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In this work, we describe NEAT-seq (sequencing of nuclear 
protein epitope abundance, chromatin accessibility and the 
transcriptome in single cells), enabling interrogation of regu-
latory mechanisms spanning the central dogma. We apply 
this technique to profile CD4 memory T cells using a panel 
of master transcription factors (TFs) that drive T cell subsets 
and identify examples of TFs with regulatory activity gated by 
transcription, translation and regulation of chromatin bind-
ing. We also link a noncoding genome-wide association study 
single-nucleotide polymorphism (SNP) within a GATA motif 
to a putative target gene, using NEAT-seq data to internally 
validate SNP impact on GATA3 regulation.

Multimodal single-cell technologies have revolutionized our abil-
ity to characterize cell states and identify gene regulatory programs 
across various cell types. For example, methods pairing assay for 
transposase-accessible chromatin with high-throughput sequencing 
(ATAC-seq) and RNA-seq in single cells have allowed association of 
epigenetic status with transcriptional output, enabling identification 
of putative target genes of regulatory elements1. Antibodies linked 
to barcoded oligonucleotides have enabled surface protein mea-
surements using a sequencing read-out, and when combined with 
RNA- or ATAC-seq in single cells have been particularly informa-
tive for profiling immune populations traditionally isolated based 
on surface protein markers2,3. Recently, this approach was extended 
to measuring intracellular proteins4–8. However, quantification of 
nuclear gene regulatory proteins along with chromatin accessibility 
profiling and RNA-seq has not been demonstrated.

Since transcription factors (TFs) can bind directly to enhancer 
elements to modulate target gene expression9, measuring their 
abundance provides critical insight into how these proteins drive 
gene regulatory states. Protein abundance is often challenging to 
estimate via single-cell RNA-seq data due to posttranscriptional 
regulation and relatively low RNA capture rates10,11. Directly mea-
suring single-cell protein levels of TFs, which are often much more 
abundant than their encoding transcripts12, can link individual TFs 
to regulated enhancers and target genes by correlating changes in 
TF protein levels to changes in regulatory element accessibility and 
expression of nearby genes. Such analyses can help distinguish direct 
target genes from secondary effects, reveal cooperative and antago-
nistic effects of multiple TFs on gene regulation, and enable more 
accurate identification of TF-mediated gene regulatory networks 

underpinning cell fate. Here, we develop NEAT-seq (sequencing of 
nuclear protein epitope abundance, chromatin accessibility and the 
transcriptome in single cells), a method that enables quantification 
of nuclear proteins along with ATAC-seq and RNA-seq in single 
cells. We use NEAT-seq to profile CD4 memory T cells and illus-
trate its use for interrogating the relationship between master TF 
abundance, chromatin accessibility and gene expression.

While multiple groups have demonstrated sequencing-based 
surface protein quantification using barcoded antibodies2,3,13,14, 
application to nuclear proteins has been challenging due to high 
levels of background oligo-antibody staining in the nucleus8,15. 
One approach to reduce nonspecific staining is to saturate cells 
with single stranded nucleic acids or other negatively charged 
polymers in an attempt to block cellular components that bind 
nonspecifically to single-stranded DNA5,7,8,15. We hypothesized 
that directly blocking the charge of the antibody oligo might fur-
ther improve signal over background and that E. coli ssDNA bind-
ing protein (EcoSSB) would be an attractive candidate for this 
purpose (Supplementary Note 1).

To optimize staining with EcoSSB-bound oligo-conjugated 
antibodies, we conjugated an anti-green fluorescent protein 
(-GFP) antibody with a Cy5 labeled 80-bp ssDNA oligo, allow-
ing us to compare oligo-antibody staining levels (via Cy5 fluores-
cence) to GFP levels within a cell. We then used this antibody to 
stain human embryonic kidney 293 (HEK293) cells expressing 
a nuclear-localized GFP. Preincubating the oligo-antibody with 
EcoSSB dramatically improved correlation between Cy5 antibody 
signal and GFP levels within the nucleus (Fig. 1a). We further 
confirmed that quantification of the conjugated oligo reflected 
GFP levels within the nucleus by sorting nuclei into three popu-
lations of increasing GFP abundance for quantitative PCR target-
ing the conjugated oligo (Extended Data Fig. 1a,b). To determine 
whether these staining conditions would be sufficiently sensitive to 
detect endogenous protein levels, we stained for GATA1 in K562 
cells, using embryonic stem cells (ESCs) as a negative control. We 
observed a marked increase in GATA1 staining in K562 relative to 
ESCs using a GATA1 antibody linked to the Cy5-modified oligo 
(Extended Data Fig. 1c). EcoSSB similarly improved specificity of 
cytosolic protein staining (Extended Data Fig. 1d). In comparison 
with the inCITE-seq (intra-nuclear cellular indexing of transcrip-
tomes and epitopes) protocol8, our approach showed a moderate 
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Fig. 1 | An intra-nuclear staining protocol using oligo-antibodies enables simultaneous profiling of nuclear proteins, chromatin accessibility and RNA 
transcripts in single cells. a, Flow cytometry plot of HEK293T cells expressing nuclear-localized GFP and stained with an anti-GFP antibody linked to an 80 bp 
ssDNA oligo with 3′-Cy5 modification. Spearman correlation is shown. b, Schematic of NEAT-seq workflow. c, Distribution of CLR transformed counts of 
HTOs from anti-NPC antibodies (HTO5-9). d, Scatterplot of number of reads mapping to the human versus mouse genome in each cell after removing HTO 
doublets, with each cell colored by its classification as a human cell, mouse cell or mixed species doublet. e–g, Distribution of RNA UMIs (e), genes (f) and 
ATAC-seq fragments (g) per cell. Boxplots show median with bounds of the box representing the 25th and 75th percentiles and the whiskers extending to the 
value closest to but not exceeding 1.5 times the interquartile range. Outliers extending beyond the whiskers are not shown. h, CLR-transformed counts of ADTs 
corresponding to GATA1, OCT4 and SOX2 in cells classified as human or mouse cells based on mapping of ATAC-seq and RNA-seq reads to each genome.
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improvement in staining that was most pronounced at lower pro-
tein levels (Supplementary Note 2 and Extended Data Fig. 1e).

We next sought to combine nuclear protein quantification with 
scATAC-seq and scRNA-seq using the 10X Genomics Multiome 
kit (Fig. 1b). Because cell fixation increases the doublet rate in 
droplet-based single-cell technologies4, we assayed a mixture of 
human K562 and mouse ESCs stained using antibodies against 
mutually exclusive TFs and antibody-linked hashtag oligos14 
(HTOs) to assess both doublet identification and specificity of 
nuclear protein abundance measurements. HTOs are barcoded oli-
gos used to label distinct samples so they can be distinguished after 
pooling. Clear separation between positive and negative HTO stain-
ing allowed us to set stringent cutoffs and identify droplets that were 
positive for more than one hashing oligo, enabling in silico removal 
of almost 50% of doublets (Fig. 1c,d and Extended Data Fig. 2a,d). 
This hashing procedure can similarly be applied for straightforward 
sample multiplexing (Fig. 1b).

