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Single-cell chromatin accessibility reveals principles
of regulatory variation
Jason D. Buenrostro1,2, Beijing Wu1*, Ulrike M. Litzenburger2*, Dave Ruff3, Michael L. Gonzales3, Michael P. Snyder1,
Howard Y. Chang2 & William J. Greenleaf1,4

Cell-to-cell variation is a universal feature of life that affects a wide
range of biological phenomena, from developmental plasticity1,2 to
tumour heterogeneity3. Although recent advances have improved
our ability to document cellular phenotypic variation4–8, the fun-
damental mechanisms that generate variability from identical
DNA sequences remain elusive. Here we reveal the landscape and
principles of mammalian DNA regulatory variation by developing
a robust method for mapping the accessible genome of individual
cells by assay for transposase-accessible chromatin using sequen-
cing (ATAC-seq)9 integrated into a programmable microfluidics
platform. Single-cell ATAC-seq (scATAC-seq) maps from hun-
dreds of single cells in aggregate closely resemble accessibility
profiles from tens of millions of cells and provide insights into
cell-to-cell variation. Accessibility variance is systematically assoc-
iated with specific trans-factors and cis-elements, and we discover
combinations of trans-factors associated with either induction or
suppression of cell-to-cell variability. We further identify sets of
trans-factors associated with cell-type-specific accessibility vari-
ance across eight cell types. Targeted perturbations of cell cycle
or transcription factor signalling evoke stimulus-specific changes
in this observed variability. The pattern of accessibility variation in
cis across the genome recapitulates chromosome compartments10

de novo, linking single-cell accessibility variation to three-dimen-
sional genome organization. Single-cell analysis of DNA accessibil-
ity provides new insight into cellular variation of the ‘regulome’.

Heterogeneity within cellular populations has been evident since the
first microscopic observations of individual cells. Recent proliferation
of powerful methods for interrogating single cells4–8 has allowed
detailed characterization of this molecular variation, and provided
deep insight into characteristics underlying developmental plasticity1,2,
cancer heterogeneity3, and drug resistance11. In parallel, genome-wide
mapping of regulatory elements in large ensembles of cells have
unveiled substantial variation in chromatin structure across cell types,
particularly at distal regulatory regions12. In particular, methods for
probing genome-wide DNA accessibility have proven extremely effec-
tive in identifying regulatory elements across a variety of cell types13

and quantifying changes that lead to both activation or repression
of gene expression. Given this broad diversity of activity within
regulatory elements when comparing phenotypically distinct cell
populations, it is reasonable to hypothesize that heterogeneity at the
single-cell level extends to accessibility variability within cell types
at regulatory elements. However, the lack of methods to probe
DNA accessibility within individual cells has prevented quantitative
dissection of this hypothesized regulatory variation.

We have developed a single-cell assay for transposase-accessible
chromatin (scATAC-seq). ATAC-seq is an ensemble measure of
open chromatin that uses the prokaryotic Tn5 transposase14,15 to
tag regulatory regions by inserting sequencing adapters into access-
ible regions of the genome. In scATAC-seq, individual cells are

captured and assayed using a programmable microfluidics platform
(Fluidigm) with methods optimized for this task (Fig. 1a, Extended
Data Fig. 1 and Supplementary Discussion). After transposition and
PCR on the integrated fluidics circuit (IFC), libraries were collected
and PCR amplified with cell-identifying barcoded primers. Single-
cell libraries were then pooled and sequenced on a high-throughput
sequencing instrument. Using single-cell ATAC-seq, we generated
DNA accessibility maps from 254 individual GM12878 lymphoblas-
toid cells. Aggregate profiles of scATAC-seq data closely reproduce
ensemble measures of accessibility profiled by DNase-seq and
ATAC-seq generated from ,107 or ,104 cells, respectively
(Fig. 1b, c and Extended Data Fig. 2a). Data from single cells recap-
itulate several characteristics of bulk ATAC-seq data, including frag-
ment-size periodicity corresponding to integer multiples of
nucleosomes, and a strong enrichment of fragments within regions
of accessible chromatin (Extended Data Fig. 2b, c). Microfluidic
chambers generating low library diversity or poor measures of
accessibility, which correlate with empty chambers or dead cells,
were excluded from further analysis (Fig. 1d and Extended Data
Fig. 2d–l). Chambers passing filter yielded an average of 7.3 3 104

