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A comprehensive thermodynamic model
for RNA binding by the Saccharomyces
cerevisiae Pumilio protein PUF4

Christoph Sadée 1,10, Lauren D. Hagler1,10, Winston R. Becker 2,
Inga Jarmoskaite 1,3, Pavanapuresan P. Vaidyanathan1,8, Sarah K. Denny2,9,
William J. Greenleaf 3,4,5 & Daniel Herschlag 1,6,7

Genomic methods have been valuable for identifying RNA-binding proteins
(RBPs) and the genes, pathways, and processes they regulate. Nevertheless,
standard motif descriptions cannot be used to predict all RNA targets or test
quantitative models for cellular interactions and regulation. We present a
complete thermodynamic model for RNA binding to the S. cerevisiae Pumilio
protein PUF4 derived from direct binding data for 6180 RNAs measured using
the RNA on a massively parallel array (RNA-MaP) platform. The PUF4 model is
highly similar to that of the related RBPs, human PUM2 and PUM1, with one
marked exception: a single favorable site of base flipping for PUF4, such that
PUF4 preferentially binds to a non-contiguous series of residues. These results
are foundational for developing and testing cellular models of RNA-RBP
interactions and function, for engineering RBPs, for understanding the bio-
physical nature of RBP binding and the evolutionary landscape of RNAs
and RBPs.

RNAs and their interactions are integral to the regulation of gene
expression.With the realization that RNAbinding proteins (RBPs) bind
many related RNAs to coordinate their function1–4 and that at least one
in 20proteins in the genomebindRNA5–8, several important challenges
have emerged: (i) to identify the RNA targets of RBPs; (ii) to determine
the functional consequences of these interactions; (iii) to determine
the biophysical basis of RBP binding and specificity; (iv) to trace the
evolution of RBPs and their interactions; and (v) to develop rules for
engineering RBP affinity and specificity.

Following the recognition in the early 2000s that individual RBPs
bind large sets of related RNAs, a major goal has been to identify the
RNA binding partners for the many cellular RBPs4,9–12. Subsequent
studies have helped to elucidate the roles of RNA–protein interactions
in cellularprocesses13–15. As genomic-scalemethodshavebecomemore
and more sensitive, RBP target lists have grown in length8,16–18.

However, RNAs have a range of affinities, and RBPs exhibit robust non-
specific binding. It is unclear where, or even if, one can draw a clean
cutoff between binders and non-binders, and, importantly, it is unli-
kely that all RNAs that bind aparticularRBP are equally affectedby that
RBP and by changes in its levels, modifications, and localization. Most
simply, RNAs with higher and lower RBP occupancies are expected to
be more and less functionally affected by those RBPs, respectively, all
else being equal. Thus, predictive models of RNA and RBP function
must start from predictions of occupancies.

A zeroth-order model is that occupancy is simply a reflection of
RNA-RBP thermodynamics—i.e., the intrinsic affinities for each
sequence and the accessibility of that sequence. Genomic-scale RNA-
RBP cross-linking (CLIP) experiments can in principle be used to test
this model in cells. However, there are limitations to the information
one can extract from genomic-wide studies. The number of
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sequencing reads from genome-wide eCLIP is quantitative, but it is
subject to distortions at each of several experimental steps and also
subject to statistical limitations from low sequence read depth. As a
result, the number of reads at a particular RNA site may not faithfully
reflect quantitative RBP occupancies in the cell17. Testing this zeroth-
ordermodel, determiningwhen it holds andwhere it breaks down, and
uncovering what cellular factors and features are responsible for its
breakdown requires starting with comprehensive binding models to
predict relative occupancies. Such simple quantitative models are
most critical when attempting to disentangle complex multi-variate
systems such as molecular interactions and outcomes in cells19.

Pumilio proteins have eight pseudo repeats each recognizing one
residue (Fig. 1b)20,21. Intriguingly, human PUM1/222–25 and yeast PUF425

have highly similar RNA-contacting amino acids (Fig. 1c) and binding
motifs and logos that are similar (Fig. 1a); yet the identifiedRNA targets
are considerably different9,10,26–32. These observations are fascinating
from both evolutionary and biophysical perspectives. Evolutionarily,
the similar binding specificities likely allowed the exchange of >100
RNA targets between S. cerevisiae PUF3 (an ortholog of PUM1/2) and
PUF4 during fungal evolution to alter their regulation28. Biophysically,

determining the altered sequence specificity provides a foundation for
deciphering the molecular origins for these changes.

We previously derived a complete thermodynamic model for
human Pumilio proteins, PUM2 and PUM1 (referred to together
as PUM1/2, Fig. 1a) binding to all RNAs. PUM1/2 have identical
specificities33 and are described by the same mathematical model
contained 59 terms, with a single constant affinity offset34. The binding
to an engineered variant of PUM1 with a single mutation within one of
its Pumilio modules was quantitatively accounted for by varying just
one of the 59 terms, one representing specificity within the mutated
module34,35. Here, we derive an analogous mathematical model for the
yeast PUF4 targets that provides similar high accuracy, despite the
greater complexity of its motif descriptions9,10,26,27,36. The PUF4 ther-
modynamicmodel is basedondirect high-throughput binding data for
6180 RNAs measured with the RNA on amassively parallel array (RNA-
MaP) platform37,38. The resulting model, consisting of 56 terms, is
highly similar to that for the related RBPs, PUM1/2, with one marked
exception. The difference inRNAbinding to PUF4 versus PUM1/2 arises
from a single favorable flipping term for PUF4, such that PUF4 binds
preferentially to a non-contiguous series of residues. All other flips and
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Fig. 1 | Comparison of PUF4, PUM2, and PUF3motifs, structure, and sequence.
a Literature PUF4 sequence motifs compared to a subset of those for PUM2 and
PUF3. The experimental method for each representation is shown with the cor-
responding refs. 9, 10, 26, 27, 31, 32, 36, 54, 55 (RIP: RNA precipitation; RIP-Chip:
RNA-binding immunoprecipitation microarray profiling; SEQRS: high-throughput
sequencing and sequence specificity landscapes; PAR-CLIP: photoactivatable
ribonucleoside-enhanced cross-linking and immunoprecipitation; HITS-CLIP:
cross-linking and immunoprecipitation coupled with high-throughput sequen-
cing). A full list of PUM2 and PUF3motifs is given in ref. 34. b Crystal structures of