For human and mouse singlets, we detected a median of 13,496 
and 16,883 RNA unique molecular identifiers (UMIs); 4,732 and 
5,086 genes; and 26,762 and 26,929 ATAC fragments per cell, respec-
tively (Fig. 1e–g). The fragment length distribution and average 
transcription start site (TSS) enrichment were also comparable to 
bulk ATAC-seq libraries (Extended Data Fig. 2e,f). Tn5 insertions in 
peaks were highly correlated with bulk data (r = 0.90) and RNA-seq 
data were moderately correlated (r = 0.67), with a similar RNA cor-
relation value observed for standard 10X Multiome data (Extended 
Data Fig. 2g,h). We observed a greater than four-fold enrichment of 
GATA1 and OCT4 antibody-derived tag (ADT) counts and greater 
than two-fold enrichment of SOX2 ADT counts in their respective 
cell types (Fig. 1h). Together, these results demonstrate simultaneous 
quantification of endogenous nuclear protein abundance, chromatin 
accessibility and gene expression in fixed single cells.

We next applied NEAT-seq to profile primary human CD4 
memory T cells composed of distinct T cell subsets driven by 
known master TFs, providing a diverse system for dissecting the 
regulatory mechanisms upstream and downstream of these TFs16. 
Our antibody panel targeted TFs that drive Th1 (Tbet), Th2 
(GATA3), Th17 (RORγT) and Treg (FOXP3 and Helios) cell fate17. 
In this dataset, we observed a small reduction in unique ATAC and 
RNA reads detected relative to a standard 10X Multiome experi-
ment, which was similarly observed in other fixed single-cell assays 
(Supplementary Tables 1–3).

We identified seven clusters in the population using scATAC-seq, 
which largely corresponded to clusters identified using scRNA-seq 
(Fig. 2a and Extended Data Fig. 3a). We annotated the Th1, Th2, 
Th17 and Treg clusters based on master TF RNA and protein abun-
dance, genome-wide accessibility of the TF binding motif, as well as 
canonical surface marker expression16 (Fig. 2b,c and Extended Data 
Fig. 3b). These clusters also exhibited high chromatin accessibility 
at functionally relevant cytokine gene loci, but low or undetectable 
RNA expression (Extended Data Fig. 3c,d). This observation is 
suggestive of epigenetic priming, where transcription is absent but 
the gene locus is accessible and poised for transcriptional activa-
tion, and is consistent with the primed status of memory T cells18. 
Remaining clusters were similarly annotated based on marker 
expression and TF motif accessibility (Supplementary Note 3 and 
Extended Data Fig. 3e,f).

Our antibody-based protein measurements for each TF showed 
clear enrichment in the cell type that the TF is known to drive and 
provided more robust detection of target TFs compared to our RNA 
data (Fig. 2c and Extended Data Fig. 4a–c): smoothing of signal 
across neighboring cells in the uniform manifold approximation 
and projection (UMAP) was necessary for identification of cell types 
using RNA-seq data due to high dropout rates, while unsmoothed 
ADT data were sufficient to clearly label cell types (Extended Data 
Fig. 4a,d,e).

By comparing the TF gene locus chromatin accessibility, RNA 
expression, protein abundance and genome-wide TF binding motif 
accessibility across cells for each TF assayed, our data indicate 
three distinct modes of regulation in our TF panel. Accessibility 
at the RORγT and Tbet genes were strongly correlated with mea-
surements of downstream regulatory events, suggesting that these 
TFs are regulated transcriptionally (Fig. 2c and Extended Data 
Fig. 5a,b). FOXP3 and Helios exhibited strong correlation between 
gene accessibility, RNA and protein abundance but had differ-
ing patterns of motif accessibility, suggesting that their expression 
is regulated transcriptionally but presence of the protein does not 
result in increased chromatin accessibility at motif sites. The lack 
of concordance between FOXP3 expression and motif accessibil-
ity is consistent with previous studies showing that FOXP3 binds 
to pre-existing accessible enhancers to drive Treg fate19. For Helios, 
binding may result in chromatin compaction rather than accessi-
bility, as was recently observed in mouse hematopoietic progenitor 
cells20. The uncoupling of TF protein expression and motif acces-
sibility highlights the caveats of using motif accessibility alone to 
infer TF activity.

The final TF in our panel, GATA3, showed clear discordance 
between RNA expression and protein levels across cells (Fig. 2c). 
The ADT levels, but not RNA levels, were correlated with global 
changes in GATA3 motif accessibility. These observations are con-
sistent with posttranscriptional regulatory mechanisms restricting 
GATA3 protein expression in memory T cells, which could only be 
uncovered with the addition of protein quantification.

Our paired RNA and protein measurements also allowed us to 
identify candidate posttranscriptional regulators of GATA3 by per-
forming differential expression analysis between cells expressing 
high GATA3 RNA but low protein versus cells expressing both high 
GATA3 RNA and protein (Fig. 2d). Among the top upregulated 
genes were several core translation regulators, including the elon-
gation factor EEF1G, large ribosome subunit RPL18 and poly-A 
binding protein PABPC4, along with more indirect regulators such 
as GAB2 and NIBAN1 (ref. 21) (Fig. 2e and Extended Data Fig. 6b). 
GATA3 translation is regulated by PI3K signaling through mTOR22 
that, like NIBAN1, phosphorylates EIF4EBP1 to allow assembly of 
the initiation complex23, while GAB2 is a direct activator of PI3K. 
These results indicate upregulation of genes that promote translation 
may play a role in driving GATA3 protein production in the Th2 sub-
set of memory T cells. Together, our results indicate three regulatory 
mechanisms used to modulate activity of the TFs in our panel: tran-
scriptional regulation, as demonstrated by concordant RNA, protein 
and motif accessibility patterns (RORγT and Tbet); transcriptional 
regulation of expression but requirement of other TFs for chromatin 
binding (FOXP3) and translational regulation (GATA3).

