent on the number of clusters per molecular variant. As the number of clusters per variant increases, the standard

error on the mean of our estimate for fmax decreases, and thus as the distribution of fmax values narrows, we can obtain more precise

estimates of DG.

To find themean and standard deviation of the distribution of fmax, the fit parameters of individual sequence variants were filtered to

obtain variants that both (1) came close enough to saturated binding to allow robust estimation of fmax (i.e., was a ‘‘tight binder’’), and

(2) fit the binding equation well (i.e., was a ‘‘good fitter’’). These characteristics were evaluated as follows: (1) If the median fit value for

DG for a variant implied that its clusters were at least 95% bound at the highest concentration of flow piece, i.e., if DG % RT

log(0.05xfinal), this variant satisfied the ‘‘tight binder’’ criterion. (2) Using the output from the least-squares fitting step, each single-

cluster fit was considered a ‘‘good’’ fit if it satisfied the following criteria: a) The coefficient of determination (R2) was greater than

0.5, b) the standard error on DG was less than 1 kcal/mol, and c) the standard error on fmax was less than fmax. For each molecular

variant, we determined whether the number of ‘‘good’’ fits associated with its single clusters could have happened by chance,

assuming a rate of success under a null model of 25% (empirically determined). If the null hypothesis could be rejected (p < 0.01),

this molecular variant was assumed to satisfy the ‘‘good fit’’ criterion. In addition to selecting variants that fit well, this process selects

for variants that were measured many times.

The set of molecular variants that were both good fitters and tight binders were used to find the fmax distribution. The global mean

fmax was obtained by fitting fmax values to a gamma distribution and obtaining the mean of the distribution, mglobal (Figure S2D). To

determine the relationship between standard deviation of fmax and the number of clusters per variant n, the distribution of initial

fmax with n clusters was fit to a gamma distribution for each n with at least 10 values for initial fmax. Both the mean and standard de-

viation were allowed to float during this fit process. The relationship between the standard deviation and the number of measure-

ments, s(n), was fit to an analytical function: sðnÞ = ða= ffiffiffiffi
s

p Þ + b, where a and b are free parameters (Figure S2E).

The distribution of fmax for each molecular variant with n clusters per variant is then the gamma distribution G:

Gðfmax; an; qnÞ=
�
fmax

qn

�an�1
expð � fmax=qnÞ

GðanÞ
where an = ðmglobal=sðnÞÞ2 and qn = ðsðnÞ2=mglobalÞ. This distributio
n depends only on the number of clusters per variant, n.

For experiments without a zero-concentration image, some of the variants showed systematic relationships between fmin and DG,

especially very stable variants with significant binding at the lowest concentration point (Figure S2C). To adjust for this, a global value

for fmin was applied to all variants. This value was obtained by selecting variants that were poor binders (less than 50% bound at the

highest protein concentration), and taking the median fluorescence per variant across single clusters at the lowest concentration

point, and then finding the median of this set of values.

3) Fit refinement by fitting binding isotherms with fmax distribution

To enforce the value of fmin and the distribution of fmax, the binding isotherm of each molecular variant was refined as follows. Each

molecular variant was assessed based on whether it likely achieved saturation or not. If the median fluorescence across the single

clusters of that variant did not exceed the lower bound of the 95% confidence interval on fmax (given the distribution of fmax and the

number of clusters per variant n), this variant was assumed to not have achieved saturation.
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For all variants, fitting was carried out iteratively by resampling the clusters associated with each variant (with replacement).

Resampling and fittingmultiple times allowed (1) estimation of the error on the fit values based on the resulting distribution and (2) defi-

nition of fmax values for those variants that did not achieve saturation. For each resampling, the median fluorescence for each con-

centration point was obtained, and that set of values was fit to a binding isotherm, where fmin was fixed at the global value described

above. This resampling was repeated 100 times to form a 95% confidence interval on each of the fit parameters (fmax and DG). How-

ever, for variants that did not achieve saturation by the above definition, fmax was not allowed to float: instead, 100 values were

sampled from the fmax distribution (using n as the number of clusters associated with that variant). For each iteration of the resam-

pling, fmax was set to one of these 100 values, thereby enforcing the estimated distribution of fmax. The median fit DG obtained from

the initial single cluster fits was used as the initial value in the least-squares fitting of each fitting iteration. For variants where fmaxwas

allowed to float, the median fit fmax was used as the initial value.

