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Alzheimer’s (AD) and Parkinson’s (PD) diseases affect 
approximately 50 and 10 million individuals worldwide, 
respectively, as two of the most common neurodegenera-

tive disorders. Several large consortia have assembled genome-wide 
association studies (GWAS) that associate genetic loci with clinical 
diagnoses of probable AD dementia1–4 or probable PD5–7, or with 
their characteristic pathological features. These efforts have led 
to the identification of dozens of potential risk loci for these dis-
eases. However, most risk loci reside in noncoding regions, and so it  
is unclear if the nominated (often nearest) gene is functionally  
relevant for the disease or if another gene is involved8.

Most functional noncoding SNPs would be predicted to exert 
their effects through the alteration of gene expression via per-
turbation of transcription factor binding and regulatory element 
function8. Such regulatory elements are highly cell type specific9, 
suggesting that the resultant effects of noncoding SNPs would 
be equally cell type specific. Thus, comprehensive nomination of 
putative functional noncoding SNPs in the brain requires catalog-
ing the regulatory elements that are active in every brain cell type  
in the correct organismal and regional context. These critical data 
hold the promise to illuminate the functional importance of genetic 
risk loci in the molecular pathogenesis of common neurodegenera-
tive diseases.

Previous work has carefully mapped such cell-type-specific 
gene regulatory landscapes in the human brain, predominantly 
during early developmental time points10, in organoid culture sys-
tems11–13 or in induced pluripotent stem cell-derived cellular mod-
els14,15. Additional studies have profiled chromatin accessibility in 
macrodissected postmortem adult human brain16–19. Such datasets 
have provided a rich resource for the nomination of putative func-
tional SNPs in neurological disease by using multi-omic approac
hes10,14,17,20. Moreover, recent work has profiled chromatin accessibil-
ity and 3D chromatin conformation in primary brain cell types from 
resected pediatric brain tissue to explore the roles of noncoding 
SNPs in AD9. Lastly, innovative analytical approaches, for example, 
leveraging machine learning, have greatly expanded our ability to 
predict the functional effects of noncoding SNPs21–25. Cumulatively, 
this work has provided important advances in our understanding of 
the role of noncoding SNPs in disease predisposition, particularly 
in neurological disease.

In this study, we build on the current understanding of inher-
ited variation in neurodegenerative disease through the implemen-
tation of a multi-omic framework that enables accurate prediction 
of functional noncoding SNPs. This framework layers bulk assay 
for transposase-accessible chromatin using sequencing (ATAC–
seq)26, single-cell ATAC–seq (scATAC–seq)27 and HiChIP enhancer  
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connectome28,29 data over a machine-learning classifier to predict 
putative functional SNPs driving the association with neurodegen-
erative diseases. Through these efforts, we pinpoint putative target 
genes and cell types of several noncoding GWAS loci in AD and PD, 
providing a roadmap for the application of these data and technology 
to other neurological disorders and enabling a more comprehensive 
understanding of the role of inherited noncoding variation in disease.

Results
Bulk chromatin accessibility landscapes in macrodissected tissue 
identify brain-regional epigenomic heterogeneity. We profiled 
the bulk chromatin accessibility landscapes of 7 macrodissected 
brain regions across 39 cognitively healthy individuals to char-
acterize the role of the noncoding genome in neurodegenerative 
diseases (Supplementary Table 1). These brain regions include 
distinct isocortical regions (superior and middle temporal gyri, 
parietal lobe and middle frontal gyrus), striatal regions (caudate 
nucleus and putamen), the hippocampus and the substantia nigra 
(Fig. 1a and Methods). From these bulk ATAC–seq libraries, we 
compiled a merged set of 186,559 reproducible peaks (Fig. 1b and 
Supplementary Data 1). In this study, a reproducible peak is defined 
as any peak that is called in at least 30% of the bulk ATAC–seq 
samples from any given brain region (Supplementary Fig. 1a and 
Methods). Dimensionality reduction via t-distributed stochastic 
neighbor embedding (t-SNE) identified four distinct clusters of 
samples, grouped roughly by major brain regions (Fig. 1c). While 
many region-specific peaks in chromatin accessibility could be 
identified from these bulk ATAC–seq data, most of these peaks cor-
responded to cell types predominantly present in a single region 
(Fig. 1d). A detailed analysis of these bulk ATAC–seq data primar-
ily revealed region-specific differences in chromatin accessibility 
(Supplementary Fig. 1b–h and Supplementary Note 1).

scATAC–seq captures regional and cell-type-specific heteroge-
neity. To better understand brain-regional cell-type-specific chro-
matin accessibility landscapes, we performed single-cell chromatin 
accessibility profiling in 10 samples spanning the isocortex (n = 3), 
striatum (n = 3), hippocampus (n = 2) and substantia nigra (n = 2) 
(Supplementary Table 1). In total, we profiled chromatin accessibil-
ity in 70,631 individual cells (Fig. 1e) after stringent quality con-
trol filtration (Supplementary Fig. 2a and Supplementary Data 2).  
Unbiased iterative clustering27,30 and Harmony-based batch cor-
rection of these single cells identified 24 distinct clusters (Fig. 1e 
and Extended Data Fig. 1a,b), which were assigned to known brain 
cell types based on gene activity scores compiled from chromatin 

accessibility signal in the vicinity of key lineage-defining genes30,31  
(Fig. 1f, Extended Data Fig. 1c,d and Methods). Additionally, 13 of 
the 24 clusters showed regional specificity with some clusters com-
posed almost entirely from a single brain region (Extended Data 
Fig. 1e,f and Supplementary Data 2). We did not identify any clus-
ters that were clearly segregated by sex but the sample size used in 
this study was not powered to make such a determination (Extended 
Data Fig. 1g). Cumulatively, we defined eight distinct cell classes, 
including the six main brain cell types (excitatory neurons, inhibi-
tory neurons, microglia, oligodendrocytes, astrocytes and oligoden-
drocyte progenitor cells (OPCs)) and identified one cluster (cluster 
18) as putative doublets that we excluded from the downstream 
analyses (Fig. 1e and Extended Data Fig. 1h). These cell groupings 
varied largely in the total number of cells per grouping (Extended 
Data Fig. 1i) and showed distinct donor and regional compositions 
(Extended Data Fig. 1j–m).

Using these clusters, we then called peaks from scATAC–seq  
pseudobulk chromatin accessibility to create a union set of 359,022 
reproducible peaks (Supplementary Data 3). Overall, 89% of 
bulk ATAC–seq peaks were overlapped by a peak called in the  
scATAC–seq data (Fig. 1g). Conversely, only 34% of scATAC–seq 
peaks were overlapped by a peak from the bulk ATAC–seq peak set 
(Fig. 1g). Consistent with a role for distal regulatory elements in 
cell-type-specific gene regulation32, we found an enrichment in dis-
tal/intronic peaks and a depletion in promoter peaks in the peak set 
specifically identified via scATAC–seq (Extended Data Fig. 2a). To 
better understand the cell type specificity of the scATAC–seq peaks, 
we identified cell-type-specific peaks through ‘feature binarization’, 
which identifies peaks that are uniquely accessible in a single cell 
type or subset of cell types33. This analysis identified 221,062 highly 
cell-type-specific peaks within the 6 primary brain cell types, com-
prising >60% of all peaks identified from our scATAC–seq data  
(Fig. 1h and Supplementary Data 4). These cell-type-specific peaks 
were also enriched for distal/intronic peaks and depleted for pro-
moter peaks (Extended Data Fig. 2b). Some of these peaks were 
shared across the different neuronal cell types while others were 
shared across astrocytes, OPCs and oligodendrocytes (Fig. 1h, 
Extended Data Fig. 2c and Supplementary Data 4). However, 48% 
of peaks called in our scATAC–seq data were specific to a single cell 
type (n = 172,111 peaks; Fig. 1h and Supplementary Data 4) with the 
vast majority of these cell-type-specific peaks remaining undetected 
in our bulk ATAC–seq analyses. Consistent with previous work34, 
we found an enrichment of peaks from less abundant cell types (less 
than 20% of cells, that is, microglia, astrocytes and OPCs) within 
the set of peaks identified via scATAC–seq but not bulk ATAC–seq  

Fig. 1 | scATAC–seq identifies cell-type-specific chromatin accessibility in the adult brain. a, Brain regions profiled in this study. b, Bar plot showing the 
number of reproducible peaks identified from samples in each brain region. The ‘Merged’ bar represents the final merged peak set. The numbers above 
each bar represent the total number of biological samples profiled for each brain region. c, t-SNE dimensionality reduction of bulk ATAC–seq data. Each dot 
represents a single piece of tissue with technical replicates merged where applicable. d, Sequencing tracks of region-specific ATAC–seq peaks. From left to 
right, DRD2 (striatum specific; chr11:113,367,951–113,538,919), IRX3 (substantia nigra specific; chr16:54,276,577–54,291,319) and KCNS1 (isocortex specific; 
chr20:45,086,706-45,107,665). The tracks have been normalized to the total number of reads in TSS regions. e, Left: uniform manifold approximation and 
projection (UMAP) dimensionality reduction after iterative LSI of scATAC–seq data from 10 different samples. Each dot represents a single cell (n!=!70,631), 
colored by its corresponding cluster. Right: Bar plot showing the number of cells per cluster. f, Same as Fig. 1e but each cell is colored by its gene activity 
score for the annotated lineage-defining gene. The minimum and maximum gene activity scores are shown in the bottom left of each panel. g, Bar plot 
showing the overlap of bulk ATAC–seq and scATAC–seq peak calls. ‘Bulk ATAC–seq’ represents the number of peaks from the bulk ATAC–seq merged 
peak set that are overlapped by a peak called in our scATAC–seq merged peak set. ‘scATAC–seq’ represents the number of peaks from our scATAC–seq 
merged peak set that are overlapped by a peak called in our bulk ATAC–seq merged peak set. Overlap is considered as any overlapping bases. h, Heatmap 
representation of chromatin accessibility in binarized peaks (n!=!221,062) from the scATAC–seq peak set. Each row represents an individual pseudobulk 
replicate (three per cell type) and each column represents a peak. Oligos, oligodendrocytes. i, Bar plot of the percentage of peaks from the scATAC–seq 
binarized peak set that overlap peaks identified by the bulk ATAC–seq (‘Overlap bulk’) or are uniquely identified by scATAC–seq (‘scATAC only’). Only 
peaks found to be unique to a single cell type (n!=!172,111) were used in this analysis. The bars are colored according to the legend above Fig. 1h. j, Motif 
enrichments of the binarized peaks identified in Fig. 1h. Due to redundancy in motifs, transcription factor drivers were predicted using the average gene 
expression in GTEx brain samples and accessibility at transcription factor promoters in cell class-grouped scATAC–seq profiles. k, Footprinting analysis of 
the SPI1 (left; CIS-BP M6484_1.02) and JUN/FOS (right; CIS-BP M4625_1.02) transcription factors across the six major cell classes.
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(Fig. 1i and Extended Data Fig. 1l). Similarly, examining per-cell 
accessibility at the peaks specifically identified via scATAC–seq, we 
found significantly fewer cells supporting these peaks (Extended 
Data Fig. 2d). These results highlight the utility of single-cell meth-
ods when cell-type-specific peaks are difficult to identify from bulk 
tissues containing multiple distinct cell types at varying frequencies.