In addition to using multimodal measurements to interrogate 
regulation of the TF itself, we can use this information to uncover 
downstream enhancer and gene targets of a TF by correlating 
protein abundance of the TF with changes in regulatory element 
accessibility and gene expression across cells. For RORγT, Tbet and 
GATA3, the correlated scATAC-seq peaks were enriched for the 
corresponding TF motif (Extended Data Fig. 7a). For FOXP3 and 
Helios, motifs were not enriched in correlated peaks, consistent 
with our earlier observations that these TFs are not correlated with 
global changes in motif accessibility (Fig. 2c). We similarly identi-
fied genes with RNA expression significantly correlated (adjusted 
P < 0.05) with protein levels of each TF (Extended Data Fig. 7b). 
Within these correlated gene sets were genes known to be enriched 
or functionally important in the memory T cell subset driven by the 
TF in question, such as IL4R for GATA3 and CTLA4 for both Helios 
and FOXP3 (ref. 24).

To identify candidate genes directly regulated by each TF 
through a TF-associated enhancer (that is, TF-peak–gene link-
ages), we overlapped the top TF ADT-correlated genes with top TF 
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ADT-correlated scATAC-seq peaks containing the corresponding 
TF motif that were within 100 kb of the gene promoter and filtered 
for significant peak–gene linkages (adjusted P < 0.05; Fig. 3a). We 

performed this analysis for the TFs that showed correlation between 
TF abundance and motif accessibility (Fig. 3b). The candidate direct 
target genes were significantly enriched (adjusted P < 0.05) for Gene 
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Fig. 2 | Profiling of Cd4 memory T cells using NEAT-seq reveals modes of regulation across the central dogma. a, scATAC-seq UMAP of CD4 memory 
T cells with cell type classifications. Annotations with cell numbers in parentheses: Th1 (1562), Th2 (939), Th17 (1,855) and Treg (583); TCM, central 
memory (2,512); Act., recently activated cells (116) and Uncom., uncommitted memory cells (905). b, Top enriched motifs in peaks that are more accessible 
in each cluster. c, Plots on scATAC UMAP of TF chromVAR deviations (motif accessibility), accessibility surrounding the TF gene locus (gene accessibility), 
RNA levels and protein levels as measured by ADTs for the indicated TFs. n = 8,472 cells in each plot except for ADTs, where n = 3,841 cells. GA, gene 
accessibility; Expr., RNA expression; Ab, antibody-based protein counts. d, Scatterplot of log2-transformed, normalized RNA versus ADT counts for GATA3 
with cutoffs shown for high RNA, high protein and low protein indicated. Dens., density of cells. e, Differentially expressed genes between cells with high 
RNA and high protein versus high RNA and low protein for GATA3 based on a two-sided Wilcoxon rank sum test. Adjusted P values indicate Benjamini–
Hochberg corrected values. Points in red represent genes with adjusted P value <0.05 and log2 fold change >0.5.
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Ontology terms related to T cell function and included canonical 
surface markers for the corresponding cell type. Among the GATA3 
targets were Th2 markers CCR4, CCR8 and IL4R, and among 
RORγT targets was the Th17 marker, CCR6 (Fig. 3c–f and Extended 
Data Figs. 7c–e and 8).

We also reasoned that these TF-peak–gene linkages could be 
used to interpret the effects of noncoding genome-wide associa-
tion study (GWAS) single-nucleotide polymorphisms (SNPs) on 
TF activity and connect the SNPs to putative target genes. We over-
lapped peaks in our TF-peak–gene linkages with candidate causal 
GWAS SNPs25 and identified rs62088464 located within a GATA 
motif sequence in a GATA3 ADT-associated peak. The risk allele, 
which preserves the GATA motif, is associated with decreased pul-
monary function26, which can result from inflammatory lung dis-
eases associated with Th2 immune responses27. The gene linked to 
the peak containing this SNP encodes TSEN54, a gene with signifi-
cantly enriched expression in the sputum of patients with type-2 
airway inflammation28,29 (Fig. 3g–i). Since our T cell donor was het-
erozygous for this SNP, we tested whether the risk allele is regulated 
by GATA3 by examining whether the risk allele is more accessible 
than the protective allele in cells with high GATA3 protein levels. 
Indeed, we observed that most ATAC-seq reads in cells expressing 
high GATA3 ADT levels mapped to the risk allele, while little differ-
ence was observed in cells with lower GATA3 ADT levels (Fig. 3j).  
Similarly, the risk allele is associated with increased TSEN54 expres-
sion in GTEx data and TSEN54 was the gene most strongly associ-
ated with the risk allele in various tissues (Extended Data Fig. 9). 
Together, these results indicate that GATA3 binds the risk allele 
sequence to activate the regulatory element and drive expression of 
TSEN54 and that this binding is disrupted with the protective allele.

NEAT-seq provides a new avenue for studying the quantitative 
effects of epigenetic regulator abundance on both chromatin and 
gene expression state in primary human samples. Whereas previ-
ous studies investigating dosage-dependent effects of TFs often 
required building cell lines with a combination of hypomorphic 
and null alleles30,31 or inducible expression systems32, we demon-
strate that NEAT-seq can measure the molecular consequences 
of continuous changes in TF levels in a biologically relevant set-
ting for a panel of proteins simultaneously. Since nuclear proteins 
encompass many proteins involved in gene regulation, the capacity 
to link nuclear protein levels to epigenetic and transcriptional sta-
tus provides a powerful approach for studying mechanisms of gene 
regulation. Incorporating additional modalities such as cytoplasmic 
and cell surface proteins, CRISPR guide RNA sequencing and T cell 
receptor sequencing will enable measurement of the effects of cel-
lular perturbations and signaling pathways on cell state, providing 
an even more comprehensive picture of cellular programs.
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Methods
Cell culture. Mouse V6.5 ESCs were obtained from Novus Biologicals (NBP1-
41162) and cultured on gelatin-coated plates in Knockout DMEM (Thermo Fisher 
no. 10829018) supplemented with 7.5% ES-qualified serum (Applied Stem Cell no. 
ASM-5017), 7.5% Knockout Serum replacement (Thermo Fisher no. 10828-028), 
2 mM l-glutamine (Gibco no. 35050061), 10 mM HEPES (Gibco no. 15630080), 
100 units per ml penicillin/streptomycin (Gibco no. 151401222), 0.1 mM 
nonessential amino acids (Gibco no. 11140050), 0.1 mM beta-mercaptoethanol 
(Gibco no. 21985023) and leukemia inhibitory factor. The human chronic myeloid 
leukemia cell line, K562, was purchased from ATCC and cultured in RPMI 
1640 medium (Gibco no. 11875119) containing 15% FBS and 100 units per ml 
penicillin/streptomycin. HEK293T cells were cultured in DMEM with GlutaMAX 
(Gibco no. 10566024) containing 10% FBS and 100 units per ml penicillin/
streptomycin. Frozen vials of primary human CD4+CD45RO+ memory T cells were 
purchased from STEMCELL Technologies (catalog no. 70031) that were obtained 
from donors using IRB-approved consent forms and protocols.