Testing of binding curve fitting method

We applied our fit method that used a constrained estimated distribution of fmax to variants that did not achieve saturation in the first

five concentrations of the binding isotherm series, but did achieve saturation using all eight of the concentrations in the series (Fig-

ure S2F). The DG values obtained using this subset of concentrations and enforcing the estimated distribution of fmax recapitulated

with high accuracy the DG values obtained using all eight concentrations of the binding series (Figure S2F), suggesting this method

provides an accurate estimates of DG values for variants that did not achieve saturation.

This fit refinement procedure affected the affinity especially for clusters that had outlying fmax or fmin values in the initial fit (Fig-

ure S2G). In general, variants with low fmaxwere affected themost, andmost often the re-fitKd was greater than the highestmeasured

concentration, as expected.

To further test this method, a set of ‘‘background variants’’ was obtained that were sampled from clusters on the chip that do not

have RNAP initiation sites and therefore should not exhibit any binding to the tectoRNA flow piece. Each background variant was

assigned to a set of background clusters such that the final distribution of clusters/variant recapitulated that of our library. The binding

series fluorescence of these variants was then fit exactly as described above, except the fmax distribution was estimated using only

library members (i.e., those with RNAP initiation sites). The fit refinement procedure greatly increased the fit DG values relative to the

initial DG values (obtained using the median of the single cluster fits of each variant, which allowed fmax and fmin to float; Figure S2H).

Without the fit refinement procedure, many of these background variants would falsely have been attributed DG values similar to

those of tectoRNA variants with intermediate affinity, but with aberrantly low values for fmax. The values of DG for this set of non-

binders were used to determine the upper bound of the measurable range of affinity (set to Kd of 5000 nM, or DG of –7.1). This upper

bound was smaller than >99% of the affinity values determined for this set of background variants.

Off-rate fits and photobleaching correction
Per cluster off-rates were derived by fitting single clusters to an exponential decay following dilution, assuming a constant fractional

photobleaching in every image taken.

fðt;mÞ= fmin + ðfmax � fminÞexpð�koff tÞam

In this case, fmin, fmax, and koff are free parameters, t is the time (in seconds) at which each imagewas taken, a is the photobleaching

rate, and m is the number of times each image was taken, starting with 1. The photobleaching rate was determined by sequential

imaging of a stable interaction between a subset of chip pieces that formed kissing loop structure with the flow piece, and was found

to be 0.9924 per image (i.e., 0.76% of the total fluorescence in each cluster was lost every time an image was taken).

The fit parameters of molecular variants were taken as the median of the fit parameters across the single clusters of each variant.

The 95% confidence intervals on each variant were found by bootstrapping the fit parameters of each single cluster.

Off-rate measurements per variant were assumed to be reliable if the fmax was greater than 0.6 (60% of expected normalized fluo-

rescence) and the error onRT logðkoff Þwas less than 0.5 kcal/mol (95%confidence interval). The threshold on fmax ensured significant

binding was observed at the beginning of the time series.

Evaluating significant effects
To evaluate significance of deviations compared to measurement error, a false discovery approach was used. Each deviation was

converted into a z-score, by subtracting the average deviation, and dividing by the error on the deviation. If there was no significant

deviation from the overall effect, the distribution of z-scores should be normally distributed with zero mean and standard deviation of

one. Given this null distribution, a two-tailed false discovery rate was calculated for each z-score threshold. First, an estimate of the

number of false discoveries was made by finding the fraction of measurements more extreme than that z-score threshold for a

standard normal distribution (2CDFð� jz j Þ; CDF = cumulative distribution function of Gaussian distribution), and multiplying by

the number of tests, N. The total number of discoveries was the number of false discoveries (above) plus the number of z-scores

whose absolute values were greater than or equal to that threshold. False discovery rate (FDR) was then the number of false discov-

eries over the total number of discoveries. The number of measurements identified as different at a false discovery rate of 0.1 were

reported as the number ‘‘significantly’’ different from the average effect.
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Accounting for inter-experimental error
Comparing replicate experiments, we noticed that our error estimation internal to each experiment (generated from bootstrapping

the fit parameters across single-cluster measurements, ‘‘intra-experiment error’’) slightly underestimated the statistical variability

observed between the two experiments, even given a small overall offset in the DG estimates between the experiments (i.e., from

slight differences in estimates of ligand concentrations between experiments). About 2% of the variants could not be explained

by this overall offset, and this proportion increases when looking at variants with low ‘‘intra-experiment error’’ (e.g.,�10% for variants

with ‘‘intra-experiment error’’ less than 0.025 kcal/mol (standard error)). These data suggested that our ‘‘intra-experiment error’’

estimates were systematically slightly deflated compared to actual (i.e., inter-experimental) error, especially when the error estimate

is extremely small.