the RNA-binding domain of PUF4 bound to UGUAUAUUA (left, PDB: 3BX2)47 and
human PUM2 bound UGUAAAUA (right, PDB: 3Q0Q)22. c PUM2, PUF3, and PUF4
repeat residues involved in base-specific interactions (see also Supplementary
Fig. 1). For simplicity, the eight binding sites (R1-R8) are numbered in the 5′ to 3′
order of bound consensus RNA (5′-UGUAUAUA-3′), the reverse orderof the protein
primary sequence and opposite to literature convention. Red residues make spe-
cific contacts with RNA bases. Yellow boxed residues indicate differences between
PUF4 and PUM2/PUF3. The green, orange, and red RNA bases correspond to the
base favored at each position of PUM2/PUF3 based on the consensus motifs.
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non-contiguous binding modes are unfavorable for PUF4 as they are
for PUM1/2, and the other 52 terms in the PUF4 and PUM1/2 binding
models are highly similar, indicating that binding to each of the indi-
vidual Pumilio repeats is the sameor nearly the same. These results are
foundational for testing cellular models of RNA-PUF4 interactions and
function, for engineering RBPs, and for understanding the biophysical
nature of Pumilio binding and the evolutionary landscape of RNAs and
Pumilio proteins.

Results
RNA-MaP to measure the binding affinities of PUF4 to
6180 RNAs
To derive a thermodynamic PUF4-binding model, we followed the
approachweused previouslywith the related humanPumilio proteins,
PUM1/2, designing a series of RNA sequences that vary relative to the
previously-identified consensus sequence (Fig. 1a)9. In this case, the
library was designed, rather than randomized, to ensure systematic
variation relative to the consensus sequence, while also allowing
exploration further into sequence space without sacrificing large
amounts of the library to non-binders (Fig. 2a). Other library approa-
ches allow more sequences to be explored but sacrifice thermo-
dynamic rigor. Also, the models from RNA-MaP, while not generated
based on all possible sequences, are quantitative and predictive
and can be expanded or modified if confronted by new affinities that,
by rigorous statistical treatment, are not predicted by the cur-
rent model.

In our library, we included mutations (1–4 nt) to probe sequence
specificity and insertions (1–5 nt) to assay potential non-contiguous
binding sites. Additionally, we varied the immediate flanking residues
(0–3 nt) to assess possible extended binding sites (Fig. 2a and Sup-
plementary Fig. 2a). The library included the sequence variants used to
develop the PUM1/2 bindingmodels34 and variants from the consensus
of PUF5 (an S. cerevisiae Pumilio protein related to PUF4)39 to provide a
range of related but different sequence variants (see Source data for
full library). The RNA sequence variants were embedded in four dif-
ferent scaffolds to control for RNA structures that could form from
interactions with particular sequence variants or flanking sequen-
ces (Fig. 2a).

We used RNA-MaP to measure PUF4 equilibrium dissociation
constants directly for the entire library (Fig. 2b and Source data). We
began with a DNA library encoding our RNA variants; the DNA library
was sequenced on an Illumina MiSeq flow cell, followed by in situ
transcription on a custom-built imaging and fluidics setup37,40,41. RNA
transcripts were immobilized by stalling E. coli RNA polymerase at the
end of the DNA template, and RNA–protein association wasmeasured
by equilibrating the RNA with increasing concentrations of
fluorescently-labeled PUF4 and by imaging each cluster (comprising
~1000 copies of that RNA variant)37. The resulting binding curves were
used to obtain the dissociation constant (KD) and the corresponding
free energy of binding, ΔG (=RTlnKD), of the protein for each RNA
variant, as described in the “Methods”. Figure 2c shows representative
binding curves for a tight and weak binding RNA, with the tight binder
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Fig. 2 | Quantitative, high-throughput measurements of RNA binding to PUF4.
aDesigned RNA library to probe PUF4 binding specificity. A variable region (yellow
bases) is embedded into each of four scaffolds (green bases) S1a, S1b, S2a, and S2b.
Variations are introduced with reference to PUF4 and other Pumilio protein con-
sensus sequences (PUM2 and PUF5), including one to four base mutations, one to
five insertions at each consensus position, and flanking insertions (N =0–3 nt).
Additional sequence information is shown in Supplementary Fig. 2a. b Schematic
representation of RNA-MaP procedure37, including representative fluorescence
images for Cy3B-PUF4 binding to a small region of a sequencing chip.
c Representative binding curves from RNA-MaP of two RNA variants
(UGUAUAUUAU in S1a scaffold and UGUAUCGCAC in S1b scaffold). Black circles

indicate median fluorescence at each protein concentration for all clusters of the
respective variants normalized to thebackgroundfluorescence of the RNAchannel.
The number of replicate clusters is denoted by n. Error bars represent 95% con-
fidence intervals (CI) across the clusters determined by bootstrap analysis. The
green lines indicate the fits to the binding model. The grey shaded area indicates
the 95% CI of the fit (KD (consensus) = 0.88nM, CI95% = (7.86nM; 1.03 nM); KD

(mutant) > 2.4μM,corresponding to the upper limit forbinding affinities that could
be confidently distinguished from background). For high-affinity binders an addi-
tional increase in fluorescence is observed at high protein concentrations that is
accounted for by a non-specific binding term for PUF4 binding to the RNA-PUF4
complex (see ref. 34 and “Methods”). The x-axis is logarithmic.
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corresponding to the PUF4 consensus sequence. As observed pre-
viously with PUM2, there is a second, non-specific binding component
that represents binding of the protein to the RNA–protein complex,
and these data were fit as previously done for PUM2 (ref. 34 and
“Methods”).