To predict which transcription factors may be responsible for 
establishing and maintaining these cell-type-specific regulatory 
programs, we performed motif enrichment analyses of peaks spe-
cific to each cell type (Fig. 1j). We identified many known drivers 
of cell type identity, such as motifs specific to SOX9 and SOX10 in 
oligodendrocytes35,36 or to ASCL1 in OPCs37,38. Lastly, transcription 

factor footprinting from our scATAC–seq-derived cell-type-specific 
chromatin accessibility data showed enrichment of binding of key 
lineage-defining transcription factors such as SPI1 in microglia39 
and JUN/FOS in neurons40 (Fig. 1k). Notably, the three isocortical 
samples, derived from distinct brain regions, showed high similar-
ity based on Pearson correlation, supporting their use as biological 
replicates (Extended Data Fig. 2e). These data provide reference cell 
profiles for cell-type-specific deconvolution of bulk ATAC–seq data 
(Supplementary Fig. 3, Supplementary Data 5 and Supplementary 
Note 2) and identify brain-regional heterogeneity in glial cells, such 
as astrocytes and OPCs (Supplementary Fig. 4, Supplementary Data 
6 and Supplementary Note 3).
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scATAC–seq identifies diverse neuronal subpopulations. Given 
the well-understood diversity of neuronal types and functions, we 
sought to further subdivide our scATAC–seq data based on neu-
ronal subtypes. Extracting all cells previously labeled as neurons 

(clusters 1–7, 11 and 12; n = 21,116 cells), we performed unbiased 
iterative clustering followed by Harmony-based batch correction 
(Extended Data Fig. 3a,b), identifying 30 discrete neuronal clusters 
(Fig. 2a, Extended Data Fig. 3c and Supplementary Data 2). For 
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Fig. 2 | Subclustering identifies diverse biologically relevant neuronal cell types in the adult brain. a, Left: UMAP dimensionality reduction after iterative LSI 
of scATAC–seq data from neuronal cells from ten different samples. Each dot represents a single cell (n!=!21,116). The dots are colored by their corresponding 
neuronal subcluster. Neuronal cluster numbers are overlaid on the UMAP above each neuronal cluster centroid. Right: Bar plot showing the number of 
cells per cluster. Each neuronal cluster subannotation is labeled to the right of the bar plot and indicated by color. b, The same UMAP dimensionality 
reduction shown in Fig. 2a but each cell is colored by its gene activity score for the annotated lineage-defining gene. The minimum and maximum gene 
activity scores are shown in the bottom left of each panel. c,d, LD score regression identifying the enrichment of GWAS SNPs from various brain-related and 
nonbrain-related conditions in the peak regions of various cell classes from the broad scATAC–seq clustering (c) or neuronal cell classes identified from the 
neuronal subclustering analysis (d). The dashed line represents the Bonferroni-corrected significance threshold for the LDSC coefficient P value (Methods) 
adjusted for the number of cell classes tested. The size of the point for each cell class indicates whether this cell class passed the Bonferroni-corrected 
significance threshold (larger) or not (smaller).
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clarity, these are referred to as ‘neuronal clusters’ to avoid confu-
sion with the 24 clusters identified in our broad analysis above. Each 
neuronal cluster was interpreted to represent a unique neuronal cell 
type or cell state and annotated using gene activity scores for key 
lineage-defining genes (Fig. 2b and Extended Data Fig. 3d,e). This 
identified both broad neuronal classes (Extended Data Fig. 3f) and 
very granular neuronal subdivisions, even discriminating between 
striatopallidal (neuronal clusters 11 and 12) and striatonigral (neu-
ronal cluster 21) medium spiny neurons, both residing within the 
striatum but projecting to different brain areas (Fig. 2a and Extended 
Data Fig. 3g,h). These data identified neuronal cell class-specific 
peaks, genes and transcription factor activity (Supplementary  
Fig. 5, Supplementary Data 7 and Supplementary Note 4). While this 
analysis identified a neuronal cluster corresponding predominantly 
to substantia nigra dopaminergic neurons (neuronal cluster 7),  
a key cell type lost in PD, we derived a more refined subset of tyro-
sine hydroxylase-positive dopaminergic neurons by subclustering 
only cells from the two substantia nigra samples (n = 403 dopami-
nergic neurons; Extended Data Fig. 4a–d).

scATAC–seq pinpoints the cellular targets of GWAS polymor-
phisms. To understand if any particular cell-type-specific regions 
of chromatin accessibility were enriched for neurodegenerative 
disease-associated SNPs, we performed linkage disequilibrium 
(LD) score regression41 using a collection of relevant GWAS studies 
(Supplementary Table 2). Within the peak regions of our broad cell 
classes, cell-type-specific LD score regression revealed a significant 
increase in per-SNP heritability for AD in the microglia peak set, 
reinforcing previous studies2,42,43 (Fig. 2c and Supplementary Data 8).  
Similar analyses in PD showed no significant enrichment in SNP 
heritability in any particular cell type, perhaps because the cellular 
bases of PD are more heterogeneous than AD (Fig. 2c). Although 
not a focus of the current study, we note that the data generated 
can be used to inform the cellular ontogeny of any brain-related 
GWAS (Fig. 2c). We also confirmed that the heritability of GWAS 
SNPs from traits not directly related to brain cell types, such as 
lean body mass and coronary artery disease, was not significantly 
enriched in any of the tested brain cell types. To ensure that the 
lack of significance in cell class-specific peaks was not due to obfus-
cation of neuronal subtypes, we performed the same LD score 
regression analyses within the peak regions for the neuronal cell 
classes identified through subclustering (Fig. 2d and Extended Data  
Fig. 3h). This analysis confirmed our previous findings and showed 
no significant enrichment for AD or PD SNPs within the peak 
regions of any neuronal subclasses (Fig. 2d).

Identification of putative enhancer–promoter interactions 
through chromatin conformation and cell-type-specific coacces-
sibility. While our scATAC–seq data would enable us to identify the 

target cell types of functional noncoding SNPs, we sought to addi-
tionally identify the target genes of each GWAS locus. To do this, we 
mapped the enhancer-centric three-dimensional (3D) chromatin 
architecture in multiple brain regions using Hi-C library prepara-
tion followed by chromatin immunoprecipitation (HiChIP)28 for 
acetylated histone H3 lysine 27 (H3K27ac), which marks active 
enhancers and promoters (Extended Data Fig. 5a). In total, we 
generated 3D interaction maps for 6 of the 7 regions profiled by 
ATAC–seq (the putamen was excluded given the high overlap 
with the caudate nucleus), averaging 158 million valid interaction 
pairs identified per region (Extended Data Fig. 5b,c). We identified 
833,975 predicted 3D interactions across all brain regions profiled, 
of which 331,730 (40%) were reproducible in at least 2 brain regions 
(Extended Data Fig. 5d and Supplementary Data 9). Of these loops, 
67.4% had an ATAC–seq peak present in both anchors, 29.2% had 
an ATAC–seq peak present in one anchor and 3.4% did not overlap 
any ATAC–seq peaks identified in either the bulk or scATAC–seq 
datasets (Extended Data Fig. 5e).

Additionally, correlated variation of chromatin accessibility in 
peaks across single cells has been shown to predict functional inter-
actions between regulatory elements31,44. Using this coaccessibility 
framework, we predicted regulatory interactions from our scATAC–
seq data from the variation across all cells (Extended Data Fig. 5f), 
identifying 2,822,924 putative pairwise interactions between regions 
of chromatin accessibility (Supplementary Data 9). This set of inter-
actions showed only moderate overlap (approximately 20%) with our 
HiChIP data, consistent with the ability of this technique to identify 
cell-type-specific regulatory interactions, whereas the HiChIP of 
bulk brain tissue is better suited for the identification of more shared 
regulatory interactions (Extended Data Fig. 5f,g). Together, these 
two techniques define a compendium of putative regulatory interac-
tions in the various brain regions studied, thus enabling downstream 
linkage of GWAS SNPs to putative target genes.

A tiered multi-omic approach to predicting functional noncoding 
SNPs. To annotate the functional effects of GWAS polymorphisms, 
we first compiled a comprehensive set of putative disease-relevant 
SNPs in AD and PD, considering the propensity of nearby SNPs 
to be coinherited based on LD. We identified (1) any SNPs pass-
ing genome-wide significance (P < 5 × 10−8) in recent GWAS1–3,5–7,  
(2) any SNPs exhibiting colocalization of GWAS and expression 
quantitative trait loci signal (FINEMAP/eCAVIAR colocalization 
posterior probability >0.01) and (3) any SNPs in LD with a SNP 
in the previous 2 categories based on an LD R2 value ≥0.8 calculated 
from phase 1 genotypes of individuals of European ancestry in the 
1000 Genomes dataset (Supplementary Table 2 and Methods). In 
total, this identified 9,707 SNPs including 3,245 unique SNPs across 
44 loci associated with AD and 6,496 across 86 loci associated with 
PD, with a single locus containing 34 SNPs appearing in both diseases.

Fig. 3 | Machine learning predicts functional polymorphisms in AD and PD. a, Schematic of the overall strategy for tiered identification of putative 
functional SNPs and their corresponding gene targets. b, Schematic of the gkm-SVM machine-learning approach used to predict which noncoding SNPs 
alter transcription factor binding and chromatin accessibility. c,d, Normalized scATAC–seq-derived pseudobulk tracks, H3K27ac HiChIP loop calls, 
coaccessibility correlations and publicly available H3K4me3 PLAC-seq loop calls (Nott et al.9) in the PICALM gene locus (chr11:85,599,000–86,331,000) 
(c) and SLC24A4 locus (chr14:91,998,000–92,729,000) (d). The scATAC–seq tracks represent the aggregate signal of all cells from the given cell type and 
have been normalized to the total number of reads in TSS regions. For HiChIP, each line represents a FitHiChIP loop call connecting the points at each end. 
The red lines contain one anchor overlapping the SNP of interest. For coaccessibility, only interactions involving the accessible chromatin region of interest 
are shown. For PLAC-seq, MAPS loop calls from microglia (blue), neurons (orange) and oligodendrocytes (purple) are shown. e, Dot plot showing allelic 
imbalance at rs1237999. The bulk ATAC–seq counts for the reference/noneffect (G) allele and variant/effect (A) allele are plotted. Each dot represents 
an individual bulk ATAC–seq sample (n!=!140) colored by brain region. Samples where fewer than three reads were present to support both the reference 
and variant allele (that is, presumed homozygotes or samples with insufficient sequencing depth) are shown in gray. The blue line represents a linear 
regression of the non-gray points and the gray box represents the 95% confidence interval of that regression. f,g, GkmExplain importance scores for each 
base in the 50-bp region surrounding rs1237999 (f) and rs10130373 (g) for the effect and noneffect alleles from the gkm-SVM model corresponding to 
oligodendrocytes (cluster 21) (f) and microglia (cluster 24) (g). The predicted motif affected by the SNP is shown at the bottom and the SNP of interest is 
highlighted in blue.
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Using this catalog of putative disease-relevant noncoding poly-
morphisms, we developed a tiered multi-omic approach to predict 
functional noncoding GWAS polymorphisms by (1) overlapping 
these SNPs with peaks of chromatin accessibility in our bulk or 
scATAC–seq data (tier 3), (2) identifying the subset of tier 3 SNPs 
that may also affect predicted regulatory interactions (tier 2) and 

(3) predicting which tier 2 SNPs might directly affect transcription 
factor binding (tier 1) (Fig. 3a and Extended Data Fig. 6a).