fragments mapping to the nuclear genome. We further validated the
approach by measuring chromatin accessibility from a total of 1,632
IFC chambers representing three tier 1 ENCODE cell lines16 (H1
human embryonic stem cells (ES cells), K562 chronic myelogenous
leukaemia and GM12878 lymphoblastoid cells), as well as from V6.5
mouse ES cells, EML1 cells (mouse haematopoietic progenitors), TF-
1 cells (human erythroblast), HL-60 cells (human promyeloblasts)
and BJ fibroblasts (human foreskin fibroblasts).

Because regulatory elements are generally present at two copies in a
diploid genome, we observe a near digital (0 or 1) measurement of
accessibility at individual elements within individual cells (Extended
Data Fig. 3a). For example, within a typical single cell we estimate a
total of 9.4% of promoters are represented in a typical scATAC-seq
library (Extended Data Fig. 3b–d). The sparse nature of scATAC-seq
data makes analysis of cellular variation at individual regulatory ele-
ments impractical. We therefore developed an analysis infrastructure
to measure regulatory variation using changes of accessibility across
sets of genomic features (Fig. 2a, b). To quantify this variation we first
choose a set of open chromatin peaks, identified using the aggregate
accessibility track, which share a common characteristic (such as
transcription factor binding motif, ChIP-seq peaks or cell cycle rep-
lication timing domains). We then calculate the observed fragments
in these regions minus the expected fragments, downsampled from
the aggregate profile, within individual cells. To correct for bias, we
divide this by the root mean square of fragments expected from a
background signal constructed to estimate technical and sampling
error within single-cell data sets (Methods and Extended Data
Fig. 4). Hereafter, we refer to this metric as ‘deviation’. Finally, for
any set of features, we also calculate an overall ‘variability’ score across
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all cells (Fig. 2b), a metric of excess variance over the background
signal.

We first focused our analysis on K562 myeloid leukaemia cells, a
cell type with extensive epigenomic data sets17,18. To comprehen-
sively characterize variability associated with trans-factors within
individual K562 cells, we computed variability across all available
ENCODE ChIP-seq, transcription factor motifs and regions that
differed in replication timing (as determined from Repli-Seq data
sets19) (Fig. 2c, d). We found measures of cell-to-cell variability
were highly reproducible across biological replicates (Extended
Data Fig. 5). As expected from proliferating cells, we find increased
variability within different replication timing domains, representing
variable ATAC-seq signal associated with changes in DNA content
across the cell cycle. In addition, we discover a set of trans-factors
associated with high variability. These factors include sequence-
specific transcription factors, such as GATA1/2, JUN and STAT2,
and chromatin effectors, such as BRG1 (also known as SMARCA4)
and P300 (also known as EP300). Immunostaining followed by
microscopy or flow cytometry (Fig. 2e and Extended Data Fig.
6a–d) confirmed heterogeneous expression of GATA1 and
GATA2. Principal component (PC) analysis of single-cell devia-
tions across all trans-factors show seven significant PCs, with PC
5 describing changes in DNA abundance throughout the cell cycle.
This analysis suggests that high-variance trans-factors are variable
independent of the cell cycle (Fig. 2f and Extended Data Fig. 6e–g).
The remaining PCs show contributions from several transcription
factors, suggesting that variance across sets of trans-factors repres-
ent distinct regulatory states in individual cells.

We hypothesized that variation associated with different trans-fac-
tors can synergize, either through cooperative or competitive binding,
to induce or suppress site-to-site variability in chromatin accessibility.
For example, the most variant factors in K562 cells, GATA1 and
GATA2, display expression heterogeneity and also bind an identical
consensus sequence GATA, suggesting these factors may compete
for access to DNA sequences. In support of this hypothesis, we find