We assessed the binding of 15,272 distinct RNAs. Of these, affi-
nities were obtained for 6180 RNAs which had measurable affinities
(≤2.3μΜ) and ≥5 technical replicates to provide high affinity and
robust statistics. Prior work demonstrated precise measurements

within ~0.28 kcal/mol with this number of replicates, with the accuracy
increasing with more replicates and decreasing with weaker binding,
and our results mirrored these prior findings (Supplementary Fig. 2c;
ref. 34). Equilibriumbindingwasmeasured for two salt conditions (low
and high; see “Methods”). Fully independent datasets measured on
two chips with high salt (2mM MgCl2, 100mM KOAc) gave excellent
agreement, with a root-mean-square-error (RMSE) of 0.3 kcal/mol,
which corresponds to an average error in dissociation constants of less
than two-fold (Supplementary Fig. 3). The low salt condition (0.75mM

Fig. 3 | Predictive thermodynamicmodels for RNAbindingbyPumilio proteins.
aGeneralizedmodel RNAbinding by anRBP,with terms for PUM234. Eachblue term
(bound, ΔΔGb

X) represents an additive term for binding in a particular site; red
terms (flipped, ΔΔGf

Y) represent residues not engaged in direct binding interac-
tions, which allows non-contiguous binding; and orange terms (coupled, ΔΔGc

Z)
represent higher-order interaction terms. Many more higher-order (coupling)
terms are possible for a particular RBP; the terms shownwere deemed necessary to
quantitatively account for the binding of thousands of RNAs to PUM234. b PUF4-
binding data fit to a 59-term additive non-consecutive model using the PUM2
parameters determined in ref. 34. c PUF4 binding data fit to the samemodel using
the PUM2 bound parameters but with the flipped parameters allowed to vary to

optimize the fit (minimizing the sum of squared errors of Obs. ΔΔG – Pred. ΔΔG).
dPUF4binding datafit to the additive non-consecutivemodelwhere all parameters
were allowed to vary to give the best fit. Additive parameters were initialized based
on single mutant penalties (see Fig. 4) and allowed to vary within 0.75 kcal/mol or
their error bounds if those exceeded0.75 kcal/mol. Forb throughd the x-axis is the
predicted affinities based on the model and the y-axis is the observed affinities
measured by RNA-MaP. Points are colored based on the z-score, or the absolute
difference in predicted and observed affinity divided by the observed uncertainty,
as described in the “Methods” capped at z = 3 for visualization. RMSE and R2 were
used to determine the goodness of fit to x = y (black dashed line) from a linear
regression (see also “Methods”).
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MgCl2, 30mM KOAc) was used to develop and test the model as the
wider range of affinities that could be measured provided more
extensive data to develop and test the quantitative bindingmodel. The
binding data fromRNA-MaP agreed well with reliable literature affinity
measurements for PUF4 and PUM2 (Supplementary Fig. 5 and
refs. 34, 41).

PUF4 and PUM2 predictive binding models differ in one flip-
ping term
We previously developed a binding model for PUM2 containing three
classes of free energy terms (Fig. 3a): (i) terms for binding at each
recognition site (ΔΔGb

X; b = 1–9, representing the position of the
bound residue to eight Pumilio repeats and an additional 3′ site that
provides a small contribution to binding; X =A, C, U, or G is the base at
that position); (ii) terms for binding non-contiguously, which we refer
to as flipping terms (ΔΔGf

Y; f = 1/2, 2/3, 3/4, 4/5, 5/6, or 6/7 corresponds
to either a single residue Y = A, C, U, or G inserted between two posi-
tions or any two residues Y =NN flipped between these positions); and
(iii) coupling terms to account for non-additive energetics when the
value of a particular energetic termdepends on the residue or residues
present at one or more other positions (ΔΔGc

Z; c is the position of the
coupled bases and Z is the combination of residues thatmeet all of the
conditions, see also ref. 34). For PUM2, we provided evidence for 59
needed terms, as follows: (i) 36ΔΔGb

X terms (36 = 4 × 9); (ii) 20 flipping
terms (ΔΔGf

Y), corresponding to flips of eachof the four bases inserted
at four different positions in the linear bound sequence (f = 3/4, 4/5, 5/
6, and 6/7) and NN (20 = 4 × 4 + 4 × 1); and (iii) three coupling terms
(c = 5–8, 6–8, or 8–9;ΔΔGc

Z)34.While this is a large number of variables,
their values were constrained by precise binding data for 5206 RNAs—
nearly 100 measurements per variable on average, as well as by the
absence of measurable binding for ~10,000 additional RNAs. More
terms are possible but are not needed to provide an excellent fit to this
large dataset. For example, there are no terms in the PUM2 model for
flips between positions 1 and 2 or between 2 and 3, because these flips
are so energetically unfavorable that we no longer see measurable
binding for these RNAs. (Our data thus define minimum free energy
penalties for flips at these sites, and terms can be added as discrete
values if weaker affinities can be measured in the future). The 7/8
flipping term is absent for a different reason; since all residues have
similar binding at position 8, it costs less energetically to accom-
modate whatever residue is present in the sequence than to pay the
cost to flip a residue. Finally, only three coupling terms were required,
and each was modest in its value, in keeping with intuition from
structural inspection of binding of RNA residues to each of the eight
distinct Pumilio repeats (Fig. 1b). A strength of quantitativemodels like
that in Fig. 3a rests in their ability to be tested, refined, and extended as
additional binding data become available, in the form of minor
adjustments to the current parameters or new higher-order (coupling)
terms. In contrast, qualitative models are accepted or rejected often
without clear criteria and without a path to refine the model or
knowledge of how to redefine the model.

We applied the predictive PUM2 binding model to the 6180 PUF4
binding measurements obtained herein to determine how similar vs.
distinct the binding landscape of PUF4 is relative to PUM2 (Fig. 3b).
When the PUM2 model was fit to PUM1 binding data, it was shown to
quantitatively account for the binding landscape for PUM1 with affi-
nities for 3674 RNAs predicted within experimental error34. When we
applied the PUM2 model to the PUF4 binding data, the RMSE was
considerably higher than that between replicates (1.43 kcal/mol versus
~0.3 kcal/mol; Fig. 3 and Supplementary Fig. 3) and a large fraction of
the data had high z-scores (2298 of 6180 constructs (37%) with z-score
>3). Indeed, the near-zero R2 value from linear regression indicates a
poor fit of the model with no better predictive value than the null
hypothesis of a horizontal line. The striking asymmetry of the error,
with many more sequences binding stronger than predicted,

suggested that, of the altered or new terms, at least one term would
need to be more favorable for PUF4 than PUM2.