To predict these tier 1 SNPs that might directly affect tran-
scription factor binding, we implemented a machine-learning 
framework to score the allelic effect of a SNP on chromatin accessi-
bility. Using the gapped k-mer support vector machine (gkm-SVM) 
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framework45, we trained predictive regulatory sequence models of 
chromatin accessibility from each of the 24 broad clusters derived 
from our scATAC–seq data (Fig. 3b, Supplementary Table 2 and 
Methods). The gkm-SVM models for all 24 scATAC–seq clusters 
exhibited high prediction performance on held-out test sequences 
(Extended Data Fig. 6b,c) and across a tenfold validation scheme 
(Extended Data Fig. 6d). We used three complementary approaches, 
GkmExplain22, in silico mutagenesis46 and deltaSVM21 to predict the 

allelic impact of candidate SNPs on chromatin accessibility in each 
cluster by providing the sequences corresponding to both alleles 
of each SNP to the models for each of the 24 clusters. All three 
approaches showed high concordance of predicted allelic effects 
across all candidate SNPs (Extended Data Fig. 6e).

As an orthogonal metric for tier 1 SNPs, we performed allelic 
imbalance analyses with our bulk ATAC–seq data using the robust 
allele-specific quantitation and quality control (RASQUAL) statistical  
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gene locus (chr3:52,168,000-52,890,000) (a) or the KCNIP3 locus (chr2:94,994,000-95,394,000) (b). The scATAC–seq tracks represent the aggregate 
signal of all cells from the given cell type and have been normalized to the total number of reads in TSS regions. For HiChIP, each line represents a FitHiChIP 
loop call connecting the points at each end. The red lines contain one anchor overlapping the SNP of interest. For coaccessibility, only interactions involving 
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(purple) are shown. c,d, GkmExplain importance scores for each base in the 50-bp region surrounding rs181391313 (c) or rs7585473 (d) for the effect and 
noneffect alleles from the gkm-SVM model corresponding to microglia (cluster 24) (c) or oligodendrocytes (cluster 21) (d). The predicted motif affected 
by the SNP is shown at the bottom and the SNP of interest is highlighted in blue. e, Dot plot showing allelic imbalance at rs3755519. The bulk ATAC–seq 
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represents the 95% confidence interval of that regression.
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framework23 (Extended Data Fig. 6f, Supplementary Data 10 and 
Methods). Allelic imbalance refers to the differential chromatin 
accessibility observed between two alleles when one allele is more 
readily bound by a transcription factor.

Using this tiered approach, we identified genes and molecular 
processes that could be implicated in AD and PD (Supplementary 
Fig. 6a–d and Supplementary Note 5). To avoid overinterpretation, 
we focused our downstream analyses on the subset of GWAS loci 
that were most likely to involve noncoding regulation based on the 
absence of any LD SNPs in coding regions (Supplementary Fig. 6e 
and Supplementary Table 2).

Machine learning predicts putative functional SNPs and identifies 
the molecular ontogeny of disease associations. This multi-omic 
approach identified two main categories of new associations within 
our tier 1 SNPs: (1) established disease-related genes where the pre-
cise causative SNP remains unknown; and (2) genes previously not 
implicated in disease etiology. Many studies have investigated the 
role of genes such as PICALM47, SLC24A4 (ref. 48), BIN1 (refs. 9,49)  
and MS4A6A50 in AD since their implication in the disease by 
GWAS. However, it is unclear which polymorphisms drive these 
associations. In the case of PICALM, our models predicted a poten-
tial functional variant (rs1237999) disrupting a putative FOS/AP1 
factor binding site within an oligodendrocyte-specific regulatory ele-
ment 35 kilobases (kb) upstream of PICALM (Fig. 3c,f). Moreover, 
rs1237999 showed significant allelic imbalance with the variant 
(effect) allele showing diminished accessibility in bulk ATAC–seq 
data from heterozygotes across multiple brain regions (Fig. 3e and 
Supplementary Data 10). Lastly, rs1237999 showed 3D interaction 
with both PICALM and EED genes, a polycomb-group family mem-
ber involved in maintaining a repressive transcriptional state. This 
expands the potential functional role of this association to a new 
gene and specifically points to a role for oligodendrocytes, which 
were not previously implicated in this phenotypic association47.

Similarly, the SLC24A4 locus harbors a small LD block with 46 
SNPs that all reside within an intron of SLC24A4. Previous work 
has implicated both SLC24A4 and the nearby RIN3 gene in this 
association but the true mediator is unclear51,52. Our multi-omic 
approach identifies a single SNP, rs10130373, which occurs within a 
microglia-specific peak, disrupts an SPI1 motif and communicates 
specifically with the promoter of the RIN3 gene (Fig. 3d,g). This is 
consistent with the role of RIN3 in the early endocytic pathway that 
is crucial for microglial function and of particular disease relevance 
in AD53. We identified similar examples in the BIN1 and MS4A6A 
loci (Extended Data Fig. 7 and Supplementary Note 6).

Moreover, the true promise in studying these noncoding 
polymorphisms is the identification of new genes affected by 

disease-associated variation. The ITIH1 GWAS locus occurs within 
a 600-kb LD block harboring 317 SNPs and no plausible gene asso-
ciation has been made to date. We nominate rs181391313, a SNP 
occurring within a putative microglia-specific intronic regulatory 
element of the STAB1 gene (Fig. 4a). STAB1 is a large transmem-
brane receptor protein that functions in lymphocyte homing and 
endocytosis of ligands, such as low-density lipoprotein, two func-
tions consistent with a role for microglia in PD54. This SNP is 
predicted to disrupt a KLF4 binding site, which is consistent with 
the role of KLF4 in the regulation of microglial gene expression55 
(Fig. 4c). Similarly, the KCNIP3 GWAS locus resides in a 300-kb 
LD block harboring 94 SNPs. Our results identify two putative 
mediators of this phenotypic association with different functional 
interpretations (Fig. 4b). First, rs7585473 occurs >250 kb upstream 
of the lead SNP and disrupts an oligodendrocyte-specific SOX6 
motif in a peak found to interact with the MAL gene, implicated in 
myelin biogenesis and function (Fig. 4d). Alternatively, we found 
rs3755519 in a neuronal-specific intronic peak within the KCNIP3 
gene with clear interaction with the KCNIP3 gene promoter. While 
this SNP does not show a robust machine-learning prediction, nor 
reside within a known motif, significant allelic imbalance sup-
ports its predicted functional alteration of transcription factor 
binding (Fig. 4e and Supplementary Data 10). Furthermore, this 
SNP is associated with KCNIP3 expression in 3 bulk brain regions 
from the Genotype-Tissue Expression (GTEx) database (frontal 
cortex, P = 4.04 × 10−7; hippocampus, P = 1.45 × 10−7; cerebellum, 
P = 3.47 × 10−8); fine-mapping analysis places rs3755519 within 
the 95% credible set of causal SNPs in all 3 brain regions. Together, 
these SNPs provide competing interpretations of this locus, impli-
cating oligodendrocyte- and neuron-specific functions and demon-
strating the complexities of interpretation of functional noncoding  
SNPs. We additionally noted that many SNPs appeared to dis-
rupt binding sites related to CTCF (Extended Data Fig. 8 and 
Supplementary Note 6).

Epigenomic dissection of the MAPT locus explains 
haplotype-specific changes in local gene expression. One of the 
strongest PD-associated risk loci is the MAPT gene, which encodes 
tau proteins whose pathological, hyperphosphorylated aggre-
gates form neurofibrillary tangles in AD56. However, despite this 
long-known genetic association, it is unclear how the MAPT locus 
may play a role in PD. The MAPT locus is present within a large 
1.8-megabase (Mb) LD block and manifests as two distinct haplo-
types, H1 and H2, which differ by (1) >2,000 SNPs across the two 
haplotypes and (2) an approximately 1-Mb inversion that includes 
the MAPT gene57,58 (Fig. 5a). Previous reports have nominated 
multiple explanations for how these alterations are associated with 

Fig. 5 | Epigenetic deconvolution of the MAPT locus explains haplotype-associated transcriptional changes. a, The MAPT locus (chr17:44,905,000–
46,895,000) showing all genes, the predicted locations of the inversion breakpoints and the 2,366 haplotype-divergent SNPs used for haplotype-specific 
analyses. b, Gene expression of the MAPT gene from the GTEx cortex brain samples subdivided based on MAPT haplotype (n!=!117 H1/H1, 78 H1/H2,  
10 H2/H2). The lower and upper ends of the box represent the 25th and 75th percentiles and the internal line represents the median. The whiskers represent 
1.5 multiplied by the inter-quartile range. Outliers are shown as individual dots. Significance was determined by Wilcoxon rank-sum test. c, Schematic for 
the allelic analysis of the MAPT region. d, HiChIP (top) and bulk ATAC–seq (middle) sequencing tracks of the region representing the MAPT locus inside 
the predicted inversion breakpoints (chr17:45,510,000–46,580,000; bottom). Each track represents the merge of all available H1 or H2 reads from all 
heterozygotes. The HiChIP and ATAC–seq tracks represent unnormalized data from heterozygotes where reads were split based on haplotype. HiChIP is 
shown as a virtual 4C plot where the anchor is indicated by a dotted line and the signal represents paired-end tag counts overlapping a 10-kb bin. Regions 
showing significant haplotype bias in ATAC–seq are marked with an asterisk (Wilcoxon rank-sum test). e, GTEx cortex gene expression of genes in the  
MAPT locus comparing H1 homozygotes (n!=!117) to H1/H2 (n!=!78). Regions A and B are shown as in Fig. 5d. *P!<!0.05 by Wilcoxon rank-sum test after 
multiple hypothesis correction. f, HiChIP (top) and cell-type-specific scATAC–seq (middle) sequencing tracks of the region representing the MAPT locus 
outside of the predicted inversion breakpoints (bottom). HiChIP tracks for bulk homozygote H1 or H2 samples (normalized based on reads-in-loops) are 
shown at the top while haplotype-specific tracks from heterozygotes (unnormalized) are shown below. In each HiChIP plot, the anchor represents the  
MAPT promoter. scATAC–seq tracks represent the aggregate signal of all cells from the given cell type and have been normalized to the total number of  
reads in TSS regions. g, Schematic illustrating the predicted haplotype-specific change in long-distance interaction between the MAPT promoter and the 
predicted distal regulatory element identified in Fig. 5d. Regions marked A and B represent the same regions marked in Fig. 5d,e.
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PD, including increased MAPT expression in the H1 haplotype59,60  
(Fig. 5b), different ratios of splice isoforms61–63 and the use of alter-
native promoters64. We created a haplotype-specific map of chroma-
tin accessibility and 3D chromatin interactions at the MAPT locus  
(Fig. 5c). Using data from heterozygote H1/H2 individuals, we 
split reads into H1 and H2 haplotypes based on the presence of 1 