regulatory elements with both GATA1 and GATA2 ChIP-seq signals
show increased variability in accessibility, whereas sites with only
GATA1 or GATA2 show substantially less variability (Fig. 2g and
Extended Data Fig. 6h). In contrast, we find no substantial change in
variability of GATA1 binding sites that co-occur with JUN or CEBPB
(Extended Data Fig. 6i). We also find peaks unique to GATA1 binding
are significantly more accessible than peaks unique to GATA2
(Extended Data Fig. 6k–l) supporting the hypothesis that GATA1,
an activator of accessibility, competes with GATA2 to induce single-
cell variability. Extending this analysis to all transcription factor ChIP-
seq data sets revealed a trans-factor synergy landscape for accessibility
variation (Fig. 2g and Extended Data Fig. 6j). For example, chromatin
accessibility variance associated with GATA2 binding is significantly
enhanced when the same region could also be bound by GATA1,
TAL1 or P300. In contrast, CTCF, SUZ12, and ZNF143 appear to
act as general suppressors of accessibility variance, unless associated
with proximal binding of ZNF143 or SMC3, the latter a cohesin sub-
unit involved in chromosome looping18,20. Thus, single cell accessibility
profiles nominate distinct trans-factors that, in combination, induce or
suppress cell-to-cell regulatory variation.

To validate our ability to detect changes in accessibility variance, we
used chemical inhibitors to modulate potential sources of cell-cell
variability. Inhibition of cyclin-dependent kinases 4 and 6 (CDK4/
6), essential components of the cell cycle, caused a marked reduction
of variability within peaks associated with DNA replication timing
domains (Repli-Seq) (Fig. 3a). The addition of inhibitors of JUN or
BCR–ABL kinases (JNKi and imatinib, respectively) increased G1/S-
associated variability suggesting an increase in the subpopulation of
G1/S cells, which was validated with flow cytometry (Extended Data
Fig. 7). JUN variability was significantly gained in response to JNKi but
not imatinib treatment, suggesting that high-variance trans-factors
can also be specifically and pharmacologically modulated. Tumour
necrosis factor (TNF) treatment of GM12878 cells specifically modu-
lated accessibility variability at NF-kB sites (Fig. 3b), consistent with
the known stochastic and oscillatory property of nuclear shuttling in
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Figure 1 | Single-cell ATAC-seq provides an accurate measure of chromatin
accessibility genome-wide. a, Workflow for measuring single epigenomes
using scATAC-seq on a microfluidic device (Fluidigm). b, Aggregate single-
cell accessibility profiles closely recapitulate profiles of DNase-seq and ATAC-
seq in GM12878 cells. c, Genome-wide accessibility patterns observed by

scATAC-seq are correlated with DNase-seq data (R 5 0.80). d, Library size
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this system21. Together, these results show that variability can be
experimentally modulated and further demonstrates that variability
is not solely dependent on the cell cycle.

We observe that trans-factors associated with high variability are
generally cell-type specific. Hierarchical bi-clustering of single-cell
deviations generated from three cell lines reveals cell-type specific sets
of transcription factor motifs associated with high variability (Fig. 3c).
This analysis also shows cells from different biological replicates clus-
ter with their cell type of origin (with a single exception), suggesting
scATAC-seq can also be used to deconvolve heterogeneous cellular
mixtures. Systematic analysis of all assayed cell types identified high-
variance trans-factor motifs that are generally unique to specific cell
types (Fig. 3d and Extended Data Fig. 8a). For example, regions assoc-
iated with GATA transcription factors are most variant in K562 cells,
whereas regions associated with master pluripotency transcription
factors Nanog and Sox2 are most variant in mouse ES cells, consistent
with previous observations of expression variation of these factors22,23.
We also find high variability of GATA1 and PU.1 (SPI1) binding
accessibility in EML cells, a cell type previously shown to have
.200-fold GATA1 and .15-fold PU.1 expression differences within
clonal cellular subpopulations1. The complete set of identified high-
variance trans-factors contains a number of transcription factors prev-

iously reported to dynamically localize into the nucleus, including NF-
kB, JUN and ETS/ERG21,24,25, suggesting that temporal fluctuations in
transcription factor concentration may be driving observed chromatin
accessibility heterogeneity. Finally, we find BJ fibroblasts and HL-60
cells exhibit less variance among this set of annotated trans-factor
motifs, suggesting differences in the global levels of trans-factor vari-
ability across cell lines. Specific chromatin states and histone modifi-
cations26 are also sometimes associated with accessibility variation in
single cells (Extended Data Fig. 8b, c). Overall these findings suggest
that trans-factors promote cell-type specific chromatin accessibility
variation genome-wide.