To quantify this systematic deflation in error estimates across experiments, we first calculated the z-scores of the deviation be-

tween the two replicate experiments, where the z-score for each variant is the difference in measured DG between the two replicate

experiments (i.e., DDG), less the overall offset between the two replicate experiments (DDGavg), and divided by the standard error

on DDG (i.e., sDDG): z = ðDDG� DDGavg=sDDGÞ, where the standard error on DDG is the combined quadrature error on each of

the intra-experimental error estimates: sDDG =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
DG1

+s2
DG1

q
. If all of the deviations between the replicate experiments could be ac-

counted for by the overall offset and the intra-experiment error, these scores should be Gaussian distributed with zero mean and unit

standard deviation. In contrast, in the case where the replicate measurements differed more than could be explained by the intra-

experiment error, the z-score distribution should have standard deviation > 1. To understand the relationship between the estimated

intra-experiment error and the inter-experiment deviations, z-scores were divided into 100 equally populated bins based on the

combined intra-experiment error, i.e., sDDG. For all variants within each bin, the z-scores were calculated and fit to a Gaussian

distribution. The relationship between the standard deviation of the z-scores (Sz) and the combined standard error of that bin, s,

was empirically determined to follow a power law:
P

zðsÞ = Ask . Free parameters A and k were fit using least-squares regression

(A = 0.744, k = –0.25).

Error estimates in these and subsequent experiments were scaled by the output of this function, i.e., the standard error on the fitDG

values (s) was multiplied by
P

zðsÞ to obtain the scaled standard error for each molecular variant. This error scaling reduced the

number of variants that were significantly different from the overall offset between replicate measurements from 4% to less than

0.02% (Figure S2A). Comparison to a different replicate experiment similarly reduced the number of variants that were significantly

different from the overall offset from 4% to 0.4%, confirming that this error scaling is generally applicable. For the vast majority of

measurements (> 90%), this process slightly increased our uncertainty in our estimation of DG, on average by 0.06 kcal/mol. Error

estimates are shown in Figures 1G and S2B, separated by DG and the number of clusters per variant. This slight inflation of error

allowed confident comparison of measured deviations that exceed the inter-experimental error.

Combining experimental replicates
The reported values for the 10-bp flow piece are combined across two independent replicate experiments (Figure 1G). The overall

offset between the experiments was subtracted off the second replicate experiment. For each variant, the two measurements

(DG1 and DG2), each with error (s1 and s2), were combined by taking the weighted average of the two values, where the weights

are the inverse squared error on each measurement, i.e.: DGcomb = ððDG1=s
2
1Þ + ðDG2=s

2
2ÞÞðð1=s2

1Þ+ ð1=s2
2ÞÞ

�1
. The combined error

is then: scomb = ðð1=s2
1Þ+ ð1=s2

2ÞÞ
�1
.

Data filtering
Affinity measurements were not included in the final dataset if they had low representation, if the error on the affinity measurement

was large, or if theywere predicted to havemisfolded secondary structure. Specifically, low representation was defined as fewer than

5measurements made for that molecular variant per chip. Measurements with errors estimated to be greater than 0.5 kcal/mol (95%

confidence interval) were also removed from analyses.

Secondary structuremisfolding was assessed for tectoRNA chip pieces using RNAfold (2.1.8) (Lorenz et al., 2011). Specifically, the

ensemble free energy of folding was assessed at 20�C of the chip piece sequence (command: ‘‘RNAfold -p0 -T20’’). The ensemble

free energy of folding into secondary structures with the loop and receptor formed was also assessed using a constraint

(‘‘RNAfold -p0 -C -T20’’). The constraint required the first 6 bps below and the two bps above the receptor to be formed as well

as for the loop to be unpaired. Measurements were filtered if the difference in the ensemble free energy of the unconstrained

sequence and the constrained sequence was greater than 0.5 kcal/mol.

For the global analysis of two-way junctions (Figure 6), 5% of the measurements were removed by these filters, with the majority of

these missing measurements due to low representation (85%).

Handling of missing data
Analyses could be missing affinity measurements in several cases: for example, if a certain motif embedded in a particular tectoRNA

scaffold had low representation among the library members or if embedding a motif within that scaffold destabilized the secondary

structure of the tectoRNA (see above). For clustering or PC analysis, missing data had to be interpolated in order to make compre-

hensive comparisons (i.e., Figures 4, 5, and 6). When comparing relatively similar motifs (such asmismatch motifs or similar bulges in
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Figures 4 and 5), missing data were interpolated by the median affinity measured for other motifs in the same chip-scaffold/flow-

piece context. When comparing more disparately behaving motifs, we employed a method to find, for any junction sequences

with missing measurements, the 20 most similar thermodynamic fingerprints that were within 0.2 kcal/mol MAD from that profile,

based only on measured contexts. Missing data were then interpolated, as above, by the median affinity measured of these related

motifs in the missing chip-scaffold/flow-piece contexts. While clustering was carried out on datasets with interpolated data, all plots

of individual data points show only uninterpolated data.