of the 2,366 haplotype-divergent SNPs (Supplementary Table 2 
and Methods). We tiled the region into non-overlapping 500-base 
pair (bp) bins (to avoid biases in peak calling) and performed a 
Wilcoxon rank-sum test to identify regions differentially accessible 
both between H1/H1 and H2/H2 homozygotes and between split 
reads from H1/H2 heterozygotes (Extended Data Fig. 9a,b). This 
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identified 28 differentially accessible bins including an H1-specific 
putative regulatory element located 68 kb upstream of the MAPT 
promoter and the promoter of the KANSL1 gene located 330 kb 
downstream of MAPT (Fig. 5d (asterisks) and Extended Data Fig. 9c).  
Using our HiChIP data, we performed haplotype-specific virtual 4C 
to determine if any changes in chromatin accessibility were accom-
panied by changes in 3D chromatin interaction frequency. We 
identified H2-specific 3D interactions between a putative domain 
boundary upstream of MAPT (labeled ‘A’) and the region surround-
ing the KANSL1 promoter (labeled ‘B’) spanning a distance of 
>600 kb inside the inversion breakpoints (Fig. 5d). Additionally, the 
H1-specific putative regulatory element upstream of MAPT showed 
increased interaction with a second putative regulatory element 
intronic to MAPT and with the MAPT promoter (Fig. 5d).

To better understand how these epigenetic changes impact 
haplotype-specific gene expression, we used RNA sequencing data 
from the GTEx database. In addition to the previously mentioned 
haplotype-specific differences in MAPT expression (Fig. 5b), we 
also identified significant changes in gene expression near the larg-
est changes in chromatin accessibility and 3D interaction (‘A’ and ‘B’; 
Fig. 5e and Extended Data Fig. 9d,e). These increases in gene expres-
sion could play a functional role in MAPT haplotype-mediated 
pathological changes or, more likely, be a nonfunctional by-product 
of the genomic inversion.

These analyses illuminate how the genomic region inside the 
MAPT inversion breakpoints differs between the H1 and H2 haplo-
types; alternatively, the inversion could alter MAPT gene expression 
by changing the relative orientation of the MAPT gene to enhanc-
ers and promoters outside of the breakpoints. In support of this, 
we identified a long-distance putative regsulatory element located 
650 kb upstream of the MAPT gene that showed elevated interac-
tion with the MAPT promoter specifically in the H1 haplotype  
(Fig. 5f). Indeed, we found multiple neuron-specific putative regu-
latory elements in this upstream region, consistent with the known 
neuron-specific expression of MAPT (Extended Data Fig. 9f), and 
an increase in overall 3D interaction between this upstream region 
and the region surrounding MAPT inside of the inversion break-
points (Extended Data Fig. 9g). Additional studies are needed to 
demonstrate the functional effects of these predicted regulatory 
interactions (Fig. 5g).

Discussion
In this study, we provide a high-resolution epigenetic characteriza-
tion of the role of inherited noncoding variation in AD and PD. Our 
integrative multi-omic framework and machine-learning classifier 
predicted dozens of functional SNPs, nominating gene and cellu-
lar targets for each noncoding GWAS locus. These predictions both 
inform well-studied disease-relevant genes, such as BIN1 in AD, and 
suggest new gene-disease associations, such as STAB1 in PD. This 
expands our understanding of inherited variation in AD and PD 
and provides a roadmap for epigenomic dissection of noncoding 
variation in neurodegenerative and other complex genetic diseases.

Together, this multi-omic resource captures the regional and 
cellular gene regulatory machinery that governs phenotypic expres-
sion of noncoding variation, thus allowing us to identify most poly-
morphisms that could putatively affect gene expression through 
overlap with peaks of chromatin accessibility (tier 3). To further 
refine these putative functional variants, we identified the subset of 
polymorphisms that could be mapped to gene targets through 3D 
chromatin interactions or coaccessibility networks (tier 2). Finally, 
we employed a machine-learning approach to predict the subset of 
polymorphisms likely to perturb transcription factor binding and 
validated these predictions with measurements of allelic imbal-
ance (tier 1). In total we implicate approximately five times as many 
genes in the phenotypic association of AD and PD and nominate 
functional noncoding variants for dozens of previously orphaned 

GWAS loci. Additionally, through our integrative analysis, we pro-
vide a comprehensive epigenetic characterization of the MAPT gene 
locus (discussed in detail in Supplementary Note 7). The functional 
predictions made through our machine-learning classifier and inte-
grative analytical approach greatly expand our understanding of 
noncoding contributions to AD and PD. More broadly, this work 
represents a systematic approach to understanding inherited varia-
tion in disease and provides an avenue towards the nomination of 
new therapeutic targets that previously remained obscured by the 
complexity of the regulatory machinery of the noncoding genome.
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Methods
Publicly available data used in this study. All QTL analysis was performed using 
GTEx v.8. Additionally, we downloaded full-genome summary statistics of GWAS 
associations for three AD cohorts1–3 and two PD cohorts6,65; however, these cohorts 
are not all mutually exclusive. #e PD full GWAS summary statistics from Chang 
et al.6 were obtained through a research agreement with 23andMe. #ese summary 
statistics included those generated by 23andMe (n = 6,476 individuals with PD 
and 302,042 controls who were disease-free) but not summary statistics from 
individuals incorporated into the meta-analysis from the original publication.  
All GWAS data used in this study (except the data protected through our research 
agreement with 23andMe) have been compiled for ease of reproducibility and are 
available at https://doi.org/10.1101/2020.01.06.896159 and https://zenodo.org/
record/3817811. Additionally, we obtained MAPS-based loop calls directly from 
published proximity ligation-assisted ChIP–seq (PLAC-seq) data from microglia, 
neurons and oligodendrocytes9.

Genome annotations. All data are aligned and annotated to the hg38  
reference genome.

Sequencing. Bulk ATAC–seq and HiChIP were sequenced using an Illumina 
HiSeq 4000 System with paired-end 75-bp reads. scATAC–seq was sequenced 
using an Illumina NovaSeq 6000 System with an S4 flow cell with paired-end  
99-bp reads.

Sample acquisition and patient consent. Primary brain samples were acquired 
postmortem with institutional review board-approved informed consent from 
Stanford University, the University of Washington or Banner Health. Human donor 
sample sizes were chosen to provide sufficient confidence to validate methodological 
conclusions. Human brain samples were collected with an average postmortem 
interval of 3.9 h (range 2.0–6.9 h). These brain regions include distinct isocortical 
regions (superior and middle temporal gyri, Brodmann areas 21 and 22), parietal 
lobe (Brodmann area 39) and middle frontal gyrus (Brodmann area 9), striatum at 
the level of the anterior commissure (caudate nucleus and putamen), hippocampus 
at the level of the lateral geniculate nucleus and the substantia nigra at the level of 
the red nucleus. Macrodissected brain regions were flash-frozen in liquid nitrogen. 
Some samples were embedded in optimal cutting temperature compound. All 
samples were stored at −80 °C until use. Due to the limiting nature of these primary 
samples, this unique biological material is not available upon request.

Isolation of nuclei from frozen tissue chunks and bulk ATAC–seq data 
generation. Nuclei were isolated from frozen tissue as described previously19,33. This 
protocol, including the transposition reaction, is available on protocols.io (https://
doi.org/10.17504/protocols.io.6t8herw). Briefly, frozen tissue fragments were 
Dounce-homogenized to create a suspension of nuclei. Nuclei were purified using an 
iodixanol gradient and washed in resuspension buffer (RSB). Nuclei were counted 
and, for each replicate, 50,000 nuclei were aliquoted into a separate tube containing 
RSB with 0.1% Tween-20. Nuclei were pelleted and transposed as described in the 
protocol linked above according to the Omni-ATAC transposition conditions19. 
Transposed fragments were purified and amplified as described previously26 with 
slight modification. Briefly, transposed fragments were preamplified for three 
cycles. The concentration of preamplified fragments was determined by quantitative 
PCR (qPCR) and this concentration was used to estimate the total number of 
cycles required to obtain 160 fmol of fragments. A second PCR was performed to 
amplify the preamplified fragments for the desired number of cycles. Final libraries 
were again purified. Before sequencing, libraries were pooled and run on a 6% 
polyacrylamide gel electrophoresis gel and excess primers and primer dimers below 
125 bp were removed. Libraries were sequenced on an Illumina HiSeq 4000 System 
as described above. After isolation and bulk ATAC–seq, the remaining nuclei were 
cryopreserved in BAMBANKER (Wako Chemicals) and stored at −80 °C for use in 
other assays such as scATAC–seq and HiChIP.

Statistics. All statistical tests performed are included in the figure legends or 
Methods where relevant.

ATAC–seq data processing. The ENCODE Data Coordination Center (DCC) 
ATAC–seq pipeline (https://doi.org/10.5281/zenodo.211733) (v.1.1.7) was used to 
process the bulk ATAC–seq samples, starting from FASTQ files. The pipeline was 
executed with irreproducible discovery rate (IDR) enabled and the IDR threshold 
was set to 0.05. The GRCh38 reference genome assembly was used, keeping 
only the primary chromosomes chr1–chr22, chrX, chrY, chrM. The pipeline was 
executed with ATAQC enabled, using GENCODE v.29 transcription start site 
(TSS) annotations. Biological replicates were analyzed individually, with the two 
technical replicates for each biological replicate provided as inputs to the ‘atac.
bams’ argument of the pipeline. Other arguments to the pipeline were kept at  
their defaults.