Patterns of variation in accessibility along the linear genome in
individual cells reveal an unexpected connection to higher-order chro-
mosome folding. We calculated single-cell deviations within sliding
windows across the genome, each encompassing a fixed number of
peaks (n 5 25) (Fig. 4a). We determined which windows co-varied
within individual cells by calculating the co-correlation of each win-
dow across all others within the same chromosome within individual
cells (Extended Data Fig. 9a, b). We further enhanced this co-correla-
tion matrix using a secondary correlation analysis using methods sim-
ilar to those used in chromosome conformation studies10 (Methods).
The resulting matrix, which identifies pairs of positions in the genome
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Figure 2 | Trans-factors are associated with single-cell epigenomic
variability. a, Schematic showing two cellular states (transcription factor high
and transcription factor low) leading to differential chromatin accessibility. TF,
transcription factor. b, Analysis infrastructure, which uses a calculated
background signal (BS; see Supplementary Methods, section 3.2) to calculate
transcription factor deviations and variability from scATAC-seq data. The
transcription factor value is calculated by subtracting the number of expected
fragments from the observed fragments per cell (see Supplementary Methods,
section 3.1). c, Observed cell-to-cell variability within sets of genomic features
associated with ChIP-seq peaks, transcription factor motifs, and replication
timing (error estimates shown in grey, see Methods for details). Variability

measured from permuted background (see Methods) is shown in grey dots.
d, Distribution of normalized deviations from expected accessibility signal for
GATA1 sites in individual cells, histogram of cells shown in grey, density profile
shown in purple (see Methods). e, Immunostaining of GATA1 (green) and
GATA2 (red) shows protein expression in K562 cells. f, Principal components
ranked by fraction of variance explained from observed deviation data (purple)
and permuted data (orange). Bar plot of observed data shown in grey.
g, Calculated changes in associated variability of factors when present together
versus independently, depicting a context-specific trans-factor variability
landscape (see Methods). Venn-diagrams show variability associated with
GATA1 and/or GATA2 and CTCF and/or SMC3 (co-)occurring ChIP-seq
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where accessibility co-varies within individual cells, yields megabase-
scale correlation domains highly concordant with previously observed
chromosome compartments27 (Fig. 4b–d and Extended Data Fig. 9c–i)
(R 5 0.61 for chromosome 1). These data provide independent bio-
logical validation of large-scale compartmentalization of higher-order
chromatin structure10,27. Moreover, these results suggest that higher-
order chromatin interactions may drive regulatory variability in cis
(elements that are proximal together tend to be accessible together).
Thus, ensemble chromosome conformation data may arise in part
from the statistical properties of single cell variation in co-regulated
accessibility, a hypothesis also supported by single-cell fluorescent

in situ hybridization (FISH) measurements of interactions between
DNA loci28.

Using scATAC-seq, we dissected single-cell epigenomic heterogen-
eity and linked cis- and trans-effectors to variability in accessibility
profiles within individual epigenomes. We identify trans-factors
associated with increased accessibility variance, which we call high-
variance trans-factors. Additionally, other trans-factors such as CTCF
appear to buffer variability, perhaps by providing a stable anchor of
chromatin accessibility or insulator function that dampens potential
fluctuations. Conversely, co-occurance with other factors such as P300
appears to amplify variability, perhaps due to synergistic interactions.
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Lineage-specific master regulators are associated with cell-type specific
single-cell epigenomic variability across several cell types, suggesting
that control of single-cell variance is a fundamental characteristic of
different biological states. Finally, variation of chromatin accessibility
in cis is highly correlated with previously reported chromosome com-
partments, opening the intriguing possibility that this component of
epigenomic noise has its roots in higher-order chromatin organiza-
tion. Together these data provide a new hypothesis of regulatory
mechanisms that give rise to single-cell heterogeneity.