As the PUF4 motifs are longer than PUM2 yet both proteins con-
tain the same number of Pumilio repeats (Fig. 1a, b), a reasonable
model to account for the differences would be if energetics for the
individual sites (ΔΔGb

X terms) remained the same, as they do for PUM1,
and one or more of the flipping terms (ΔΔGf

Y) changed. Fitting the
model with variable flipping free energies to the PUF4 data gave a
substantial improvement, with the RMSE reduced by approximately
two-fold, an R2 value of 0.71 indicative of strongly predictive model,
and far fewer points with high z-scores (Fig. 3c). Remarkably, only one
term differed substantially from the PUM2 model. Whereas residue
flips were strongly disfavored at all positions for PUM2, flipping was
strongly favorable at position 6/7 for RNA bound to PUF4 but not at
any of the other positions (Supplementary Table 1 and Table 1 below).
We discuss this finding and its implications inmore detail after further
consideration of the data fitting.

Fitting the PUF4 binding data to the PUM2 model with all para-
meters varied improved the fit (Fig. 3d versus 3c), with the RMSE
decreasing from 0.71 to 0.55 kcal/mol and with fewer outliers (554
versus 246 with z-score >3, respectively), and both models provided
large improvements relative to the unaltered PUM2model, which gave
RMSE of 1.43 kcal/mol with 2298 outliers with z-scores of >3 (Fig. 3b).
While there was some variation in the best-fit values for the individual
site PUM2 and PUF4 terms, these values strongly correlated (Fig. 4a, b,
blue points, R2 = 0.86 and see below); the only clear difference was the
~0.9 kcal/mol discrimination against A at position 5 for PUF4 but not
for PUM2 (Fig. 4a and Table 1; see also Fig. 5 below). The flipping terms
were also similar except for the terms for the single residue 6/7 flip,
which strongly deviated and were favorable for PUF4 but unfavorable
for PUM2 as noted above (Fig. 4c, d, closed & open red points). These
results support and refine the above findings of highly similar binding
by PUF4 and PUM2 except for non-contiguous binding effects at
position 6/7.

Further test of the PUF4 binding model
The agreement of the model of Fig. 3c with the PUF4 data might lead
one to conclude that thismodel is correct. However, the complexity of

Table 1 | Thermodynamic parameter values for the PUF4
additive non-consecutive model

Term I ΔΔGb
X (kcal/mol)

X =
Bound residue position b = A C U G

1 3.69 2.85 0.00 3.97

2 2.50 4.41 4.39 0.00

3 2.67 3.01 0.00 2.52

4 0.00 2.29 1.75 1.51

5 0.89 0.03 0.00 1.10

6 0.00 0.93 0.85 1.41

7 2.48 1.82 0.00 2.07

8 0.00 1.47 1.33 1.33

9 0.60 0.37 0.00 0.24

Term II ΔΔGf
Y (kcal/mol)

Y =
Flipped residue position f = A C U G NNa

3/4 1.63 1.51 1.60 1.21 >1.50b

4/5 >2.00 1.36 1.75 >2.00 >1.50

5/6 >2.00 1.83 1.68 >2.00 >1.50

6/7 −1.15 −1.07 −1.34 −0.35 0.67
a2-nt flip of any sequence.
b>indicates a lower limit.
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large datasets and the models used to fit them call for additional
scrutiny. Indeed, whenever variable terms are added, fits will improve
and one can, at least some of the time, get excellent fits from incorrect
models. Misfitting can occur even with far more data than the number
of model variables, because the data at hand typically will not equally
probe each parameter. Our designed libraries provide some insurance
against this limitation, relative to random or natural variants; never-
theless, one cannot design a library that equally tests all model para-
meters without already knowing the values for those parameters. For
example, the inclusion of the coupling terms in the PUM2 model was
necessary to account for a handful of clear outliers but their inclusion
had a negligible effect on the overall RMSE because the terms apply to
aminiscule fraction of the total RNAs andprovidemodest adjustments
even for those34. Indeed, while there is likely some degree of local
coupling for PUF4 as well, we did not include coupling terms in the
PUF4 models because there was too little systematic data to con-
fidently add such terms. Nevertheless, the absence of these termsmay
account for the somewhat higher RMSE for the final PUF4 model
relative to replicate measurements and relative to the prior PUM2
model (Fig. 3d; Supplementary Fig. 3b34; 0.55, 0.30, and 0.34 kcal/mol,
respectively).

To directly address these concerns, we carried out several addi-
tional tests of our PUF4 model. We calculated the sensitivity of the fit
to each parameter (Figs. 5, 6), which showed that the values obtained

were well defined. We then further demonstrated the similarity of the
individual site free energy terms (ΔΔGb

X) for PUF4 and PUM2 by
comparing their single mutant penalties (Fig. 4 and Supplementary
Fig. 6a, b).

Sensitivity analysis was carried out by varying the ΔΔG value of
each of the 56 terms in the PUF4 model individually and determining
the effect of that variation on the overall RMSE of the fit. Figures 5, 6
compares the best fit value (theminima of the curve) and sensitivity of
the fit (i.e., change in RMSE) to variation in each parameter of the PUF4
and PUM2 models. Focusing first on the individual site terms (ΔΔGb

X,
Fig. 5), the residue preferred at each site was the same in all cases for
PUF4 and PUM2 (Fig. 5, red box), and the penalties for variation from
the preferred residue were also highly similar. For both proteins, there
were generally larger deleterious effects for residues at the 5′ region of
the binding site. (The physical origins of these specificity differences
are not known34). As expected, the sensitivity was asymmetric, espe-
cially for large deleterious substitutions where their effects often lead
to difficult-to-measure or unmeasurable binding such that the mini-
mum value of the penalty is better defined. In addition, because these
substitutions are rarely found in the RNAs with measurable binding,
they have a smaller impact on the overall RMSE. Nevertheless, rea-
sonable estimates are obtained in most instances as binding is
observed for some RNAs with each substitution (see also Supple-
mentary Fig. 6). The flip terms (ΔΔGf