ATAC–seq peak calling. Pipeline peak calls underwent several levels of filtering 
to identify credible peak sets. The IDR optimal peak set from the DCC pipeline for 
each biological replicate was determined. Although the IDR peaks for individual 

biological replicates were corrected for multiple testing, the high number of 
biological samples in the dataset served as another source of multiple testing error. 
To address this source of error, tagAlign files for all biological replicates for a 
given brain region/condition were concatenated. The DCC pipeline (v.1.1.7) was 
subsequently executed on the merged tagAlign files as single-replicate inputs. The 
pipeline generated pseudoreplicates from the input tagAlign files for each brain 
region/condition. Optimal IDR peaks were called from the pseudoreplicates. This 
set of IDR peaks was filtered to keep peaks supported by 30% or more of the IDR 
peaks from the pipeline runs on individual biological replicates.

Sample-by-peak count matrices were then generated from the resulting set of 
filtered peaks. Filtered peaks from the pooled tagAlign files were concatenated 
and truncated to within 200 bp of the summit (100-bp flank kept upstream and 
downstream of the peak summit). These 200-bp regions were merged with the 
BEDTools66 (v.2.26.0) merge command to avoid merging peaks with low levels of 
overlap. BEDTools coverage was used to compute the number of tagAlign reads 
that overlapped each peak region in the pseudoreplicates in the merged tagAlign 
dataset. This analysis yielded a total of n = 186,559 peaks combined across the 
brain regions.

Motif enrichment. Motif enrichment was performed using the hypergeometric 
test as described previously33,67.

Feature binarization. Identification of ‘unique’ peaks from the ATAC–seq data 
was performed as described previously33. Briefly, for each of the cell classes (termed 
‘groups’), we created three pseudobulk replicates that were used to create a count 
matrix of insertion counts within each peak of the scATAC–seq peak set. This 
count matrix was then log-normalized using ‘edgeR::cpm(mat,log = TRUE,prior.
count = 3)’. We then calculated the intragroup mean and intragroup s.d. across 
every peak in the scATAC–seq peak set. Then, for each peak, we ranked the groups 
by their intragroup mean. Then, we iterated from the second lowest group asking 
whether the mean of that group was greater than the maximum intragroup mean 
plus the intragroup s.d. of the next-lowest sample. This iterative process proceeds 
until a group was identified that met this criterion. This point was defined as 
the breakpoint and all groups with a higher intragroup mean were classified as 
positive for this peak and given a value of ‘1’. All groups below the breakpoint were 
given a value of ‘0’. If a peak did not have a breakpoint, it was discarded. This peak 
‘binarization’ procedure classified all ‘1s’ as being higher than every individual 
‘0’. This also captured the peaks that were unique to multiple groups. We kept all 
combinations that were unique to three or fewer groups. To facilitate multiple 
hypothesis testing, we computed a contrast matrix for all observed combinations 
and ran limma’s (v.3.38.3) eBayes test on the log-normalized counts matrix. 
We then extracted all of the false discovery rate (FDR)-adjusted P values from 
differential testing keeping those peaks that were below an FDR of 0.001. This 
resulted in the classification of 221,062 peaks.

Sequencing tracks. Sequencing tracks were created using the WashU Epigenome 
Browser. All sequencing tracks of a given locus have the same y axis. All tracks 
show data that have been normalized by ‘reads-in-peaks’ (for ATAC–seq) or 
‘reads-in-loops’ for HiChIP to account for differences in signal-to-background 
ratios across multiple samples, unless otherwise stated. For all sequencing tracks, 
genes that are on the plus strand (that is, 5′ to 3′ in the left to right direction) are 
shown in red and genes that are on the minus strand (that is, 5′ to 3′ in the right to 
left direction) are shown in blue to enable identification of the TSS.

LD score regression. We apply stratified LD score regression, a method for 
partitioning heritability from GWAS summary statistics, to sets of cell-type- 
specific ATAC–seq peaks to identify disease-relevant cell types for AD and PD 
along with other brain-related GWAS traits. Using our scATAC–seq data, peak 
coordinates were first converted from hg38 to hg19 for analysis with GWAS data.  
We followed the LD score regression tutorial (https://github.com/bulik/ldsc/wiki) 
as used previously41 for single-cell-specific analysis68. We used brain-related 
GWAS summary statistics, such as AD1, PD6, schizophrenia69, anorexia nervosa70, 
attention deficit hyperactivity disorder71, anxiety72, neuroticism73 and epilepsy74 
(Supplementary Table 2 and https://zenodo.org/record/3817811). To serve as 
controls, we also used summary statistics for GWAS of traits not obviously linked 
to brain tissues such as lean body mass75, bone mineral density76 and coronary 
artery disease77. In particular, we looked at the regression coefficient P value, 
indicative of the contribution of this annotation to trait heritability, conditional  
on the baseline model described previously41.

Allele counts from ATAC–seq data. The WASP mapping pipeline (https://
github.com/bmvdgeijn/WASP/tree/master/mapping) was used to reduce biases in 
mapping and filtering duplicate reads. Reads were mapped using bowtie2 (v.2.3.2) 
to the UCSC hg38 reference genome. Variants were called on the resulting BAM 
files using bcftools mpileup v.1.9 to produce VCF files. These VCF files and the 
WASP-corrected BAM files were used as input for the GATK ASEReadCounter 
(v.4.0.1.2) tool to obtain allele counts and their mapping quality. These allele counts 
were used to visualize significant allelic imbalance as determined by RASQUAL 
(https://github.com/natsuhiko/rasqual). For plotting, samples that lacked at least 
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three read counts for both the reference and alternate alleles were inferred to be 
either homozygous or too low coverage to presume heterozygosity. However, these 
allele counts were only used for display purposes and did not contribute to any 
determination of significance for allelic imbalance.

Allelic imbalance from ATAC–seq data using RASQUAL. We intersected the 
coordinates of all LD-expanded candidate AD and PD GWAS and colocalization 
SNPs with peaks from our ATAC–seq data to obtain the candidate SNPs that 
we tested for allele-specific effects on chromatin accessibility. We used the 
createASVCF.sh script from the RASQUAL23 GitHub repository (https://github.
com/natsuhiko/rasqual) to obtain the allele-specific counts at each candidate SNP 
for all samples. We used the fitAseNullMulti function from the QuASAR78 (v.0.1) 
GitHub repository to calculate for each donor the posterior probability of the three 
possible genotypes at all of the candidate SNP positions using all available brain 
region samples from that donor and assigned the genotype at each position to be 
the one with the highest posterior probability. Next, using these allele-specific 
counts and genotypes and the allele frequencies from the 1000 Genomes Project79 
for each candidate SNP, we created a VCF file for each brain region, which included 
the allele-specific counts and genotypes from only the samples that originated 
from those respective regions. Similarly, we created region-specific count matrices, 
which contained columns of ATAC–seq read counts for each feature only from the 
samples that originated from the respective regions. We also ran the makeOffset.R 
script from the RASQUAL repository with a list of guanine-cytosine (GC) 
contents, corresponding to the GC content of each feature in the counts matrix, as 
an argument to generate the sample-specific offset terms file for each brain region. 
Since RASQUAL is run on each feature from the counts matrix independently of 
other features, we further split the region-specific input VCF files, counts matrices 
and offset files by chromosome and used the text2bin.R script from the RASQUAL 
repository to convert the region and chromosome-specific input counts matrices 
and offset files into the binary format required by RASQUAL.

Finally, we ran RASQUAL using the input VCF file, counts matrix and offset 
file from each of the 22 chromosomes (chromosomes 1–22; chromosome X and 
chromosome Y did not have any candidate SNPs) from each of the brain regions 
and tested each candidate SNP present in each feature in the counts matrix. To test 
for genome-wide significance of each putative chromatin accessibility QTL, we ran 
RASQUAL with the–random-permutation option along with the same inputs ten 
times to generate a background set of null q values. For each brain region, we used 
the empirical distribution of null q values to identify those SNPs that have a q value 
lower than the 10% FDR threshold as significant chromatin accessibility QTLs, as 
recommended by the authors (https://github.com/natsuhiko/rasqual/issues/21).

Selection of candidate SNPs for ATAC–seq overlap analysis, HiChIP 
interaction tests and gkm-SVM model-based allelic effect scores. Our goal 
was to identify SNPs with a causal effect on any of the selected GWAS traits. To 
minimize the chances of excluding causal GWAS SNPs, we selected the set of all 
variants achieving a genome-wide significant P < 5 × 10−8 for any GWAS trait. 
We then added in any lead SNPs from the colocalization analysis that achieved a 
colocalization posterior probability score >0.01, even those that did not pass the 
genome-wide significance value of P < 5 × 10−8. We also included all trait-associated 
SNPs curated from two other PD studies6,7. In these studies, full summary statistics 
were not publicly available for the entire genome because the meta-analysis was 
applied only to the subset of SNPs reaching genome-wide significance in a previous 
PD GWAS. We then computed the full set of SNPs that had an LD R2 ≥ 0.8 with at 
least 1 of the SNPs in the set selected above. These LD calculations were performed 
on the phase 1 genotypes of individuals of European ancestry in the 1000 Genomes 
dataset, provided in full at https://zenodo.org/record/3404275#.Xlw62XVKhhE. 
Pairwise LD values of all variants in the above subset were calculated via PLINK 
v.1.90. These pairwise LD values were used to identify 1000 Genomes SNPs with 
R2 ≥ 0.8 with the SNPs in our dataset. Together, these LD buddies plus the original 
set of trait-relevant SNPs comprised the set of SNPs tested in our subsequent 
functional analyses.