We envision that future studies will enhance the utility of scATAC-
seq by further improving the recovery of DNA fragments, increasing
throughput, and refining methods of data analysis (Supplementary
Discussion). Improvements to throughput and new statistical tools
will enable single-cells to be partitioned by cell-state and analysed in
aggregate to find the individual peaks that drive variability (Extended
Data Fig. 10). In addition, we anticipate scATAC-seq may be paired
with existing approaches in microscopy and single-cell RNA-seq to
provide opportunities for systems analysis of individual cells. Such an
approach will link regulatory variation to details of phenotypic vari-
ation, providing new insights into the molecular underpinnings of
cellular heterogeneity. We believe scATAC-seq will also enable the
interrogation of the epigenomic landscape of small or rare biological
samples allowing for detailed, and potentially de novo, reconstruction
of cellular differentiation or disease at the fundamental unit of invest-
igation—the single cell.
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Extended Data Figure 1 | Methods development for assaying single
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integrated fluidic chip (IFC). b, c, The development of an efficient Tn5 release
protocol designed to permit downstream enzymatic reactions without DNA
purification. b, An in vitro electrophoretic mobility gel shift assay using a
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gain in library diversity, as measured by quantitative PCR (qPCR). d, qPCR
fluorescence traces of 96 libraries generated using scATAC-seq. For all
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from aggregate scATAC-seq data (n 5 384 libraries) are highly correlated with
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epifluorescence images (right) of captured cell no. 4 displaying characteristic

live cell stain (Calcein) and exclusion of ethidium bromide. e, Histogram of read
starts around TSSs for cell no. 4 shows high enrichment. f, DNA fragment size
distribution for cell no. 4 showing nucleosomal periodicity. g, Images similar to
d showing staining of cell no. 83, suggesting low viability due to ethidium
bromide staining. h, Histogram of read starts around transcription start sites
shows lower enrichment than cell no. 4. i, DNA fragment size distribution for
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Extended Data Figure 4 | scATAC-seq data analysis pipeline and validation
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(b) and GC bias (c). d–f, Variability scores (incorporating bias normalization)
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Extended Data Figure 6 | Characterization of high-variance trans-factors in
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(d) fluorescence observed by flow cytometry. Distributions in grey depict
isotype controls. e, Bi-clustered heat map of single-cell deviations as observed
within K562 cells (n 5 239). Labels on right identify co-clustering of related
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loadings do not vary along PC5, although peaks associated with regions with
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h, i, Venn diagrams showing variability of GATA1 and/or GATA2 (h), cJUN
and/or GATA2 and CEBPB and/or GATA2 (co-)occurring ChIP-seq sites
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Extended Data Figure 7 | Drug treatments modulate factor variability.
a, b, Change in variability of untreated K562 cells versus cells treated with
imatinib (a) and JUN inhibitor (b) show increase of variability in factors
associated with the cell cycle or S phase and JUN factors, respectively. c–f, Flow

cytometry data depicting DNA content, using DAPI or propidium iodide, in
control K562 cells (c) or cells showing altered cell-cycle status after treatment
with cell-cycle inhibitor (d), imatinib (e) or JUN inhibitor (f).
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Extended Data Figure 8 | Transcription factor motif correlation and
variability across chromatin state. a, Hierarchical bi-clustering of high-
variance transcription factor motif annotations using the Pearson correlation.

b, c, Variability of regions associated with chromatin states (b), as identified in
ref. 26, and histone modifications (c).
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Extended Data Figure 9 | Cis-variability analysis within single cells.
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single cells calculated for bins of 25 peaks within GM12878 cells.
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correlation and chromosome conformation capture methods for each
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Extended Data Figure 10 | Measurements of individual peaks within single
cells. a, The distribution of GATA1 deviation scores for single K562 cells.
b, c, Volcano plots of non-GATA1 (b) and GATA1 (c) peaks in K562 cells, P
values were calculated using a binomial test. d, The distribution of NF-kB
deviation scores for single GM12878 cells. e, f, Volcano plots of non-NF-kB
(e) and NF-kB (f) peaks in GM12878 cells, P values were calculated using a

binomial test. Inset numbers show the number of points in upper left or upper
right quadrants of the panel. g, Accessibility at a genomic locus, showing (top)
aggregate NF-kB low (blue) and NF-kB high (red) profiles, (middle) single
GM12878 cells ranked by NF-kB deviations scores and (bottom) unranked
single cells.
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