Calculation of mean absolute deviation
The deviation of individual junction sequences from the average profile of their secondary structure class (as in Figure 3C) was calcu-

lated by finding the mean absolute deviation (MAD) between each sequence and its class average profile using only chip-scaffold/

flow-piece contexts in which detectable binding was observed.

K-means clustering of single mismatch motifs
Thermodynamic fingerprints of the 112 individual 1x1 junctions and WC elements were clustered with k-means clustering (see Fig-

ure 4C). Any missing values were assigned to the median value across junctions in that context. PC analysis was performed, and the

projections into the top 6 PCs were subsequently clustered with k-means clustering (k = 7). Different numbers of clusters were also

evaluated (i.e., see Figure S5A).

Significance of motif attribute enrichment
Determining overrepresentation of a motif attribute among a subset of motifs

In multiple cases, motifs were divided into classes, and the significance of enrichment for a given motif attribute (e.g., mismatch type

or secondary structure class) was evaluated for each class (i.e., see Figures 4E, 4G, 6B, 6C, and 6E). To perform this analysis, the null

model was that a given motif attribute was distributed equally across all classes. Fisher’s exact test was then used to determine if the

number of motifs with that motif attribute in a given cluster was enriched relative to the null expectation (one-sided p value). This test

was repeated for each class and for each of the motif attributes. All p values were then corrected for multiple hypotheses using the

Holm-Sidak method (�Sidák, 1967).

Determining significance of quantitative differences between two sets of motifs

In other cases, we asked whether there was a significant different between the values characterizing two sets of motifs that were

divided based on their motif attribute (e.g., Figures 5E and 5G). In this case, p values are calculated using a t test between the values

in the two sets, and corrected for multiple hypothesis testing (�Sidák, 1967).

Unbiased clustering of all two-way junctions
To generate the hierarchical clustering shown in Figure 6A, thermodynamic fingerprints were decomposed into the top six principal

components, each of which corresponded to a distinct mode of behavior. The remaining PCs were associated with < 10% of the

variance and could not be easily attributed to a physical perturbation. Projections into each of these six PCs were standardized

by dividing by the standard deviations of the projections in each PC to equally weight each of these modes of behavior. Motifs

were clustered by the Euclidean distance between each of these vectors (hierarchical ward clustering; Figure 6A).

To determine the neighbors of a junction sequence, we initially found all other junction sequences within Euclidean distance

of 2 (based on the top six standardized PC projections of their thermodynamic fingerprints as above). For each of these candidate

neighbors, a threshold was imposed on the deviation in affinity in each flow piece/chip scaffold context, which was three-fold the

error on the free energy of binding of the reference sequence in that structural context. If the candidate junction profile did not deviate

by more than the threshold in any structural context, it was included in the neighbor set.

Extracting structural coordinate of junctions
Structures associated with two-way junction sequences within the non-redundant set of structurally characterized RNAs (Petrov

et al., 2013) were aligned by their top bp (i.e., closest to the hairpin loop). Flanking bp steps were modeled into the structure such

that each assembled structure (i.e., junction and flanking bps) spanned a total of six bps, to facilitate comparison of junctions of

different sizes. Flanking bp structures were modeled by the most common configuration of base-pair steps extracted from the

same set of structurally characterized RNAs (Yesselman et al., 2018). The end-to-end distance and orientation between this top

bp and the structure’s bottom bp were extracted in terms of the translational coordinates (x, y, and z) and the rotational coordinates

(a, b, g), relative to that of a WC element spanning the same number of bps. Figure 7B shows the aligned structures of many junction

elements.

We initially focused on a subset of junctions that had at least 10 structurally characterized neighbors (178 junctions). Several of

these junctions were large (i.e., contained many unpaired residues) and often highly destabilized in any tectoRNA context, making

analysis challenging; for this reason junctions with more than three non-WC paired residues or more than three unpaired, bulged

residues were not included in subsequent analysis (148 junctions after applying this filter). Most of these sequences had structures

associated with them, but one-third (48 junctions) did not. We performed structural PC analysis on the set of structures associated

with any neighbor of these 148 junctions (378 structures associated with 194 unique junction sequences; Figure S7A). Values of each
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coordinate were divided by their standard deviation across all structures, in order to be able to compare translational and rotational

differences, before PC analysis. The PC loadings are shown in Figure S7A, after multiplication by the standard deviation of each

coordinate to give each value in terms of physical quantities (i.e., distances in Angstrom or rotations in radians).