Testing GWAS loci for overlap with ATAC–seq peaks. We tested all SNPs in the 
above set for overlap with ATAC–seq peaks from two different annotation formats. 
The first annotation consisted of bulk ATAC–seq peaks identified in one of seven 
brain regions. The second annotation consisted of cluster-specific peaks from 
scATAC–seq data. For each variant selected for functional analysis, we determined 
all cellular contexts where an ATAC–seq peak contained this variant, as well as the 
nearest peak if no peak contained the variant.

scATAC–seq library generation. Cryopreserved nuclei were thawed on ice and 
65,000 nuclei were transferred to a tube containing 1 ml of RSB-T (10 mM of 
Tris-HCl pH 7.5, 10 mM of NaCl, 3 mM of MgCl2 and 0.1% Tween). Nuclei were 
pelleted at 500 RCF for 5 min at 4 °C in a fixed-angle rotor. The supernatant was 
fully removed using two pipetting steps (p1000 to remove down to the last 100 µl, 
then p200 to remove all remaining supernatant). This pellet was then gently 
resuspended in 12 µl of 1× nuclei buffer (10x Genomics). To transpose, 5 µl of this 
nuclei suspension (containing 27,000 nuclei) was transferred to a tube containing 
10 µl of transposition mix (10x Genomics). This reaction mixture was incubated at 

37 °C for 1 h to transpose. The remainder of library generation was completed as 
described in the 10x Genomics Single Cell ATAC Regent Kits User Guide  
(v.1 Chemistry).

scATAC–seq latent semantic indexing (LSI) clustering and visualization. 
scATAC–seq clustering analysis was performed using an alpha version of the 
ArchR software80. To cluster our scATAC–seq data (for both broad clustering and 
neuronal subclustering), we first identified a robust set of peak regions followed 
by iterative LSI clustering27,30. Briefly, we created 1-kb windows tiled across the 
genome and determined whether each cell was accessible within each window 
(binary). Next, we identified the top 50,000 accessible windows across all samples 
(accounting for GC bias) and performed an LSI dimensionality reduction (term 
frequency-inverse document frequency (TF-IDF) transformation followed by 
singular value decomposition (SVD)) on these windows followed by Harmony 
batch correction81. We then performed Seurat82 clustering (FindClusters v.2.3) 
on the harmonized LSI dimensions at resolutions of 0.8, 0.4 and 0.2, keeping the 
clustering for which the minimum cluster size was greater than 100 cells (0.2 if this 
condition was not met). For each cluster, we called peaks on the Tn5-corrected 
insertions (each end of the Tn5-corrected fragments) using the MACS2 callpeak 
command with the parameters ‘--shift --75 --extsize 150 --nomodel --call-summits 
--nolambda --keep-dup all -q 0.05’. The peak summits were then extended by 
250 bp on either side to a final width of 501 bp, filtered by the ENCODE hg38 
blacklist (https://www.encodeproject.org/annotations/ENCSR636HFF/) and 
filtered to remove peaks that extended beyond the ends of chromosomes. We then 
created a non-overlapping set of extended summits across all of these peaks as 
described previously27,30.

We then counted the accessibility for each cell in these peak regions to create 
an accessibility matrix. We then adopted the iterative LSI clustering approach27,30 to 
unbiasedly identify clusters that were due to biological versus technical variation. 
Briefly, we computed the TF-IDF transformation as described by Cusanovich 
et al.83. To do this, we divided each index by the colSums of the matrix to compute 
the cell ‘term frequency’. Next, we multiplied these values by log(1 + ncol(matrix)/
rowSums(matrix)), which represents the ‘inverse document frequency’. This yields 
a TF-IDF matrix that can be used as input to irlba’s (v.2.3.3) SVD implementation 
in R (v.3.6.1). We then used Harmony to batch-correct the LSI dimensions in 
R. Using the first 25 reduced dimensions as input into a Seurat object, crude 
clusters were identified using Seurat’s (v.2.3) shared nearest neighbor (SNN) graph 
clustering FindClusters function with a resolution of 0.2. We then calculated the 
cluster sums from the binarized accessibility matrix and then log-normalized them 
using edgeR’s ‘cpm(matrix, log = TRUE, prior.count = 3)’ in R. Next, we identified 
the top 25,000 varying peaks across all clusters using the ‘rowVars’ function in R. 
This was done on the cluster log-normalized matrix rather than the sparse binary 
matrix because: (1) it reduced biases due to cluster cell sizes; and (2) it attenuated 
the mean variability relationship by converting to log space with a scaled prior 
count. The 25,000 variable peaks were then used to subset the sparse binarized 
accessibility matrix and recompute the TF-IDF transform. We used SVD on the 
TF-IDF matrix to generate a lower dimensional representation of the data by 
retaining the first 25 dimensions. We then used Harmony to batch-correct the LSI 
dimensions in R. We then used these reduced dimensions as input into a Seurat 
object and crude clusters were identified using Seurat’s SNN graph clustering 
FindClusters function with a resolution of 0.6. This process was repeated a third 
time with a resolution of 1.0. Then, these same reduced dimensions were used 
as input to Seurat’s ‘RunUMAP’ function with default parameters and plotted in 
ggplot2 (v.3.2.1) using R.

scATAC–seq gene activity scores. Gene activity scores are based on the 
observation that chromatin accessibility within the gene body, at the promoter 
and at distal regulatory elements is correlated with gene expression30,31,80,84. Gene 
scores were calculated using ArchR v.0.9.4 (ref. 80) with default parameters. 
Briefly, ArchR infers gene activity scores using a distance-weighted accessibility 
model that aggregates the accessibility signal inside the gene body and in the local 
genomic region. The resulting gene activity scores were additionally imputed using 
MAGIC85 (v.2.0.3) to reduce noise due to scATAC–seq data sparsity.

Identification of clusters and cell types from scATAC–seq data. Different 
clusters and cell types were manually identified using promoter accessibility and 
gene activity scores for various lineage-defining genes. Microglia (cluster 24) were 
identified based on accessibility near the IBA1, CD14, CD11C, PTGS1 and PTGS2 
genes. Astrocytes (clusters 13–17) were identified based on accessibility near the 
GFAP and FGFR3 genes. Excitatory neurons (clusters 1, 3 and 4 were identified 
based on accessibility near the SLC17A6 and SLC17A7 genes. Inhibitory neurons 
(clusters 2, 11 and 12) were identified based on accessibility near the GAD2 and 
SLC32A1 genes. Medium spiny neurons (most of cluster 2) were identified based 
on accessibility near the PPP1R1B gene. Oligodendrocytes (clusters 19–23) were 
identified based on accessibility near the MAG and SOX10 genes. OPCs (clusters 
8–10) were identified based on accessibility near the PDGFRA gene. All neuronal 
subsets were identified primarily as neurons based on accessibility near the NEFL, 
RBFOX3, VGF and GRIN1 genes and then subdivided based on the region of origin 
and accessibility near the other genes mentioned above.
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scATAC–seq peak calling. For scATAC–seq peak calling from clusters or manually 
defined cell types, all single cells belonging to the given group were pooled 
together. These pooled fragment files were converted to the paired-end tagAlign 
format and processed with v.1.4.2 of the ENCODE DCC ATAC–seq pipeline. The 
conversion to tagAlign was performed as follows. For fragments on the positive 
strand, the read start coordinate was the fragment start coordinate, zero-indexed. 
The read end coordinate was the fragment start coordinate plus the read length 
(99 bp). For fragments on the negative strand, the read start coordinate was 
the fragment end coordinate, zero-indexed. The read start coordinate was the 
fragment end coordinate minus the read length (99 bp). Then, these tagAlign files 
were used as input to the DCC ATAC–seq pipeline. IDR optimal peak sets with 
an IDR threshold of 0.05 were determined for each cluster by the pipeline, using 
pseudobulk replicate tagAligns for the cluster. Other pipeline parameters were the 
same as for bulk ATAC–seq data (see above).

scATAC–seq pseudobulk replicate generation and differential accessibility 
comparisons. For differential comparisons of clusters or cell types, including 
Pearson correlation determination, non-overlapping pseudobulk replicates were 
generated from groups of cells. For each cell grouping (that is, a cluster or a cell 
type), a minimum of 300 cells was required to make at least two non-overlapping 
pseudobulk replicates of 150 cells each. A maximum of 3 pseudobulk replicates was 
made per group if the total number of cells per group was >450 cells. Cells were 
randomly deposited into one of the pseudobulk replicates and all available cells 
were used. In this way, the non-overlapping pseudobulk replicates were agnostic  
to which donor the cell came from but aware of individual cells (that is, all reads 
from a given cell were deposited into the same pseudobulk replicate). These 
pseudobulk replicates were then used for differential comparisons using DESeq2 
(v.1.24.0) (ref. 86).

Identification of neuronal cell class-specific peaks, transcription factor motifs 
and genes. ArchR was used to call peaks (using addReproduciblePeakSet) 
and identify cell class-specific peaks and genes (using getMarkerFeatures). 
The cell class-specific peaks were tested for motif enrichment (using 
peakAnnoEnrichment).

Transcription factor footprinting. Transcription factor footprinting was 
performed as described previously33.

HiChIP library generation. HiChIP library generation was performed as 
described previously28. One million cryopreserved nuclei were used per 
experiment. Enzyme MboI (New England Biolabs) was used for restriction 
digestion. Sonication was performed on a Covaris E220 instrument using the 
following settings: duty cycle = 5; peak incident power = 140; cycles per burst = 200; 
time 4 min. All HiChIP was performed using H3K27ac as the target (catalog no. 
ab4729; Abcam).

HiChIP data analysis. HiChIP paired-end sequencing data were processed using 
HiC-Pro87 v.2.11.0 with a minimum mapping quality of 10. FitHiChIP88 was used 
to identify ‘peak-to-all’ interactions using peaks called from the one-dimensional 
HiChIP data. A lower distance threshold of 20 kb and an upper distance threshold 
of 2 Mb were used. Bias correction was performed using coverage-specific bias.

HiChIP linkage of SNPs to genes. To link SNPs to genes, we identified FitHiChIP 
loops that contained a SNP in one anchor and a TSS in the other anchor. This was 
performed for all LD-expanded SNPs to identify the full complement of genes that 
could be putatively implicated in AD and PD.

gkm-SVM machine-learning classifier training and testing. See the 
Supplementary Methods.

Identification of MAPT haplotypes. The MAPT haplotype block is part of one 
of the largest LD blocks in the human genome. To identify SNPs that belonged 
exclusively to either the H1 or H2 haplotype, we used minor allele frequencies 
from dbSNP v.151. SNPs were required to be within the coordinates of the MAPT 
inversion breakpoints (hg38 chr17:45,551,578–46,494,237) and have a minor allele 
frequency between 8.4 and 9%. While there are undoubtedly haplotype-specific 
SNPs outside this frequency range, we chose this range to be as conservative as 
possible and pick SNPs that showed minimal haplotype switching. Each SNP was 
verified to track with the predicted haplotype using LDlink89 (v.3.6). This resulted 
in 2,366 SNPs that could be confidently called as haplotype divergent.

MAPT locus differential expression analysis. A 900-kb block of variants in strong 
LD at the MAPT locus hampered the resolution of colocalization methods for 
identifying causal variants and/or genes at this locus. To probe this locus more dee 
ply, we assembled a list of 2,366 variants uniquely found in either the H1 or the H2 
haplotype of the MAPT locus (described above). For each of the 838 individuals 
genotyped in GTEx, we counted the number of variants in support of either 
haplotype. We designated individuals as homozygous if they possessed <1% of 
variants favoring the opposite haplotype and heterozygous if 45–55% of variants 

supported either haplotype. This determined the individual’s haplotype in all 
but six cases, which were excluded from the remainder of the MAPT analysis. In 
total, we identified 539 individuals with the H1/H1 haplotype, 260 with H2/H1 
and 33 with H2/H2. Our a priori gene of interest was MAPT, whose expression 
had previously been demonstrated to be higher in H1 than H2 haplotypes. At a 
nominal cutoff of P < 0.05, we confirmed this expected direction of differential 
MAPT expression (higher in H1 haplotypes) in multiple tissues, with the strongest 
contrasts in ‘Brain—Cortex’.