Y) were also similar for PUF4 and

Fig. 4 | Analysis of individual parameters for PUM2 and PUF4 predictive ther-
modynamicmodels. a PUF4 and PUM2 additive model parameters, optimized for
each RBP (from Table 1). b Scatterplot of all bound terms (ΔΔGb

X) from the PUM2
and PUF4 predictive models. The dashed line corresponds to x = y (R2 = 0.86;
RMSE =0.5 kcal/mol). c Flipping parameters (ΔΔGf

Y) for PUF4 and PUM2 optimized
with the data for each. NN indicates any two bases flipped at the given position (see

also Table 1). d Scatterplot of base flip terms (ΔΔGf
Y) in the PUM2 and PUF4 pre-

dictive models. Open symbols are for flips at position 6/7 (single flips denoted by
squares and double flips denoted by triangles) and closed are for flips at the 3/4, 4/
5, or 5/6 positions (see Fig. 3a for nomenclature). Limits are shown with arrows in
the figure and values are from Table 1 and ref. 34.
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Fig. 5 | Dependence of the overall fit (RMSE) on the individual fit bound para-
meters in the PUF4 and PUM2 models. The parameter sensitivity of each bound
term for the individual sites (ΔΔGb

X; see Fig. 3a)was determined by varying theΔΔG
value (x axis) of one parameter while keeping the other parameters constant (see
“Methods” for details). PUM2 parameter sensitivities (blue curves, left axis) were

replotted from ref. 34 and compared to parameters for the PUF4 model (green
curves, right axis) following the same fitting procedure. Vertical dashed blue and
green lines indicate the best fit values for each model (PUM2 and PUF4, respec-
tively) andwere similar to theminimaobtained in the sensitivity analysis. Redboxes
indicate the consensus or reference sequence at each position.
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PUM2, with the marked exception of the flips at the 6/7 position as
noted above (Fig. 6). Flipping at this position is clearly favorable
(negative ΔΔG) for PUF4 and clearly unfavorable (positive ΔΔG) for
PUM2. Similarly, flipping two residues at the 6/7 position for PUF4 is
less unfavorable than for PUM2 for two-residue flips (Table 1). The
sensitivity analysis supports the conclusions above of highly similar
binding rules (energetics) for PUM2 and PUF4, with the marked
exception of the single favorable flip for PUF4.

To further dissect the individual site free energy terms (ΔΔGb
X),

we compared single mutations for PUF4 and PUM2 relative to their
respective consensus sequences. Each single mutation was made in
four different scaffolds to control for structural effects, although not
all scaffold variants were present on the analyzed chip due to bot-
tlenecking in library generation (see “Methods”; ref. 34). This com-
parison again showed similar effects for PUF4 and PUM2, with average
observed differences of 0.44± 0.4 kcal/mol (Supplementary Fig. 6b).
The library also contained variants in the two residue 5′ and 3′ of the
consensus sequence; these gave no 5′ preferences, as for PUM2, and
modest preferences for the first position 3′ of the consensus site that
were also similar to what was observed for PUM2 (Supplementary
Fig. 6d and ref. 34). Thus, a more direct look at a subset of the data
provides additional support for the derived PUF4 binding model and
its similarity to that for PUM2. These data also support similar ener-
getics for the individual PUM2 and PUF4 sites, consistent with their
structural and sequence similarity (Fig. 1b, c).

Discussion
We have gone beyond motif descriptions for RNA recognition and
provided a mathematical model that is quantitative and predictive for
RNA occupancy by the RNA binding protein (RBP) PUF4 from S. cere-
visiae. Comparison of thismodel to that previously derived for PUM234

provides insights intoRNA recognitionby theseRBPs and identifies the
origin of their specificity differences.

The motif descriptions for PUF4 RNA recognition are more
complex than those for PUM2 (Fig. 1a). However, the mathematical
descriptions for their binding thermodynamics are of similar com-
plexity. The extensive differences that are observed in their binding
specificities arise essentially from a difference in a single term that
accounts for flipping out a residue between two Pumilio recognition
sites (6 and 7; Fig. 3a); this term is favorable for PUF4 but unfavorable
for PUM2 (Fig. 4c and Table 1). The benefit of the thermodynamic and
mathematical approach is further underscored by its ability to account
for the change in specificity of an engineered PUM1 variant, where a
change in a (different) single model parameter provides a quantitative
description for binding by the engineered variant despite binding
differences of >1 kcal/mol for one in five RNA sequences34.

Binding motifs have been obtained for many RBPs via traditional
genomic experiments or variations thereof42–44. But many are highly
degenerate and thus have limited predictive power, and machine
learning approaches to date have also yielded motifs with low infor-
mation content. The superiority of mathematical modeling based on
accurate thermodynamic data over motif descriptions is apparent at
two levels. First, a motif description is, by definition, a linear, energe-
tically additive model—i.e., binding of residues in a set order with site
energetic contributions that are independent of the other residues
that are present. But even the Pumilio proteins that appear to have
modular recognition elements require terms for non-linear binding
(ΔΔGf

Y terms, Fig. 3a) to accurately account for their specificities
(ref. 34 and this work). Although one can expand motif models by
defining multiple motifs, this approach leaves unclear how to weight
the relative affinities across them. Second, while our Pumilio binding
models require little-to-no coupling to be highly predictive,

Fig. 6 | Dependence of the overall fit (RMSE) on the individual fit flipping
parameters in the PUF4 and PUM2 models. Parameter sensitivity for flipping
terms (ΔΔGf

Y; see Fig. 3a) for the PUF4 model were calculated as in Fig. 5 (green
curves, right axis). PUM2 parameter sensitivities were replotted from ref. 34 (blue

curves, left axis). Vertical dashed blue and green lines indicate the best fit values for
each model (PUM2 and PUF4, respectively) and were similar to the minima
obtained in the sensitivity analysis.
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mathematical models can be expanded, as demanded by current or
future data, to include coupling terms and ensure predictive power.
RBPs with less regular recognition elements than the Pumilio proteins
and with less defined motifs (Fig. 1a, b) will likely require more cou-
pling terms (Fig. 3a, ΔΔGc

Z), reflecting RNA-RNA interactions in bound
complexes and interconnected binding modes.