GFP transfection, staining and sorting. On day 0, HEK293T cells were 
seeded at 4 million cells per 10 cm plate. On day 1, cells were transfected with 
6 μg nuclear-localized GFP construct (Addgene no. 67652) using Fugene HD 
transfection reagent (Promega). Cells were gathered and stained using anti-GFP 
antibody (Biolegend 338002) linked to an 80 or 100 bp ssDNA oligo with 3′ 
Cy5 fluorophore as described in the oligo-antibody staining methods section, 
except without RNase inhibitor or DTT. A control stain was performed with the 
oligo-antibody in the absence of SSB. Stained cells were resuspended in PBS and 
analyzed on an LSRII flow cytometer or sorted on a BD FACS Aria II. FlowJo 
v.10.7.1 was used for analysis of flow cytometry data.

Antibody conjugation. Antibodies were conjugated with streptavidin using 
the Lightning-Link Streptavidin Conjugation Kit from Abcam (ab102921) 
according to the manufacturer’s instructions. NaCl and Tween were added to the 
conjugated antibody mixture to a final concentration of 0.5 M NaCl and 0.01% 
Tween and mixed with biotinylated oligos (purchased from IDT) at equimolar 
ratio. The mixture was incubated overnight at room temperature and unbound 
oligo was removed using Amicon 100-KDa centrifugal filters (UFC510008). 
Antibody conjugates were eluted and stored in PBS. Antibodies conjugated with 
streptavidin were GATA1 (Abcam ab241393), OCT4 (R&D AF1759), SOX2 
(R&D MAB2018), nuclear pore complex (Biolegend 902901) and GFP (Biolegend 
338002). Due to a low observed enrichment of SOX2 in mESCs versus K562, we 
tested specificity of the conjugated SOX2 antibody by western blot and observed 
specific, if relatively weak, SOX2 binding (Extended Data Fig. 2i). Antibodies 
in the TF panel for CD4 memory T cells were directly conjugated to oligos by 
BD Biosciences. The antibodies in the panel were the following clones from BD 
Biosciences: GATA3 (L50-823), Tbet (4B10), RORγT (Q21-559), FOXP3 (259D/
C7) and Helios (22F6). Due to discordance between GATA3 protein and RNA 
levels, we verified specificity of our GATA3 antibody on GATA3-overexpressing 
cells (Extended Data Fig. 6a).

Binding of ssDNA binding protein to oligo-antibodies. To bind EcoSSB 
(Promega M3011) to the antibody oligos, we incubated the antibody and EcoSSB in 
50 μl of 1× NEBuffer 4 for 30 min at 37 °C. We then added a final concentration of 
3% BSA, 1× PBS and 1 U μl−1 RNase inhibitor directly to the antibody-EcoSSB mix 
(without any purification) in a final volume of 100 μl for staining cells. To calculate 
the amount of EcoSSB needed to saturate binding sites on the antibody oligos, we 
estimated that each antibody was conjugated to an average of two oligos of 95 bp, 
and each EcoSSB tetramer would bind with a roughly 35-bp footprint33,34, requiring 
six EcoSSB tetramers per antibody. Based on the concentration of antibody 
being used and reported Kd of EcoSSB (in the roughly 2 nM range)35, we can then 
estimate the amount of EcoSSB necessary to bind a given fraction of oligos (aiming 
for >0.9) using the following equation:

desired fraction of oligo bound =

([EcoSSB]tot+[oligo]tot+Kd)−
√

([EcoSSB]tot+[oligo]tot+Kd)2−4×[EcoSSB]tot×[oligo]tot
2×[oligo]tot

where [oligo]tot = antibody concentration × 2 oligos × 3 EcoSSB binding sites  
per oligo.

Oligo-antibody staining. Cells were fixed in 1.6% formaldehyde in PBS for 
2 min at room temperature, then quenched with 0.25 M glycine for 5 min on ice 
and spun down at 600g for 5 min. Cells were washed twice with PBS and then 
resuspended in lysis/permeabilization buffer (20 mM Tris-HCl pH 7.5, 150 mM 
NaCl, 3 mM MgCl2, 0.5% NP40, 0.1% Tween-20, 0.01% digitonin, 1 U μl−1 RNase 
inhibitor, 1 mM DTT). For staining of cytosolic GFP, 0.1% NP40 was used in 
the buffer instead. Cells were incubated on ice for 10 min, pelleted at 600g for 
5 min and washed twice with wash buffer (20 mM Tris-HCl pH 7.5, 150 mM 
NaCl, 3 mM MgCl2, 0.1% Tween-20, 1 U μl−1 RNase inhibitor, 1 mM DTT). Cells 
were incubated in staining buffer (PBS with 3% BSA, 1 U μl−1 RNase inhibitor) 
with 1 mM DTT and 1 mg ml−1 of ssDNA for 30 min at room temperature, 

pipetting often to resuspend cells. For the flow cytometry experiments involving 
GFP staining, salmon sperm DNA was used for the ssDNA block. However, 
due to significant amounts of annealing to form double stranded DNA that 
would result in contaminating reads in ATAC-seq data, we switched to using 
either a mixture of random 30-mers or a 30 bp ssDNA oligo sequence with no 
complementarity to the mouse or human genome for multiome experiments. 
To ensure no priming would occur with these oligos, they were modified with a 
terminal dideoxy cytosine.

After blocking with ssDNA, Tween was added to a final concentration of 
0.1% and cells were pelleted and washed once with staining buffer + 0.1% Tween. 
Cells were then split into five tubes and each tube of cells was incubated with an 
anti-NPC antibody linked to a distinct HTO (prebound with SSB) for 30 min at 
room temperature. Cells were washed twice with staining buffer + 0.1% Tween, 
repooled and incubated with TF antibody mix for 30 min at room temperature. 
For the CD4 memory T cell experiment, cells were split into two tubes before 
incubating with two concentrations of the TF antibody mix. A distinct 
hashing antibody was also added to the two TF antibody mixes to identify the 
concentration of antibody that each cell was stained with. Cells were then washed 
twice with staining buffer + 0.1% Tween, and cells incubated with different 
concentrations of TF antibody were pooled. Cells were washed once more with PBS 
containing 1% BSA and 1 U μl−1 RNase inhibitor, then resuspended in 1× Nuclei 
buffer containing 1 U μl−1 RNase inhibitor from the 10X Genomics Multiome kit. 
The cell suspension was then filtered through a 40-μm Flowmi strainer 2–3 times 
until nuclei clusters were removed.

inCITE-seq staining conditions were performed as described in Chung 
et al.8. For NEAT-seq fixation and permeabilization followed by staining using 
inCITE-seq staining conditions, we performed fixation and permeabilization as 
described above and then proceeded with the dextran sulfate blocking and staining 
conditions (1:100 FcX (BioLegend 156604) + 1% BSA + 0.05% Dextran Sulfate) 
used by inCITE-seq.