Prediction of thermodynamics with RNAMake-DG
To make a stand-in structural ensemble for a given junction sequence, the set of neighbors associated with that junction were

obtained. Neighboring junction sequences were filtered to ensure that the neighbor and the reference junction replaced the same

number of bps in the tectoRNA helix. This step is necessary to predict tectoRNA affinity, which requires each element to be modular

from the others (i.e., the set of structures corresponding to the junction element are independent of the set of structures associated

with the surrounding helical elements). Any structures associated with these filtered neighbor sequences were extracted and aligned

as above to form an ensemble of structural states (Petrov et al., 2013). Each structure within the ensemble was weighted equally.

Simulation of the relative affinity of tectoRNA variants was performed as described in (Yesselman et al., 2018). In brief, structural

ensembles were obtained for each of the constituent elements of the tectoRNA. These ensembles could consist of one or multiple

structural states, and structural states themselves were weighted according to their Boltzmann probability. Ensembles of WC base-

pair steps were derived from crystal structures of RNA helices (Petrov et al., 2013). Ensembles of the two bound tertiary contacts

consisted only of a single conformation each. In the case of the GAAA-11ntR, the structure was isolated from the crystal structure

of the P4-P6 domain of the Tetrahymena ribozyme (PDB: 1GID). The other tertiary contact (GGAA-R1) has not been characterized

crystallographically and was modeled using Rosetta stepwise Monte Carlo modeling (Watkins et al., 2018).

The tectoRNA flow and chip pieces were assembled into a partially bound state with one tertiary contact pre-formed. The un-

formed tertiary contact was not explicitly modeled, and thus structures contain a break between the helix emanating from the tetra-

loop of this contact and the target bp this tetraloop interacts with in the bound conformation. During the simulation, elements were

randomly chosen to be replaced by a different member of this element’s structural ensemble. If the new ensemblemember had lower

energy (based on Boltzmann weights of the ensemble members), then it was accepted. If not, it was accepted with some probability

given by the metropolis criteria. Whenever the conformation of a single element was modified, this change was propagated to the

entire rest of the modeled tectoRNA structure.

For each step of the simulation, the tectoRNA was determined to be ‘‘bound’’ or ‘‘unbound’’ based on the distance between the

emanating bp of the un-formed tertiary contact and the position it would exist in in the bound structure. This distance was defined as

the translational distance (in Angstroms) plus the rotational difference between the two bps (in radians). Structures with a distance

score of < 5 were called as ‘‘bound.’’ The simulation was run for >1 million iterations. Affinity was assumed to be proportional to –kBT

log(Nbound/Nunbound).

DATA AND SOFTWARE AVAILABILITY

The thermodynamic measurements generated in this paper are available for download (Table S1).

Custom software for processing sequence data, for determination of the dissociation constants, and for obtaining thermodynam-

ically related neighbors are also available for download (Data S1).
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Supplemental Figures

Figure S1. Design and Construction of TectoRNA Library for In Situ Transcription on the Surface of an Illumina Sequencer, Related to

Figure 1

(A) Sequence and secondary structure of the two tetraloop-tetraloop receptors in the tectoRNA complex, GGAA-R1 and GAAA-11nt.

(B) The junction library was designed by inserting junctions into tectoRNA chip scaffolds. Plot shows inserted junction elements, separated by secondary

structure class (e.g., 0x1, 0x2, etc.) along the x axis. Junction elements are inserted into chip scaffolds of varying lengths, represented by the location along the

y axis. Each class of junction hasmany possible primary sequence variants, with location along the x axis indicating the alphabetic position of that sequence (from

50 to 30) among all possible sequences with that secondary structure, with the colors representing the location of the inserted junction element, defined on bottom

right of figure. Positional jitter was added along the y axis to enable visualization. Subsets of junctions within each class were incorporated in the designed library

(quantified by bar graph, top). The width of each secondary structure class in the plot is proportional to the log of the number of motifs incorporated within that

category. This sublibrary comprised �16,000 distinct molecules. Not shown are junction sequences from previously structurally characterized library or control

loop/receptor mutants.

(C) Representation of individual chip piece variants in the assembled sequencing library used for measurements.

(D) On-chip workflow for generation of displayed tectoRNAs on the surface of the sequencing flow cell. (Far right) Configuration of on-chip RNA during the assay.