As implied above, the form of the mathematical model needed to
describe RNA binding is rooted in the fundamental physical properties
of these interactions. The free energy terms for each base binding to
each site in PUM1/2 and PUF4 are nearly the same, consistent with the
high degree of conservation in their binding interfaces (Fig. 1, Sup-
plementary Fig. 1)22,45. Nevertheless, the sequence changes in each
Pumilio repeat could have altered specificity, and we would not have
known that they do not without explicit, quantitative models to
compare. In addition,within the samePumilio protein, repeatswith the
same recognition amino acids that favor interactions with the same
RNA residue, nevertheless do so with different degrees of specificity
(Supplementary Fig. 1 and ref. 34). In this way, mathematical models
reveal thermodynamic properties that require biophysical studies to
uncover molecular explanations.

Our mathematical model showed that recognition specificity is
the same or nearly the same within each of the Pumilio proteins.
Instead, the specificity arises from the energetic terms for binding
continuously (PUM1/2) versus non-continuously (PUF4) from repeat 6
to repeat 7 (Figs. 1b and 4c, d). These observations are consistent with
prior motif assignments that showed that PUF4 tends to bind longer
RNA motifs than PUM2 (Fig. 1a)9,10,26,27,36.

Structural studies of PUF4 and PUF5, which recognize longer
RNAs than PUM2 and PUF3, suggest a lessened curvature of the
Pumilio crescent shape (Fig. 1b), and it has been suggested that the
lessened curvature is responsible for the preference for binding RNAs
with internal flips and thus longer sequences39,45,46. Structures of PUF4
bound to 9 nt RNA targets also support non-contiguous binding,
where a C base is flipped between positions 5 and 647 or a U base is
flipped between 6 and 745. Interestingly, our results indicate that 5/6
flipping is disfavored and 6/7 flipping is favored (Table 1). This differ-
ence underscores that an X-ray crystallographic structure captures a
snapshot of a distribution and that the particular RNA sequence used,
conditions, and local packing interactions can affect the bindingmode
that is observed. Our determination of a specific position of favorable

Fig. 7 | Affinity–specificity landscapes for RNA binding proteins (RBPs). a The
landscape of RNA affinity for two RBPs, where the color coding indicates the spe-
cificity (bar under plot). b–d Mock comparison of affinities for two RBPs binding,
RBP #1 (orange) and RBP #2 (green), to all RNAs in a transcriptome. Three plots are
shown that represent a continuum of possibilities, ranging from fully distinct tar-
gets (b) to identical specificities (d) with c showing an intermediate case with
specificity overlap. Plots in a–d are in terms of ΔΔG, which provides affinities
relative to a reference RNA. e, f PUF4/PUF3 affinity–specificity landscapes for the
highest affinity binding site for the respective RBP of all S. cerevisiae 3′UTRs in the
Saccharomyces genome database (e)56 and for PUF3 and PUF4 3′UTR targets
identified fromprevious in vivo experiments (f)9. Themathematical bindingmodels
from this and prior work34 were used to calculate the highest affinity binding site
within the 3′UTR of each transcript. To obtain estimates for PUF3 using the highly
homologous PUM2 data, an additional term was added to account for PUF3’s

favorable interaction with C at position −2 (see Supplementary Table 2 and
“Methods”)51. Values are shown as ΔΔG relative to the respective consensus
sequences. Points are given for each binding site (N = 5089) and shaded based on
the density of points with the corresponding value. In f, PUF3 targets are depicted
by an orange triangle; targets that bind PUF3 and PUF4 with a yellow square, and
PUF4 targets with a green circle. N is the number of known targets for each.
g Thermodynamic affinity predictions compared to PUF4 RNA-IP enrichment from
Saccharomyces cerevisiae9. The enrichment (log2 ratio) for PUF4 targets was
reported in ref. 9 for significantly enriched targets (from four independent
experiments). The enrichmentwas estimatedas0 for sites in the yeast genomewith
predicted affinities <4 kcal/mol that were not identified in the target list. The mean
of theenrichmentwas taken forbins of 0.5 kcal/molwith errorbars indicate 95%CIs
of the mean.
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flipping for PUF4 and flipping penalties that are similar to those for
PUM2 at other sites suggests that altered curvature, if responsible for
the specificity difference, manifests its thermodynamic effects at a
particular site. Additional large-scale thermodynamic specificity stu-
dies with additional Pumilio protein variants and mutants will be
required to test models for their specificity, specificity differences
across similar Pumilio repeats, and how flipping of residues to yield
non-contiguous binding is favored and discouraged at different posi-
tions and in different Pumilio proteins.

We next turn to broader biological implications and introduce a
specificity–evolvability paradox. High specificity in biology is typically
considered to be a favorable trait, in line with how one would engineer
a high-precision system; the more specific an RBP, the better defined
its targets and the more precise its regulation can be. However,
increased specificity lessens the likelihood that new RBP functions will
evolve, as random mutations in RNA sequence are less likely to sig-
nificantly increase RBP occupancy at the newly mutated sites. In this
scenario, the selective advantage needed to guide the evolution of a
protein for a new regulatory rolemay requiremultiple deleterious RNA
mutations and thus be of low probability. Thus, there is a tension
between specificity and evolvability, where evolvability describes the
ability to effectively traverse a fitness landscape to find alternative
fitness peaks48.

To further explore this paradox, consider the binding specificities
of two hypothetical RBPs that we describe by the affinity–specificity
landscape in Fig. 7a. In one extreme (Fig. 7b), the RBPs have highly
distinct specificities, so that the strong binders to RBP1 bind weakly to
RBP2 (points in orange region) and vice versa (points in green region);
there is no significant overlap in binding (yellow) until binding is
negligible for both. In this case, the transition of RNA targets between
the RBPs is unlikely, as multiple simultaneous changes in the target
sequence are likely needed to provide a selective advantage. However,
the Pumilio proteins PUM2/PUF3 maintain a common binding speci-
ficity throughout evolution, but their target sequences have changed,
with at least five events in eukaryotic evolution leading to distinct RNA
target sets28. The observed near-continuum of binding affinities across
sequences close in Hamming space has likely been key in allowing
these transitions28,34. In the other extreme (Fig. 7d) the affinities fall
along the diagonal and there is no specificity—all RNAs bind RBP1 and
RBP2 with the same affinity; in this case, there is regulation by both
RBPs rather than by RBP1 or RBP2. This scenario appears to hold with
human PUM1 and PUM234 and likely other Pumilio proteins49,50; pre-
sumably multiple RBPs with shared specificity allows same or similar
sets of RNAs to be regulated at different times or locations, or in
different ways.