Antibody concentrations. The NPC, GATA1, SOX2 and OCT4 antibodies 
were all used at 0.3 μg in 100 μl of staining buffer (3 μg ml−1). The two antibody 
concentrations for TF antibodies used in the CD4 memory T cell experiment are 
indicated below:

Antibody Concentration 1 (μg ml−1; 
marked by NPC1)

Concentration 2 (μg ml−1; 
marked by NPC2)

RORγT 0.39075 1.95375
Foxp3 2.5 5
GATA3 3.125 15.625
Helios 0.39075 1.95375

Tbet 3.125 15.625

Both antibody concentrations showed specific staining of the targeted TF 
in the appropriate cell type, as shown in Extended Data Fig. 4b,c. We chose 
concentration 2 for follow-up analyses since it provided slightly better enrichment 
over background for some antibodies.

Single-cell library preparation and sequencing. Antibody-stained cells 
in 1× Nuclei buffer were processed using the 10X Genomics Multiome kit 
as indicated in the standard protocol (Rev A) to generate ATAC-seq and 
RNA-seq libraries. For the barnyard experiment, 1,500 cells were targeted 
in one lane of the chip. For the CD4 memory T cell experiment, 6,000 cells 
were targeted per lane and two lanes were used. During the preamplification 
step, Truseq read 2 (CAGACGTGTGCTCTTCCGATC) and Nextera read 2 
(GGCTCGGAGATGTGTATAAGAGACAG) primers were spiked in at 0.2 μM 
final concentration to amplify ADT and HTO oligos. To generate ADT and 
HTO libraries, 35 μl of preamplification product from step 4.3p was amplified 
with indexing primers using 2× NEB Next High-Fidelity PCR Master Mix 
(M0541). A double-sided solid-phase reversible immobilization (SPRI) bead 
clean up was performed using 0.6× SPRI beads (retaining supernatant) and then 
adding additional SPRI beads to a final concentration of 1.2×, washing with 80% 
ethanol and eluting ADT or HTO libraries from beads using EB buffer. Libraries 
were quantified by PCR using a PhiX control v.3 (Illumina FC-110–3001) 
standard curve. scATAC-seq libraries were sequenced alone on a NextSeq 550 
sequencer and ADT libraries were either sequenced alone on a MiSeq (for 
the barnyard experiment) or together with scRNA-seq libraries on a NextSeq 
550 (for the CD4 memory T cell experiment). Recommended sequencing 
read configurations for 10X Multiome libraries were used for scATAC- and 
scRNA-seq libraries. For sequencing of the ADT libraries from the barnyard 
experiment, the read configuration was 28 bp Read 1, 48 bp Read 2 and 8 bp 
for Index 1 and 2. We sequenced approximately 300,000 read pairs per cell for 
both scATAC-seq and scRNA-seq libraries and 7,000 read pairs per cell for ADT 
libraries in the barnyard experiment. We sequenced approximately 40,000 read 
pairs per cell for scATAC-seq, 35,000 read pairs per cell for scRNA-seq libraries 
and 5,000 read pairs per cell for both the ADT and HTO libraries in the CD4 
memory T cell experiment.

NATURE METhOdS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Brief CommuniCationNATurE METhoDS

Antibody oligo sequences. ADT oligos and HTO oligos from the barnyard 
experiment had a partial Truseq read 2 sequence followed by 12 bp UMI, 36-bp 
antibody-specific barcode and 25-bp poly-A tail as follows:

CAGACGTGTGCTCTTCCGATCT[12 bp UMI][36 bp Barcode]
AAAAAAAAAAAAAAAAAAAAAAAAA

HTOs for the CD4 memory T cell experiment were similarly designed, except 
they instead had a partial Nextera read 2 sequence to allow separate amplification 
of TF antibody oligos from HTOs, which often stain at higher levels:

GGCTCGGAGATGTGTATAAGAGACAG[12 bp UMI][36 bp Barcode]
AAAAAAAAAAAAAAAAAAAAAAAAA

Note that the hashing antibody used together with the TF antibody panel for 
marking the two antibody concentrations tested in CD4 memory T cells was linked 
to an ADT oligo with a partial Truseq read 2 sequence so that it would be amplified 
with the TF ADTs and could be used to normalize TF ADT counts. All antibody 
barcode sequences are provided in Supplementary Table 4.

Analytical methods. ADT and HTO processing. Raw sequencing data were 
converted to fastq format using bcl2fastq (Illumina). ADTs and HTOs were then 
assigned to individual cells and antibodies using the matcha barcode matching 
tool36. Cell barcodes were matched based on exact matches, and up to three 
mismatches were allowed in antibody barcode sequences. Counts for each antibody 
were tabulated by counting UMIs. In the barnyard experiment, cells with fewer 
than 200 ADT + HTO UMIs were excluded from analysis. In the CD4 T cell 
experiment, cells with fewer than 75 HTO UMIs or 100 ADT UMIs were excluded. 
All HTO count data and TF ADT count data from the barnyard experiment 
were normalized using a centered log ratio (CLR) transformation as previously 
described2. For the CD4 memory T cell experiment, TF ADT counts were 
normalized to HTO counts from the anti-NPC HTO that was added to distinguish 
two different concentrations of the TF antibody panel used to stain cells, since 
we expected that levels of the nuclear pore complex should be relatively constant 
across cells. We observed very similar results when normalizing to total ADT 
counts or just using raw ADT counts (Extended Data Fig 4a). We then multiplied 
by 250 (that is, roughly the median number of NPC counts per cell), added one 
pseudocount and log2-transformed counts. We chose the NPC normalization 
method because it was more robust than CLR transformation in cases where cells 
are primarily positive for only one antibody in the panel, as was the case for the 
CD4 memory T cells.

Doublet detection using HTOs. For doublet detection in the barnyard experiment, 
we filtered for cells with at least 400 total ADT counts, and performed CLR 
transformation on HTO counts only. CLR cutoffs for positive staining of each 
HTO was performed automatically in a similar manner to Seurat’s HTODemux 
function37. Cells were k-means clustered based on CLR-normalized HTO counts, 
with k equal to the number of hashing oligos. This serves as a rough HTO 
assignment that can be used to infer background staining distributions. The cutoff 
value for each HTO was determined by taking the 99th percentile of a normal 
distribution fit to the CLR-normalized HTO counts in the k − 1 clusters with the 
lowest mean value for the given HTO. This differs from Seurat’s HTODemux by 
using a normal distribution on CLR-normalized counts rather than a negative 
binomial distribution on raw counts and by using the bottom k − 1 clusters to fit 
the background distribution rather than the bottom 1 cluster. After computing 
cutoffs for each HTO, we removed cells that were not positive for exactly 1 HTO, 
annotating the cells positive for >1 HTO as doublets.