Two DNA oligonucleotides are annealed to single-stranded regions of the transcribed RNA that are common to all library variants (dark_read2 and fluo-

rescent_stall; see STAR Methods); one of these oligos is labeled at its 30 end for quantification of transcribed RNA.



Figure S2. Binding Isotherms Were Fit Constraining Distributions of fmin and fmax, Related to STAR Methods

(A) Deviation between replicate experiments accounted for by intra-experimental error estimates. Distribution of z-scores giving the difference between replicate

experiments, using either the initial (left) or final (right) intra-experimental error estimates, where initial estimates come from bootstrapping across clusters

associatedwith each variant, and final estimates come from scaling these initial values to account for additional inter-experimental error (see STARMethods). For

each variant, z-scores were obtained by finding the difference in measured DG between experiments (DDG), relative to the average difference in DG between

experiments (DDGavg), and dividing by the standard error on DDG (sDDG), which is the two intra-experimental error estimates combined in quadrature. Black line

indicates the expected distribution of z-scores if the difference between the two replicate experiments could be entirely accounted for by the average offset and

the intra-experimental error estimates (see STAR Methods).

(B) Distribution of error estimates on DG for variants with different number of clusters and with different DG values. The estimate of DG increases in precision with

increasing numbers of measurements and with higher affinity.

(C) Initial fit values for Kd, fmin, and fmax show interdependent relationships that are likely artifactual, where fmax is the binding saturation level (plotted versus Kd;

left), and fmin is the fluorescence in the absence of any flow piece in solution (plotted versus Kd; right). Initial values are the median across the unconstrained single

cluster fits associated with each library variant. These initial values for Kd, fmin, and fmax were subsequently refined to remove these relationships, as described in

the STAR Methods. This refinement especially targeted variants that did not have saturated binding at the highest concentration of the flow piece. Dotted lines

indicate the maximum Kd associated with 95% saturation of binding at the highest concentration of the flow piece, and thus demarcate ‘‘tight binders.’’

(D and E) A global distribution for fmax enabled fit refinement. Themean (mglobal) (D) and standard deviation as a function of number of clusters s(n) (E) of fmax values

are shown. These values were subsequently used to refine binding curve fitting for variants that did not achieve saturation (see STARMethods). Initial fmax values

shown here were obtained from tight binders (i.e., see (C)) and good fitters (see STARMethods). (D) Histogram of initial fmax’s and kernel density estimate (‘‘kde’’)

shown in gray; best-fit gamma distribution (‘‘fit’’) shown in purple. (E) Scatterplot relating the standard deviation (s) of initial fmax values for variants with n number

of observed clusters. The fit relationship between s and n (purple line) is indicated.

(F) Scatterplot compares the final fit Kd for a set of variants that when using all eight concentration points (max concentration = 2 mM), the fmax is well-defined,

but when only using the first five concentration points (max concentration = 74 nM), saturation is not achieved and thus fmax is not well-defined. Enforcing the

(legend continued on next page)



fmax distribution during fit refinement (see STAR Methods) allows accurate estimation of Kd even when saturation is not achieved. Colorbars along the axes

indicate the relationship between Kd and the expected fraction bound at the maximum concentration, when using five versus eight concentrations points.

(G) Scatterplots comparing the initial and final Kd values per variant. The final fits are obtained after the fit refinement procedure that enforces the distribution of

fmax for variants that do not achieve saturation. Dotted lines indicate the cutoff for measurable affinity. Colors indicate the initial fmax (left) or fmin (right).

(H) Histogram of initial and final Kd for a set of ‘‘background’’ variants, in gray and purple, respectively. Fits of these variants reflect non-specific binding or

accumulation of background fluorescence, as the clusters associated with these background variants did not have an RNAP initiation site, thus are not expected

to generate RNA. The vertical dashed line indicates themeasurable range of affinity. Prior to fit refinement, (i.e., without enforcing fmax), many of these background

variants fall within the measurable range of affinity because they are fit to unrealistic fmax values.



Figure S3. TectoRNA Binding Requires Formation of Both Tertiary Contacts and Is More Stable at Higher Mg2+ Concentration, Related to

Figure 1

A) Difference in binding free energy of two Mg2+ conditions. Scatterplot compares the affinity of the 10-bp flow piece to each chip variant, at either 30 mMMg2+

(default value) or 5mMMg2+ (89mMTris-Borate, pH 8.0). Inset histogram shows the distribution ofDDGbetween the two conditions across chip variants (blue), or

the expected distribution given an overall, constant offset and measurement error. Similarity between observed and expected suggests a largely constant

electrostatic effect from altering the magnesium concentration.