In reality, there is a continuous distribution of possible RBP spe-
cificities, with the scenario shown in Fig. 7c representing an inter-
mediate between those in Fig. 7b, d, and this distribution
might be expected to be representative of most RBPs in nature. Our
mathematical models allowed us to explore this conjecture with
affinity–specificity landscapes for natural RBPs, and the
affinity–specificity landscape for PUF3/PUF4 fits the intermediate
regime (Fig. 7e). (We use PUF3, a close homolog of PUM1/2, because it
is present along with PUF4 in S. cerevisiae and appears to have a highly
similar binding landscape)31,51. The highest affinity sites prefer either
PUF3 or PUF4, as is important for biological specificity and consistent
with their largely distinct target sets9. Nevertheless, there are numer-
ous 3′UTRs that share similar high affinities for PUF3 and PUF4,
implying that there is the potential to share binding andpotentially use
that overlap to shift specificities in the face of a selective pressure.
Indeed, a remarkable switch occurred in a branch of fungal evolution,
where >100 PUF3 targets transitioned to control by PUF428,52. The
change in regulation from one Pumilio RBP to another is predicted to
be more probable than a change in regulation by an unrelated RBP
because of their overlapping specificity (Fig. 7e). Indeed, the highest

affinity PUF3 and PUF4 sites within a given 3′UTR are sometimes the
same and sometimes different (see also Supplementary Fig. 7f, g), and
the high density of sites of similar and intermediate affinity (centered
on the diagonal at around –1.5 kcal/mol in Fig. 7e) arises because of the
high probability of finding a UGUA sequence (the common Pumilio
strong binding motif) within a 3′UTR.

Figure 7f shows the affinities and specificities for the PUF3 and
PUF4 RNA targets9 identified from in vivo experiments, calculated
using our mathematical model. On average, the enrichment of PUF4
targets follows the thermodynamic affinity predictions of this model
(Fig. 7g), analogous to what was reported for PUM234. These results
also meet our general expectation that the strongest PUF3 (orange)
and PUF4 (green) binders tend to be targets of each (Fig. 7f). However,
there is a set of PUF3 targets with similar predicted affinities for PUF3
and PUF4 (orange; Pred. ΔΔG ~0 kcal/mol), and a small number of the
PUF3 and PUF4 targets are predicted to bind weakly (upper right
quadrant). Also, of the three targets that appear to be common, one
has similar strong affinity, but the others are predicted to prefer PUF3
or PUF4 (yellow squares). These outliers may represent limitations in
quantitating occupancy from genomic pull-down and cross-linking
approaches and/or cellular features that alter binding specificities.
These observations underscore the power of comprehensive thermo-
dynamic measurements, as carried out herein, to provide clear pre-
dictions and the future challenge to develop approaches to accurately
and quantitatively report RNA/RBP occupancies in cells.

Methods
Library design
An RNA library was designed as outlined in Fig. 2a and Supplementary
Fig. 2a. Complete sequence information of each variant is provided in
the Source data.

Library preparation and sequencing
Methods for amplification, assembly, and sequencing of the library are
reported in ref. 34. Sequences for primers and oligos referenced below
can be found in ref. 34. See also Supplementary Fig. 2b.

In brief, oligonucleotides were first amplified using emulsion PCR
(ePCR) to give a diverse library pool (64–130 nt length). Libraries were
then fractionated by size on an8%polyacrylamide gel into six fractions
(based on UV visualization of marker lanes). Purified fractions were re-
amplified using the Read2 and RNAPstall_adapt primers. Final con-
structs for each library fraction were assembled by PCR using
C_read1_bc_RNAP, D_read2, OligoC, and OligoD primers, as illustrated
in Supplementary Fig. 2a. The C_read1_bc_RNAP primer incorporates a
unique molecular identifier (UMI), a randomized 15 nucleotide bar-
code, to check for sequencing errors34. The library was then diluted by
bottlenecking to ~700,000 total molecules. The final library was
sequenced using MiSeq Reagent Kit v3 on Illumina MiSeq instrument.