For doublet detection in the CD4 memory T cell experiment, we filtered for 
cells with at least 75 HTO counts per cell and performed CLR transformation 
on HTO counts only. We set CLR cutoffs for positive staining of each HTO 
individually based on the bimodal distribution for each HTO and only cells 
positive for exactly one HTO were retained. Since we also incorporated two 
hashing oligos in the TF staining step to distinguish between two antibody 
concentrations used, we also annotated doublets using these HTOs and removed 
them from analysis.

Barnyard experiment species analysis. Raw sequencing data were converted 
to fastq format, and aligned to a chimeric hg38 and mm10 reference genome 
using cellranger-ARC v.1.0.1 from 10X Genomics. First, we filtered droplets for 
high-quality cells based on >7,500 RNA UMIs, >10,000 unique ATAC fragments 
and TSS enrichment >10. TSS enrichment was calculated using the combined 
set of mouse + human TSS coordinates and the default parameters of ArchR’s 
TSS enrichment. Next, we annotated species based on the fraction of reads 
aligning to either the mouse genome or the human genome. For ATAC-seq reads, 
this cutoff was manually set to >95% of reads aligning to a single species. For 
RNA-seq reads we observed greater cross-cell read contamination, particularly 
from mouse transcripts that had high abundance in noncell droplets. As a result, 
we set a cutoff of >70% reads aligning to the human genome, or >95% reads 
aligning to the mouse genome. For our main doublet analysis, we considered cells 
to be mouse-human doublets if they did not pass the species cutoff for both their 
ATAC-seq and RNA-seq reads.

Inferred doublet rates were calculated by dividing the observed doublet rate 
by the fraction of cell pairings expected to be between mouse and human cells 
(inferred doublet rate = mix

mouse+human+mix
(mouse+human)2
2×mouse×human). For perfectly even 

mixtures of mouse and human cells, the inferred doublet rate will be twice the 
observed doublet rate, and deviations from even mixtures will increase the inferred 
doublet rate relative to the observed doublet rate.

Comparison of NEAT-seq with bulk ATAC-seq and RNA-seq data. For 
comparison with bulk data, ATAC-seq or RNA-seq reads from all K562 cells 
in the NEAT-seq mixing experiment were combined to calculate bulk metrics, 
then log transformed before calculating Pearson correlation. For ATAC-seq, 
insertions per peak were calculated for K562 NEAT-seq data and for bulk K562 
ATAC-seq alignments (Encyclopedia of DNA Elements (ENCODE) accession 
ENCFF512VEZ) using a peak set derived from the bulk K562 data (ENCODE 
accession ENCFF558BLC). Peaks with no reads in either the bulk or NEAT-seq 
data were filtered, and Pearson correlation of log10(1 + insertion count) was 
calculated for bulk relative to NEAT-seq. For RNA-seq, transcripts per million 
(TPM) reads for each gene were calculated from all K562 cells in the NEAT-seq 
mixing experiment and then compared to FPKM (fragments per kilobase of exon 
per million mapped fragments) from ENCODE K562 RNA-seq data (ENCODE 
accession ENCFF501IXI). GM12878 10X Multiome data were processed with 
cellranger-ARC v.1.0.1 from 10X Genomics, and all filtered cells from the 
cellranger outputs were combined to calculate TPM. Bulk RNA-seq data in 
GM12878 cells from ENCODE were used for comparison (ENCODE accession 
ENCFF387YXX). To compare pseudobulk RNA to bulk RNA, genes were filtered 
to only those detected by both assays and the Pearson correlation of log10(1 + TPM) 
(single cell) with log10(1 + FPKM) (bulk) was calculated for both K562 and 
GM12878 data.

scATAC-seq analysis. Raw sequencing data were converted to fastq format and 
aligned to the hg38 reference genome using cellranger-ARC v.1.0.1 from 10X 
Genomics. Cellranger output summaries are provided in Supplementary Table 1. 
Fragment files were then loaded into ArchR (v.1.0.2) using the createArrowFiles 
function. Cells with a TSS enrichment <10 or fewer than 1,000 unique fragments 
per cell were removed from analysis along with HTO-annotated doublets. 
Remaining cells were projected onto a reference dataset of hematopoietic cells38, 
using a liftover of the published hg19 peak coordinates to hg38 and the published 
local science instrument (LSI) loadings for each peak. Cell type annotations were 
transferred as the most common cell type from the ten nearest neighbors, and 
contaminating CD8 memory T cells were removed from further analysis.  
We next computed an iterative LSI dimensionality reduction using the 
addIterativeLSI function with the default tile matrix (insertion counts in 500 bp 
bins across the genome) and four iterations. Clustering was then performed using 
the addClusters function and a UMAP was generated using addUMAP, both with 
default parameters.

To call peaks, we first generated insertion coverage files from pseudobulk 
replicates grouped by cluster using addGroupCoverages and then called peaks with 
macs2 using addReproduciblePeakSet with default parameters. We then generated 
a matrix of insertion counts for each peak across all cells using addPeakMatrix. 
To aid in cluster identification, we identified marker peaks unique to each cluster 
and identified TF motifs enriched in these peaks using getMarkerFeatures 
(useMatrix = “PeakMatrix”) and peakAnnoEnrichment. Results were plotted using 
plotEnrichHeatmap(enrichMotifs, n = 5, transpose = TRUE, cutOff = 5). We can 
also predict TF activity by measuring differences in TF motif accessibility across 
cells using chromVAR39. We first determined which peaks contain a motif of 
interest for motifs in the CISBP database40 using addMotifAnnotations with the 
option motifSet = “cisbp”. We then added a background peak set with similar GC 
content and number of fragments and computed motif deviations for all motifs 
using addBgdPeaks and addDeviationsMatrix, respectively.

To further help with cluster identification using ATAC-seq data, we can predict 
gene expression or epigenetic priming of a locus by calculating gene activity scores 
for each gene based on accessibility in the region surrounding the gene locus. 
These scores were calculated in ArchR during Arrow file creation with the option 
addGeneScoreMat = TRUE.

scRNA-seq analysis. Raw sequencing data were converted to fastq format and 
aligned to the reference genome using cellranger-ARC v.1.0.1 from 10X Genomics. 
For each lane, the gene expression matrix from the filtered_feature_bc_matrix was 
used to create a Seurat object using Seurat v.3.2.1. The two lanes of CD4 memory 
T cell data were then merged into one Seurat object and filtered for cells used in the 
scATAC-seq analysis. Data were normalized with NormalizeData (normalization.
method = “LogNormalize” and scale.factor = 10,000). For principal component 
analysis, we identified the top 2,000 variable genes using FindVariableFeatures 
(selection.method = “vst”) and RunPCA was performed on scaled data using these 
variable features. We then clustered cells using FindNeighbors with dimensions 
1:15 and FindClusters with resolution 0.6. The RNA UMAP was generated with 
RunUMAP using dimensions 1:15. FindAllMarkers was used to identify marker 
genes enriched in each cluster.