We then extended our analysis to include all genes expressed in any of the 
brain tissues from GTEx. We compared the log2 fold change of gene expression 
(transcripts per million) between H1/H1 and H1/H2 individuals, given that 
these subgroups had the largest sample size. A change was considered statistically 
significant if a Wilcoxon rank-sum test between the two groups produced a 
P < 0.05/(total no. of genes)/(total no. of tissues). We also performed pairwise 
Wilcoxon rank-sum test comparisons for each gene in each brain tissue between all 
three pairings of haplotypes.

MAPT haplotype-specific ATAC–seq and HiChIP analysis. For both ATAC–seq 
and HiChIP, reads from heterozygote donors were remapped to an n-masked 
genome (using bowtie2 or HiC-Pro, respectively) where all dbSNP positions 
were masked to ‘n’. After alignment, SNPsplit90 (v.0.3.2) was used to divide reads 
mapping to either the H1 or H2 haplotypes based on the presence of one of the 
2,366 haplotype-divergent SNPs identified above. In this way, reads mapping to 
regions that lack a haplotype-divergent SNP could not be assigned in an allelic 
fashion to either the H1 or H2 haplotypes and were ignored. For track-based 
visualizations of haplotype-specific data, all available data from a given haplotype 
were merged agnostically to the brain region the data were derived from. For 
visualization of ATAC–seq and HiChIP data from H1/H2 heterozygotes, no 
normalization was performed because each sample was internally controlled for 
allelic depth. To identify regions with haplotype-specific chromatin accessibility 
in the MAPT locus, the entire locus was tiled into non-overlapping 500-bp bins 
and the number of Tn5 transposase insertions were counted for each haplotype 
in each bin for each sample. A Wilcoxon signed-rank test was used to determine 
if the difference between H1 and H2 for each bin was significant after multiple 
hypothesis correction (FDR < 0.01).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data generated in this work are available through GEO accession no. GSE147672. 
To facilitate wide access to our data, we created a WashU Epigenome browser 
session (session ID: drS3o1n4kJ) for our scATAC–seq data in the following track 
formats: (1) broad cell types (Corces_scATAC_BroadCellTypes);(2) broad clusters 
(Corces_scATAC_BroadClusters); (3) neuron subclusters (Corces_scATAC_
NeuronSubClusters); and (4) neuron subclustered cell types/LDSC groups 
(Corces_scATAC_NeuronSubCellTypes). These tracks are accessible via the 
following link: http://epigenomegateway.wustl.edu/legacy/?genome=hg38& 
session=drS3o1n4kJ.

Code availability
All custom code used in this work is available at the following GitHub repository: 
https://github.com/kundajelab/alzheimers_parkinsons.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Region-centric scATAC-seq identifies cellular and regional heterogeneity in chromatin accessibility in adult brain. a, b, UMAP 
dimensionality reduction (a) prior to and (b) after batch correction with Harmony of scATAC-seq data from 10 different samples. Each dot represents 
a single cell (N = 70,631). Dots are colored by the sample of origin. Color labels are shown in Extended Data Fig. 1b. c, The same UMAP dimensionality 
reduction shown in Extended Data Fig. 1b but each cell is colored by its gene activity score for the annotated lineage-defining gene. Gene activity scores 
were imputed using MAGIC. Grey represents the minimum gene activity score while purple represents the maximum gene activity score for the given 
gene. The minimum and maximum scores are shown in the bottom left of each panel. The gene of interest and the cell type that it identified are shown 
in the upper left of each panel. MSNs – medium spiny neurons. d, Heatmap of cell type-specific markers used to define the cell type corresponding to 
each cluster. Color represents the row-wise Z-score of chromatin accessibility in the vicinity of each gene for each cluster. e, Cluster residence heatmap 
showing the percent of each cluster that is composed of cells from each sample. Cell numbers were normalized across samples prior to calculating cluster 
residence percentages to account for differences in total pass filter cells per sample. f–h, UMAP dimensionality reduction as shown in Extended Data Fig. 1b  
but colored by (f) the gross brain region from which each cell was obtained, (g) the biological sex of the donor for each cell, or (h) the predicted cell 
class for each cell. i–k, Bar plot showing the number of cells identified in our scATAC-seq data from (i) each of the annotated cell classes, (j) each of the 
annotated donors/samples, or (k) each of the gross brain regions subdivided based on cell class. Color represents the predicted cell class as shown in the 
legend of Extended Data Fig. 1h. l, m, Bar plot showing the percentage of cells in our scATAC-seq data from (l) each of the gross brain regions subdivided 
based on cell class or (m) each of the annotated cell classes subdivided based on donor/sample of origin. Color represents (l) the predicted cell class as 
shown in the Extended Data Fig. 1h or (m) the biological sample from which the cells were obtained.
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Extended Data Fig. 2 | Cellular heterogeneity in brain tissue necessitates single-cell approaches to capture biological complexity. a, b, Bar plot 
of the log2(Fold Change) in the percent of peaks mapping to various genomic annotations comparing peaks from (a) the scATAC-seq peak set that 
are not overlapped by a peak from the bulk ATAC-seq peak set to peaks that are overlapped by a peak from the bulk ATAC-seq peak set or (b) the 
scATAC-seq peak set that were identified as cell type-unique through feature binarization to all peaks from the scATAC-seq peak set. c, Sequencing 
tracks of lineage-defining factors shown across all 24 scATAC-seq clusters (except Cluster 18 – putative doublets). From left to right, NEFL (neurons; 
chr8:24933431-24966791), AIF1 (aka IBA1, microglia; chr6:31607841-31617906), MOG (oligodendrocytes; chr6:29652183-29699713), GJB6 (astrocytes; 
chr13:20200243-20239571), and PDGFRA (OPCs; chr4:54209541-54303643). d, Box and whiskers plots showing the distribution of the number of single 
cells from our scATAC-seq data showing accessibility within (left) each peak from the set of peaks from the scATAC-seq peak set that overlap a peak 
from the bulk ATAC-seq peak set (N = 120,941 peaks) and (right) each peak from the set of peaks from the scATAC-seq peak set that do not overlap a 
peak from the bulk ATAC-seq peak set (N = 238,081 peaks). The lower and upper ends of the box represent the 25th and 75th percentiles and the internal 
line represents the median. The whiskers represent 1.5 multiplied by the inter-quartile range. P-value determined by Kolmogorov–Smirnov test. e, Dot 
plot showing the inter-region Pearson correlation of pseudo-bulk replicates comprised of all cells from either SMTG, PARL, or MDFG within each of the 
clusters shown. The clusters shown were selected based on biological relevance (that is clusters annotated as “substantia nigra astrocytes” should not be 
compared across isocortical regions) and on cluster size (that is clusters with small numbers of isocortical cells would not provide robust comparisons).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Neuronal sub-clustering identifies diverse biologically relevant populations of neurons. a–d, UMAP dimensionality reduction 
of neuronal cells (identified as Clusters 1-7, 11, and 12 from Fig. 1e) (a) prior to or (b–d) after batch correction with Harmony of scATAC-seq data from 10 
different samples. Each dot represents a single cell (N = 21,116). Dots are colored by (a, b) the sample of origin, (c) the neuronal sub-cluster (repeated 
from Fig. 2a), or (d) its gene activity score for the annotated lineage-defining gene. In (d), gene activity scores were imputed using MAGIC. Grey 
represents the minimum gene activity score while purple represents the maximum gene activity score for the given gene. The minimum and maximum 
scores are shown in the bottom left of each panel. The gene of interest is shown in the upper right of each panel. e, Heatmap of gene activity scores for 
all neuronal markers used in identifying relevant cell types for neuronal sub-clusters. Color represents the column-wise z-scores for each gene across 
all neuronal sub-clusters with values thresholded at -2 and +2. Neuronal cluster “major annotation” is shown by color along with a cluster description 
to the right of the plot. f–h, The same UMAP dimensionality reduction shown in Extended Data Fig. 3c but cells are colored by (f) the major cell class 
annotation, (g) a more granular neuronal sub-annotation, or (h) the neuronal cell class annotation. Assignment was made based on gene activity scores of 
lineage-defining genes. The cell class annotation shown in (h) was used to perform LD score regression analysis.
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Extended Data Fig. 4 | Sub-clustering of cells from the substantia nigra identifies TH-positive dopaminergic neurons. a–d, UMAP dimensionality 
reduction after iterative LSI of scATAC-seq data from substantia nigra cells from 2 different samples. Each dot represents a single cell (N = 11,199). Dots 
are colored by (a) their corresponding substantia nigra sub-cluster, (b) the sample of origin, or (c, d) its gene activity score for (c) the tyrosine hydoxylase 
(TH) gene, a specific marker of dopaminergic neurons or (d) other lineage-defining genes. In (c, d), gene activity scores were imputed using MAGIC. Grey 
represents the minimum gene activity score while purple represents the maximum gene activity score. The minimum and maximum scores are shown in 
the bottom left of each panel. In (a-c), the predicted cluster cell type identities are overlaid on the UMAPs.
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Extended Data Fig. 5 | HiChIP and co-accessibilty predict enhancer-promoter interactions in primary adult human brain. a, Heatmap representation of 
HiChIP interaction signal at 100-kb, 25-kb, and 5-kb resolution at the OLIG2 locus. Sample shown represents the substantia nigra from donor 03-41. Signal 
is normalized to the square root of the coverage. The maximum value of the color range and the coordinates along chromosome 21 are shown below each 
panel. b, Bar plots showing the total number of paired-end reads sequenced for each HiChIP library generated in this study. Color represents the brain 
region from which the data was generated. c, Bar plots showing the number of valid interaction pairs identified in HiChIP data from all samples profiled 
in this study. Color represents the type of interaction identified. d, Bar plot showing the overlap of FitHiChIP loop calls from the 4 gross brain regions 
profiled. Color indicates whether the loop was identified in a single region (unique) or more than one region (shared). e, Bar plot showing the classification 
of FitHiChIP loop calls based on whether the loop call contained an ATAC-seq peak (from either the bulk ATAC-seq peak set or the scATAC-seq peak 
set) or TSS in one, both, or no anchor. f, Bar plots showing the number of Cicero-predicted co-accessibility-based peak links that are observed in HiChIP 
(left) or the number of HiChIP-based FitHiChIP loop calls that are predicted as peak links by Cicero. g, Bar plot showing the number of cell type-specific 
peaks (defined as peaks identified through feature binarization; N = 221,062) or non-cell type-specific peaks (defined as scATAC-seq peaks that were not 
identified through feature binarization; N = 137,960) that overlap or do not overlap a Cicero-predicated co-accessibility linkage. Significance determined 
by Kolmogorov-Smirnov test.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | A multi-omic tiered approach leverages machine learning to predict functional noncoding SNPs in AD and PD. a, Flow chart of the 
analytical framework used to prioritize noncoding SNPs and predict functionality. The highest confidence SNPs (Tier 1) are supported by either machine 
learning predictions, allelic imbalance, or both. Moderate confidence SNPs (Tier 2) are supported by the presence of the SNP within a peak and a HiChIP 
loop or co-accessibility peak link that connects the SNP to a gene. Lower confidence SNPs (Tier 3) are only supported by the presence of the SNP in a 
peak. b, c, Box plot showing the area under (b) the precision-recall curve or (c) the receiver-operating characteristics curve for the gkm-SVM machine 
learning classifier. Performance for each of the 24 broad clusters is shown with dots representing outliers. The lower and upper ends of the box represent 
the 25th and 75th percentiles. The whiskers represent 1.5 multiplied by the inter-quartile range. The center line represents the median. d, GkmExplain 
importance scores shown across all 10 folds for each base across a 100-bp window surrounding rs636317 for the effect (left) and non-effect (right) bases. 
e, Dot plots showing comparison of the GkmExplain score, ISM score, and deltaSVM score. Each dot represents an individual SNP test in a given fold. Dot 
color represents the GWAS locus number. The only off-diagonal dots (circled) correspond to repetitive regions within the MAPT locus where the deltaSVM 
score appears to be particularly sensitive. f, Dot plot showing allelic imbalance assessed by RASQUAL across all bulk ATAC-seq data used in this study 
from a region-specific analysis. Significance is assessed by RASQUAL (see Methods). Dot color indicates the brain region found to have significant allelic 
imbalance. Grey dots do not pass significance testing based on an empircal distribution of permuted null q-values and a 10% false discovery rate.  
A RASQUAL effect size greater than 0.5 indicates that the alternate allele is enriched while less than 0.5 indicates that the reference allele is enriched.  
The plot is divided to show SNPs within the MAPT and DNAH17 loci (bottom) and SNPs in all other loci (top). SNPs mentioned in downstream analyses  
are highlighted by red text.
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Extended Data Fig. 7 | Multi-omic characterization of well-studied AD-related GWAS loci pinpoints putative functional noncoding SNPs.  
a, c, Normalized scATAC-seq-derived pseudo-bulk tracks, H3K27ac HiChIP loop calls, co-accessibility correlations, and publically available H3K4me3 
PLAC-seq loop calls (Nott. et al. 2019) in (a) the BIN1 gene locus (chr2:127045000-127182000) and (c) the MS4A gene locus (chr11:60023000-
60554000). scATAC-seq tracks represent the aggregate signal of all cells from the given cell type and have been normalized to the total number of reads 
in TSS regions, enabling direct comparison of tracks across cell types. For HiChIP, each line represents a FitHiChIP loop call connecting the points on each 
end. Red lines contain one anchor overlapping the SNP of interest while grey lines do not. For co-accessibility, only interactions involving the accessible 
chromatin region of interest are shown. For PLAC-seq, MAPS loop calls from microglia (blue), neurons (orange), and oligodendrocytes (purple) are 
shown. b, d, GkmExplain importance scores for each base in the 50-bp region surrounding (b) rs13025717 or (d) rs636317 for the effect and non-effect 
alleles from the gkm-SVM model for microglia (Cluster 24). The predicted motif affected by the SNP is shown at the bottom and the SNP of interest is 
highlighted in blue. e, Dot plot showing allelic imbalance at rs636317. Significance of allelic imbalance was determined by RASQUAL. The bulk ATAC-seq 
counts determined by WASP and ASEReadCounter for the reference/non-effect (A) allele and variant/effect (T) allele are plotted. Each dot represents 
an individual bulk ATAC-seq sample (N = 140) colored by the brain region from which the sample was collected. Samples where fewer than 3 reads were 
present to support both the reference and variant allele (that is presumed homozygotes or samples with insufficient sequencing depth) are shown in grey. 
The blue line represents a linear regression of the non-grey points and the grey box represents the 95% confidence interval of that regression.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Multi-omic characterization of noncoding SNPs identifies novel genes implicated in PD. a, c, Normalized scATAC-seq-derived 
pseudo-bulk tracks, H3K27ac HiChIP loop calls, co-accessibility correlations, and publically available H3K4me3 PLAC-seq loop calls (Nott. et al. 2019) in 
(a) the IP6K2 gene locus (chr3:48671000-49205000) or (c) the TMEM163 gene locus (chr2:134429000-134905000). scATAC-seq tracks represent the 
aggregate signal of all cells from the given cell type and have been normalized to the total number of reads in TSS regions, enabling direct comparison of 
tracks across cell types. For HiChIP, each line represents a FitHiChIP loop call connecting the points on each end. Red lines contain one anchor overlapping 
the SNP of interest while grey lines do not. For co-accessibility, only interactions involving the accessible chromatin region of interest are shown. For 
PLAC-seq, MAPS loop calls from microglia (blue), neurons (orange), and oligodendrocytes (purple) are shown. b, d, GkmExplain importance scores 
for each base in the 50-bp region surrounding (b) rs6781790 or (d) rs7599054 for the effect and non-effect alleles from the gkm-SVM model for (b) 
astrocytes (Cluster 15) or (d) microglia (Cluster 24). The predicted motif affected by the SNP is shown at the bottom and the SNP of interest is highlighted 
in blue. e, Dot plot comparing the –log10(p-value) from 23andMe PD GWAS data with the –log10(p-value) from GTEx Caudate eQTL data of SNPs in the 
TMEM163 locus. Each dot represents an individual SNP. Dot color represents the r2 value of LD with the lead SNP (rs7599054 – purple diamond) within a 
European reference population. f, g, Dot plots showing the genomic coordinates of each SNP and the –log10(p-value) from (f) 23andMe PD GWAS data or 
(g) GTEx Caudate eQTL data. Dots are colored as in Extended Data Fig. 8e. In (e–g), p-values are based on genome-wide chi-squared statistics from the 
relevant GWAS and eQTL studies.