B) Histogram of measured dissociation rate constants (koff) and calculated association rate constants (kon) for tectoRNA variants composed of the 10-bp flow

piece and�17,000 chip piece variants with the canonical loop (GGAA) and receptor (11nt). Calculated association rate constants are a function of the dissociation

rate constant and the overall equilibrium constant: kon = koff / Kd. Variants are filtered to have combined error on RTlog(kon) less than 0.5 kcal/mol (95%confidence

interval) and G less than –9 kcal/mol. Previous studies estimated the kon as �104 M–1 s–1 for a single TL/TLR motif at 125 mM Mg2+ (Herschlag et al., 2015; Qin

et al., 2001), within an order of magnitude of the median association rate constant of 5.9 3 104 M–1s–1 observed here.

(legend continued on next page)



C) Kinetic model for association of tectoRNA variants. (Left) The flow and chip pieces associate through one tertiary contact and subsequently form the second

tertiary contact. (Right) Free energy-reaction diagram for one pathway of the association. The constant kon across inserted junction elements (E) supports that

formation of the first tertiary contact is rate-limiting for all junctions. In this model, formation of the second contact is faster than dissociation of the first, regardless

of the inserted junction sequence. Presumably the junctions affect the rate of forming the secondary contact once the first is formed, thus affecting the relative

affinity of the complex.

D) Binding curves of a 10-bp flow piece to a chip scaffold terminated either by the wild-type loop (GGAA; blue) or mutated loop (GAAA; black).

E) Distribution of affinities (DG) of a 10-bp flow piece terminated by the GGAA loop or the GAAA loop binding to chip scaffolds. Dashed line indicates our applied

threshold for measurable affinity.

F) Binding curves of GGAA-terminated 10-bp flow piece to a chip scaffold either with the wild-type receptor (11nt; red) or a base-paired receptor (BP; black).

G) Distribution of binding affinities for chip scaffolds, with either the 11nt or the BP receptor. Dashed line indicates our applied threshold for measurable affinity.



(legend on next page)



Figure S4. Thermodynamic Fingerprints of Junctions with Alternate Tertiary Receptors Show Consistent Results, Related to Figure 2
(A) The effect of two point mutations in the tertiary contact receptor (11nt-A4U or 11nt-U9G) and an alternate tertiary contact receptor (C7.2) were compared to the

WT receptor (11ntR) across tectoRNA chip scaffolds of varying helix length and inserted junction elements.

(B andC) Scatterplots show the affinity of each point mutation (B) or the alternate receptor (C) versus theWT receptor across each chip scaffold. Black dashed line

corresponds to the overall effect (DDG) between the two receptors; gray dotted line indicates DDG = 0 kcal/mol. Histograms show the distribution of the effect of

the tertiary contact mutation across scaffolds: either the actual differences (blue) or expected differences (gray) assuming the constant, additive effect (shown in

dashed line in scatterplot) and measurement error. N = 292, 273, or 601 scaffolds for 11nt-A4U, 11nt-U9G, or C7.2, respectively, that had measurable binding in

both receptor contexts.

(D) Thermodynamic fingerprints of bulged junctions were measured either with the WT tertiary contact receptor (11ntR; left) or an alternate receptor (C7.2; right).

Each set of thermodynamic fingerprints were hierarchically clustered (shown in dendrogram), and the 11ntR fingerprints were additionally assigned to classes by

calling 10 flat clusters on the dendrogram (shown as colors red–blue in the colorbar labeled ‘‘11ntR clusters’’). The secondary structure class is shown as the

colorbar labeled ‘‘junction class.’’ Clustering the two sets of junctions by their thermodynamic fingerprints gives largely the same results in either of the two tertiary

contact receptor contexts. To quantify this observation, we asked how often junctions that clustered together with the 11ntR also clustered together in the C7.2.

We found that 59%of junctions co-clustered,much greater than the 11%expected by chance, and approaching the 66%of junctions co-clustering if we recluster

the 11ntR fingerprints after adding values sampled from measurement error, which serves as a ceiling for the maximum fraction of co-clustering junctions.

Measurements were made for four additional flow pieces that had either different helical sequence (10-bpMut1 and 10-bpMut2), an additional bulged adenosine

base in the helical segment (10-bp A-bulge), or an adenosine inserted in the tetraloop that interacts with the chip-piece tertiary contact receptor (10-bp GAAAA).

Gray squares indicated missing measurements due to low representation or high error (> 0.5 kcal/mol).