To identify candidate regulators of GATA3 translation, we added ADT data 
to our Seurat object using CreateAssayObject. We first filtered for cells expressing 
high GATA3 RNA (natural log-normalized counts >2.25) and then identified 
cells expressing high GATA3 ADT (log2 NPC-normalized counts >6.12) or low 
GATA3 ADT (log2 NPC-normalized counts <4.9116 to match number of cells in 
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high GATA3 ADT subset). To identify differentially expressed genes between these 
two subsets, we ran FindMarkers. We converted the natural log-based fold change 
values output from Seurat v.3 to log2 fold changes and calculated adjusted P values 
using the Benjamini–Hochberg correction.

Data visualization. Unless otherwise indicated in the text, visualization of TF motif 
deviation Z-scores, gene activity scores, RNA and ADTs on the ATAC UMAP 
embedding was done by plotting imputed values using ArchR’s plotEmbedding 
function. Ridge plots of normalized ADT counts and scatterplots with marginal 
histograms of normalized ADT versus RNA counts were generated using ArchR’s 
plotGroups (plotAs = “ridges”) and ggpubr’s ggscatterhist, respectively. Normalized 
ADT counts were calculated as log2(250 × (TF ADT counts/NPC HTO counts) + 1). 
Normalized RNA counts were calculated as log2(10,000 × (TF RNA counts/total 
UMI counts) + 1).

Identifying peaks and genes correlated with TF abundance. To identify peaks and 
genes with changes that correlate with TF ADT levels, Spearman correlation 
values were calculated between normalized ADT counts for each TF and either 
normalized Tn5 insertion counts or normalized RNA counts for all peaks and 
genes with >10 observed reads across single cells. Raw P values for correlations 
were calculated in the same manner as R cor.test, namely using a two-sided t-test 
with n − 2 degrees of freedom where t = ρ

√

n−2
1−ρ2  and n is the number of cells. P 

values were multiple-hypothesis corrected for each ADT using the ‘BH’ method 
of R’s p.adjust, and significant correlations were defined as adjusted P < 0.05. 
TF motif enrichment in significantly correlated peaks was calculated using a 
hypergeometric test.

Identification of correlated peaks and genes. To identify peaks and genes where peak 
accessibility correlated with gene expression, we formed 500 aggregates of 100 cells 
each using the 99 nearest neighbors of randomly selected cells in LSI coordinates. 
These aggregates were constrained to have a maximum pairwise overlap of 80% 
of cells. Gene expression and peak accessibility for each aggregate was calculated 
by averaging the normalized accessibility or expression values across all cells in 
the aggregate. For all peak–gene pairs within 100 kb of each other, we calculated 
Spearman correlation and significance using a two-sided t-test as for our peak–TF 
and gene–TF correlations.

Identifying TF-peak–gene linkages. To identify candidate direct target genes of a  
TF, we identified TF ADT-correlated genes that had a TF ADT-correlated  
peak nearby containing the TF sequence motif. Specifically, we overlapped the 
top 20% of ADT-correlated genes with the top 20% of ADT-correlated peaks 
containing the corresponding TF motif, sorted by Spearman correlation  
calculated across single cells. For the overlap, we required that the peak–gene 
distance be less than 100 kb and that accessibility of the peak and expression  
of the linked gene be significantly correlated (adjusted P < 0.05 for Spearman 
correlation, as described above). To identify Gene Ontology terms enriched in 
these genes, we used the enrichGO function in the clusterProfiler R package 
(v.3.12)41, using all genes with at least one RNA count across all cells in our dataset 
as the background gene list.

Analysis of fine-mapped GWAS variants. To identify candidate causal SNPs 
regulated by a TF and link the SNP to a putative target gene, we obtained a 
comprehensive list of fine-mapped GWAS SNPs (https://pics2.ucsf.edu/PICS2.
html) and overlapped these with peaks from our identified GATA3 TF-peak–
gene linkages. We focused on rs62088464, a SNP located within a GATA motif 
site and for which our donor was heterozygous for the risk allele. To determine 
allele-specific differences in accessibility at this SNP, we identified all reads 
overlapping this SNP with mapq >30 using pysam’s pileup method42. To stratify 
cells by GATA3 expression, we z-score transformed the CLR-normalized GATA3 
expression levels for each of the two antibody titration levels to ensure they were 
on comparable scales, then performed smoothing using the ArchR version of 
the MAGIC algorithm to reduce noise. Cells were divided based on their rank 
in the smoothed GATA3 vector. Allele-specific accessibility was determined 
using a one-sided binomial test, comparing the allele frequency in the top 10% 
of GATA3 cells using the bottom 50% as a null hypothesis. The eQTL data and 
analysis shown were obtained from the GTEx Portal release v.8.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
Raw and processed sequencing data generated in this study are available through 
GEO (GSE178707). Published bone marrow and peripheral blood single-cell 
ATAC-seq and RNA-seq data were obtained from GSE139369. The CISBP database 
is available at http://cisbp.ccbr.utoronto.ca/. The Transfac database is available at 
https://genexplain.com/transfac/. Source data are provided with this paper.