NATURE GENETICS | www.nature.com/naturegenetics

https://www.ncbi.nlm.nih.gov/snp/?term=rs6781790
https://www.ncbi.nlm.nih.gov/snp/?term=rs7599054
https://www.ncbi.nlm.nih.gov/snp/?term=rs7599054
http://www.nature.com/naturegenetics


ARTICLESNATURE GENETICS

Extended Data Fig. 9 | Epigenomic dissection of the MAPT locus. a, Flowchart illustrating the analytical scheme used to identify bins with significant 
allelic imbalance across the H1 and H2 MAPT haplotypes. b, Heatmaps showing chromatin accessibility in 500-bp bins identified as having significantly 
different accessibility across MAPT haplotypes. Regions are shown for homozygous samples without allelic read splitting (left) and for heterozygous 
samples after allelic read splitting (right). Bin start coordinates are shown to the right. c, Box and whiskers plots for multiple regions which show 
differential chromatin accessibility across the H1 and H2 MAPT haplotypes. Each dot represents a single homozygous H1 (N = 91) or homozygous H2  
(N = 12) sample. Heterozygotes are not shown. The lower and upper ends of the box represent the 25th and 75th percentiles. The whiskers represent  
1.5 multiplied by the inter-quartile range. The center line represents the median. d, e, Gene expression of (d) the KANSL1-AS1 gene or (e) the MAPK8IP1P2 
gene shown as a box plot from GTEx cortex brain samples subdivided based on MAPT haplotype. The lower and upper ends of the box represent the 
25th and 75th percentiles. The whiskers represent 1.5 multiplied by the inter-quartile range. The center line represents the median. ***p < 10-5 based 
on Wilcoxon rank sum test. N = 117 H1/H1, 78 H1/H2, and 10 H2/H2. f, Sequencing tracks from pseudo-bulk data derived from predicted cell types 
in scATAC-seq data. This region represents a zoomed in view of the predicted distal regulatory region (chr17:45216500-45324000) that interacts 
with the MAPT promoter in the H1 haplotype. Putative neuron-specific regulatory elements are highlighted in blue. g, Box plots showing differential 
HiChIP interaction signal occurring between regions within the MAPT inversion and regions outside the inversion (“left” or “right”). The schematic at 
the top explains the analysis performed. The box plots show normalized HiChIP interaction counts for the H1 (N = 6) and H2 (N = 6) haplotypes for 
upstream/“left” interactions and downstream/“right” interactions. P-value determined by paired two-sided t-test.
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To facilitate broad access to our data, we have created WashU Epigenome browser session (Session ID: drS3o1n4kJ) for our scATAC-seq data in the following track 
formats: (i) broad cell types (“Corces_scATAC_BroadCellTypes”), (ii) broad clusters (“Corces_scATAC_BroadClusters”), (iii) neuron subclusters 
(“Corces_scATAC_NeuronSubClusters”), and (iv) neuron subclustered cell types / LDSC groups (“Corces_scATAC_NeuronSubCellTypes”). These tracks are accessible 
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Sample size Sample size was based on the available biological material. However, sufficient samples were used to allow statistical measures of 
reproducibility across multiple biological donors in all cases.

Data exclusions Sequencing data that did not pass pre-established quality control filters was excluded from analysis. For bulk ATAC-seq, samples with low 
signal-to-noise were uniformly excluded to prevent misinterpretation. For scATAC-seq and HiChIP, all generated data passed quality control 
filters. All conclusions were validated through replication.

Replication Replication across biological samples was the primary metric for reproducibility of sequencing data. For our machine learning work, 10-fold 
cross validation was used.

Randomization During nuclei isolation, tissue samples were randomized into batches to avoid batch effects from nuclei isolation. During bulk ATAC-seq, 
scATAC-seq, and HiChIP library construction, randomized batches were also used.

Blinding All brain tissue nuclei isolation and bulk ATAC-seq data generation was carried out in a blinded manner. HiChIP and scATAC-seq were 
performed after nuclei were isolated, bulk ATAC-seq was performed, and the data was un-blinded. Thus, blinding was not possible for HiChIP, 
or scATAC-seq but these techniques were performed on nuclei isolated in a blinded fashion as mentioned above.
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Population characteristics Post-mortem human brain samples were used in this work. These samples were taken from individuals ranging from 38 to 93 
years old (mean of 80.8) from primarily Caucasian ancestry. Some of these individuals were cognitively assessed. No individuals 
had mutations for known drivers of Alzheimer's or Parkinson's diseases. Donors were 41% female, 59% male. Additional donor 
characteristics are available in Supplementary Table 1.

Recruitment Participants were research volunteers in the Stanford, Arizona, or University of Washington Alzheimer's Disease Research 
Center, or the Stanford Morris K. Udall Center of Excellence for Parkinson's Disease Research, who consented to donate their 
brains for research following each institutions IRB-approved protocol. Bias may exist due to regional or socioeconomic factors 
that constrain the patient populations at these facilities which could bias towards an over-representation of caucasian 
individuals. No other self-selection biases are expected.

Ethics oversight Post-mortem brain samples were collected with approved consent and overseen by the relevant institutional review boards of 
Stanford University, the University of Washington, and Banner Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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