Figure S5. Affinity Fingerprints of Mismatched Motifs Revealed Strong Effect of Mismatch Identity, Related to Figure 4

(A) The average MAD between the thermodynamic fingerprint of each junction sequence and the average fingerprint of its cluster, versus the number of clusters

used in k-means clustering. Horizontal line shows the average MAD for 1x1 and WC pairs using 7 clusters. (MAD expected from error is 0.1 kcal/mol.) Numbers

indicate the number of clusters necessary to achieve the same average MAD for the 2x2 and 3x3 junctions. Error bars are 95% CI across junction sequences.

(B) The effect of each mismatch or bp on the secondary structure stability of a duplex, relative to the average effect across the four WC bps. Each point cor-

responds to the 16 different flanking bps adjacent to the mismatch/bp. Effects were calculated using RNAfold v. 2.1.8 (Lorenz et al., 2011).

(C) Binding energies for single mismatchmotifs inserted at different locations in chip piece helices, where location is the number of bps between the receptor and

the inserted junction element (indicated at top left). Affinity is relative to the average affinity across sequences within each chip-scaffold/flow-piece context, i.e.,

each column. Contexts are only shown if the majority of measurements in that context were within the measurable range of affinity (i.e., < –7.1 kcal/mol).

(legend continued on next page)



(D) Cumulative distribution plot shows the fraction of 1x1, 2x2, and 3x3motifs that have that have less than or equal to the indicated number of ‘‘neighbors,’’ where

neighbors have similar thermodynamic behavior (see STAR Methods and Figure 6). The percentages indicate the fraction of each class of motif that has 10 or

more neighbors.

(E and F) K-means clustering of thermodynamic fingerprints for (C) 2x2 and (D) 3x3 motifs (k = 20 or k = 49 clusters, respectively). Average thermodynamic

fingerprints of each cluster are shown, which in turn are hierarchically clustered. Values are given relative theWC average profile, as in Figure 4C, (Right) heatmap

of the fraction of each cluster with the indicated mismatch in any of the two (or three) mismatch positions.

(G)Histogramshowsspreadof affinitymeasurements acrossdifferent locations for 1x1, 2x2, and3x3 junctions. For each junction sequence, deviation ofDGvalues

across scaffolds 2-4 (Figure 4B; i.e., three different locations within the 9-bp chip helix), was measured with the 10-bp flow piece.



Figure S6. Effect of Bulged Residues Is Position Dependent, Related to Figure 5
(A) K-means clustering (k = 4 clusters) was carried out on thermodynamic fingerprints shown in Figure 5B. Heatmap shows the fraction of cluster members that

have each of the indicated bulged residues. We observe no evident enrichment for bulge base identity in clusters.

(B) Affinity dependence on location within the helix of bulged junctions or WC pairs, where location is the number of bps between the receptor and the junction.

Three different chip-scaffold/flow-piece contexts are shown.

(C) Histogram shows spread of affinity measurements across locations for 0x1 and 1x0 or for 1x1 junctions. For each junction sequence, deviation of DG values

across locations for all flow-piece, chip-piece contexts with measureable binding.

(D) Heatmap of hierarchically clustered thermodynamic fingerprints of individual 0x2 or 2x0 bulged junctions (left) and 0x3 or 3x0 junctions (right). Three-base-

bulge junctions were subsetted to always have an adenine residue in the middle bulge position.



Figure S7. Specific Structural Changes Correspond to Differences among Thermodynamic Fingerprints, Related to Figure 7

(A) To compare the structural parameters of junctions, 378 structures of junctions were extracted from the PDB crystal structure database. Structures were

modeled to include up to two flanking bps to replace a total of six bps in the tectoRNA chip helix. All structureswere aligned by the top bp (i.e., the bp closest to the

loop when inserted in the tectoRNA). This bp formed the ‘origin’, and a coordinate system was defined as shown, with x, y, and z parameterizing standard

translational coordinates and a, b, g parameterizing rotational coordinates around each of these translational axes, respectively. PC analysis was carried out

(see STAR Methods); loadings for each PC of each of the six coordinates are shown, with percentages that indicate the fraction of total variance associated with

each PC.

(B) To relate thermodynamic fingerprints to structural parameters, PC analysis of the fingerprints of the 148 junction sequences with 10 or more structurally

characterized neighbors was first carried out. The loadings of each of the first four PCs across chip/flow contexts are shown as a heatmap. Percentages indicate

the fraction of total variance along each PC.

(C) The 148 junctions are plotted by the values of their thermodynamic fingerprint PC 1 and 2 (top) or 2 and 3 (bottom). Colors indicate the value of the indicated

structural PC, averaged across all structures associated with that junction sequence’s neighbors.

(D) Histogram of root-mean-squared error (RMSE) between the observed and predicted affinities of each junction across each context.
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