Code availability
Code used for analysis and figures are available at https://github.com/
GreenleafLab/NEAT-seq_reproducibility.
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Extended Data Fig. 1 | Staining of nuclear and cytosolic proteins using oligo-antibodies blocked with EcoSSB. a) Sorting of cells expressing low, mid, or 
high levels of nuclear GFP that have been stained with an anti-GFP oligo-conjugated antibody. b) Quantitative PCR for the conjugated oligo from equal 
cell numbers of sorted populations in (a) for n = 2 technical replicates. c) Staining of K562 cells and mouse ESCs for endogenous GATA1 protein using an 
anti-GATA1 antibody linked to an 80 bp oligo with 3’-Cy5. d) Flow cytometry plot of HEK293T cells expressing cytosolic GFP and stained with an anti-GFP 
antibody linked to a 100 bp single stranded DNA oligo with 3’-Cy5 modification. e) Flow cytometry plot of nuclear GFP-expressing HEK293T cells with 
a GFP antibody linked to a Cy5-modified ssDNA oligo using the conditions indicated. “NEAT-seq”: NEAT-seq fixation, permeabilization, and staining 
conditions using oligo-antibodies pre-incubated with EcoSSB. “Dextran sulfate block”: NEAT-seq fixation and permeabilization conditions with inCITE-seq 
staining conditions (i.e with dextran sulfate blocking agent). “inCITE-seq”: inCITE-seq fixation, permeabilization, and staining conditions. Spearman 
correlation is shown.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | NEAT-seq species mixing experiment data quality. a-b) Cutoffs for annotating a cell as human, mouse, or mixed based on 
percentage of reads in a cell mapping to the human genome for ATAC-seq (a) and RNA-seq (b) data. c) Scatterplot of number of ATAC-seq reads 
mapping to the human vs mouse genome in each cell prior to removing HTO doublets, with each cell colored by its classification as a human cell, mouse 
cell, mixed species doublet, or an HTO doublet. d) Same as (c) but for RNA-seq reads. e) Fragment length distribution of ATAC-seq data generated using 
NEAT-seq. f) Average Tn5 insertions across transcriptional start sites normalized to the flanking region + /− 2 kb from the start site (i.e TSS enrichment) 
from scATAC-seq data generated using NEAT-seq. g) Log-transformed Tn5 insertions in ATAC-seq peaks for NEAT-seq data vs bulk ATAC-seq data in 
K562 cells. Pearson correlation is shown. h) A comparison of RNA-seq counts from bulk data vs NEAT-seq in K562 cells (left) or standard 10X Multiome 
data in GM12878 cells (right). Values are log-transformed TPM (for single cell data) or FPKM (for bulk data). Pearson correlation is shown. i) Western 
blot of mESC and K562 cell lysate using oligo-conjugated SOX2 antibody pre-incubated with EcoSSB and detected with IR800 secondary antibody (Licor). 
GAPDH was also probed as a loading control with IR700 secondary antibody. Imaging was performed on a Licor Odyssey imaging system. Images shown 
are representative results of 2 independent experiments.
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Extended Data Fig. 3 | Cd4 memory T cell subset annotations. a) scRNA-seq UMAP of CD4 memory T cells colored with scATAC-seq cluster IDs. 
TCM = central memory, Act. = recently activated cells, Uncom. = uncommitted memory cells. b) RNA expression of master TF drivers and canonical cell 
surface markers of CD4 memory cell subsets in each scATAC-seq cluster. TBX21 = Tbet transcript, RORC = RORγT transcript, IKZF2 = Helios transcript. c) 
Gene accessibility for cytokines induced in different CD4 T cell subsets overlayed on the scATAC-seq UMAP. d) RNA levels for the cytokines in (c).  
e) chromVAR deviation scores for the naïve and CM T cell TFs, LEF1 and TCF7, overlayed on scATAC-seq UMAP. f) RNA expression of the CM marker, 
CCR7, overlayed on the scATAC-seq UMAP.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Enrichment of TF AdTs in the T cell subtype driven by the TF. a) Unsmoothed ADT counts for each TF overlayed on the scATAC-
seq UMAP after the indicated normalization method (raw counts, NPC normalization, and total ADT counts normalization). b) Log2-transformed, NPC-
normalized ADT counts for each TF separated by scATAC-seq cluster for cells stained with antibody concentration 1 (see methods). c) Same as (b) but  
for antibody concentration 2. d) Scatterplots with marginal histograms of log2-transformed read-normalized RNA vs log2-transformed NPC-normalized 
ADT counts for each TF. Colored data points represent cells belonging to the scATAC-seq cluster most enriched in expression of the indicated TF.  
e) Unsmoothed, normalized RNA counts of the indicated TFs overlayed on the scATAC-seq UMAP.
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Extended Data Fig. 5 | Correlation of AdT levels with gene locus accessibility, RNA, and motif accessibility for each TF. a) Correlation across all cells 
for each measurement. Values were first smoothed across neighboring cells using MAGIC imputation to account for dropouts. Pearson correlations are 
shown. b) The data in (a) but averaged across cells within each scATAC-seq cluster.
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Extended Data Fig. 6 | Post-transcriptional regulation of GATA3. a) Flow cytometry plots of GATA3-transfected and WT HEK293T cells stained with an 
EcoSSB-bound oligo-conjugated GATA3 antibody, using a fluorescent secondary antibody for detection. b) Log2-transformed RNA levels of the indicated 
gene in cells expressing high RNA and low protein (“low”) vs high RNA and high protein for GATA3 (“high”). The mean RNA expression for each group is 
shown above the violin plot. N = 140 cells examined over one independent experiment for both “high” and “low” populations. Boxplots show median with 
bounds of the box representing the 25th and 75th percentiles and the whiskers extending to the value closest to but not exceeding 1.5 times the interquartile 
range. Data extending beyond the whiskers are plotted individually as outliers.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Identification of dNA regulatory elements and genes correlated with master TF protein expression. a) Spearman correlations 
between ATAC-seq peak accessibility and NPC-normalized TF ADT counts across single cells. Cutoffs for significant correlations are indicated by dashed 
lines (see Methods). Points in red indicate peaks containing a binding motif for the TF. TF motif enrichment in significantly correlated peaks was calculated 
using a hypergeometric test. b) Spearman correlations between read-normalized RNA counts and NPC-normalized TF ADT counts across single cells. 
Cutoffs for significant correlations are indicated by dashed lines (see Methods). Significantly correlated genes known to be enriched or play a functional 
role in the relevant T cell subset are labeled. c) CCR4 ATAC-seq tracks in CD4 memory cells separated into quintiles by GATA3 ADT levels, along with 
significantly correlated peak-gene linkages (adj. p < 0.05). Spearman correlations are shown. Peaks containing a GATA3 motif are indicated. d-e) CCR4 
RNA expression (d) and accessibility at the highlighted GATA3 motif-containing peak (e) as a function of GATA3 ADT levels. Mean is shown with standard 
error of the mean of n = 768 + /− 1 cells per group.
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Extended Data Fig. 8 | GO term enrichment for candidate target genes in TF-driven peak-gene linkages. Enriched GO terms in the target gene list 
were identified by hypergeometric test using enrichGO in the clusterProfiler R package, using all genes with at least one RNA count in the dataset as a 
background gene list. Adjusted p-values were calculated using the Benjamini-Hochberg procedure.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Single-tissue eQTL analysis for the rs62088464-TSEN54 variant-gene pair from GTEx portal. a) Normalized effect size (NES) 
across various tissues for the protective (G) vs risk (A) allele on TSEN54 expression. The risk allele preserves the GATA3 motif. A negative NES value 
indicates a gene with expression that is associated with the risk allele. Error bars indicate 95% confidence intervals. b) Normalized TSEN54 expression 
grouped by rs62088464 genotype for lung and esophagus mucosa. c) Genes ordered by NES across tissues for rs62088464. P-values for (b) and (c) are 
outputs from the GTEx portal (release v8) and are calculated from a two-sided t-test comparing the observed NES in a tissue to a null NES of 0.
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