Protein expression and purification
The RNA-binding domain of S. cerevisiae PUF4 (537–888) was first
cloned into a pET28a-based expression vector (New England Biolabs)
between a His-tag and TEV cleavage site at the N terminus and a SNAP
tag at the C-terminus. For protein expression, constructs were trans-
formed into E. coli BL21 (DE3) strain (Agilent) and induced with 1mM
IPTG, between an OD600 of 0.6–0.8 and at 22 °C for 18–20h. Cells
were pelleted by centrifuging at 5000× g at 4 °C for 15 min and
resuspended in lysis buffer A (20mM Na-HEPES (Spectrum), pH 7.4,
500mM KOAc (Spectrum), 5% glycerol (ThermoScientific), 0.2%
Tween-20 (Sigma), 10mM imidazole (Sigma-Aldrich), 2mM dithio-
threitol (DTT, Sigma-Aldrich), 1mM phenylmethylsulfonyl fluoride
(PMSF, ThermoScientific), and 1X Complete Mini protease inhibitor
cocktail (Roche)). To ensure efficient lysis, cells were passed through
four Emulsiflex (Avestin) cycles. The mixture was centrifuged at
20,000× g, 4 °C for 20min, separating the supernatant from the cell
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debris. Polyethylene imine (Sigma) was added dropwise to the super-
natant to a final concentration of 0.21% (v/v) over 30min at 4 °C and
constant agitation to precipitate nucleic acids. The mixture was cen-
trifuged at 20,000× g and 4 °C for 20min. The resulting supernatant
was filtered through a 0.25μm syringe filter. FPLC (Bio-Rad) was used
to purify the PUF4 construct from the cleared lysate. The solution was
loaded onto a Nickel-chelating HisTrap HP column (GE) and washed
using Buffer A excluding protease inhibitors. The protein was eluted
over a 10–500mM imidazole gradient over 1 h using Buffer A and B
(20mM Na-HEPES (Spectrum), pH 7.4, 500mM KOAc (Spectrum), 5%
glycerol (ThermoScientific), 0.2% Tween-20 (Sigma), 500mM imida-
zole (Sigma-Aldrich)). Protein fractions were pooled and desalted
using a HiPrep 26/10 desalting column (GE) into Buffer C (20 mM Na-
HEPES, pH 7.4, 50mM KOAc, 5% glycerol, 0.1% Tween-20, 2mM DTT).
The His-tag was removed with 0.63mg TEV protease (NEB) by incu-
bating for 13 h at 4 °C while agitating. The His-tag was removed by a
second HisTrap HP column purification, eluting over a 0–500mM
imidazole gradient using Buffer C and B to separate protein from
cleaved adapter. The purified protein fractions were again pooled and
desalted into Buffer C using a HiPrep 26/10 desalting column (GE). The
purified protein was next loaded onto a HiQ column and eluted over a
gradient of 50mM–1M KOAc using Buffer C and D (20mMNa-HEPES,
pH 7.4, 1M KOAc, 5% glycerol, 0.1% Tween-20, 2mM DTT). Protein
fractionswerepooled anddesalted intoBuffer E (20mMNa-HEPES, pH
7.4, 100mM KOAc, 5% glycerol, 0.1% Tween-20 and 2mM DTT) and
concentrated using Amicon Ultra-0.5 filters (Milipore). The
PUF4 solution was diluted two-fold with Buffer E with 80% glycerol
(final concentration 43%) and stored at −20 °C until use.

Cy3B-labeling of SNAP-tagged proteins
PUF4 was labeled with Cy3B-BG (product of coupling Cy3B-NHS, GE,
and BG-NH2, NEB, as described in ref. 34) for RNA-MaP binding
experiments following a similar protocol to that described by ref. 34.

SNAP-tagged PUF4 was labelled with Cy3B in Buffer C by com-
bining 20 µM Cy3B-BG and 10 µM of purified SNAP-PUF4 stock at 4 °C
for 12–14 h in the dark while rotating. Free dye was removed with a
7 kDa Zeba Spin Desalting Columns (Thermo Fisher Scientific). The
fluorescently-labelled protein was concentrated using an Amicon
Ultra-0.5 filter (10 kDa, Milipore). For storage at −20 °C, the solution
was diluted two-fold with Buffer C with 80% glycerol as
described above.

RNA-MaP equilibrium binding experiments
Equilibrium binding experiments were performed as previously
described34. In total, three equilibrium binding experiments were
performed with PUF4 protein. Twomeasurements were taken on chip
1, testing the effects of salt concentration on binding and an additional
replicate experiment of high salt on chip 2. We use the high salt to
define replicate error, which is similar to that previously found for
PUM234. We derive the binding model using the low salt data as that
provides the largest range of affinities and thus the most information
for developing our model. Data from all experiments are available in
Source data.

Two salt concentrations were tested varying the MgCl2 and KOAc
concentrations in the binding buffer: low (0.75mM MgCl2, 30mM
KOAc) and high (2mM MgCl2, 100mM KOAc). All other reagents
remained constant in each buffer (20mM Na-HEPES, pH 7.4, 0.1%
Tween-20, 5% glycerol, 0.1mg/mL BSA, and 2mMDTT). The library on
the chip was sequentially equilibrated with increasing concentrations
of Cy3B-labelled PUF4. Two-fold serial dilutions were prepared with
PUF4 in binding buffer at concentrations ranging from 0.0125 to
409.6 nM in addition to a no-protein control. Dilutions were stored at
4 °C in the dark until use. Each solution was pumped into the flow cell
sequentially and incubated at 25 °C from 33min at the lowest protein

concentration to 19min for the highest protein concentration, taking
fluorescent measurements after each addition.

Determining active protein fraction by titration
Cy3B-labeled, SNAP-tagged PUF4 (10–100 nM final) was incubated
with a saturating concentration of unlabeled consensus RNA
(20 nM; (AUGUGUAUAUUAGU; Integrated DNA Technologies (IDT),
Coralville, IA)) and trace 32P-labeled RNA of the same sequence
(<0.1 nM) for 35min (25 °C) under high salt conditions (2mMMgCl2,
100mM KOAc, 20mM Na-HEPES, pH 7.4, 0.2% Tween-20, 5% gly-
cerol, 0.1 mg/mL BSA and 2mM DTT). After equilibration, 7.5 μL
aliquots were transferred to 5 μL of ice-cold loading buffer, con-
taining 6.25% Ficoll PM 400 (Sigma), 0.075% BPB, and 2.5 μM unla-
beled consensus RNA in binding buffer. The samples were loaded on
a pre-chilled 20% native acrylamide gel and run at 42 V/cm constant
voltage at 5 °C, in 0.5x Tris/Borate/EDTA (TBE) running buffer
(44.5mM Tris-borate, 1 mM Na2EDTA, pH 8.3). The gel was dried,
exposed to a phosphorimager screen, and scanned with a Typhoon
9400 Imager. The binding signal was quantified using TotalLab
Quant (TotalLab, Newcastle-Upon-Tyne, UK), and fitting was per-
formed with KaleidaGraph 4.1 (Synergy Software, Reading, PA;
RRID:SCR_014980). The active protein fraction (69%) was deter-
mined based on the intersection of lines fit through protein con-
centrations above and below the breakpoint.

Sequencing data processing
Sequencing data was processed as previously described in ref. 34.
Briefly, the tile identifier and x-and y-locations for each cluster were
computationally derived from the fastq sequencing output as outlined
in refs. 40,53. Sequencing clusters were divided into three categories
(1) RNA library of interest, (2) fiduciary marker, and (3) PhiX back-
ground DNA based on alignment of the read1 sequence to (1)
RNA polymerase initiation site and stall sequence TTTATGCT
ATAATTATTTCATGTAGTAAGGAGGTTGTATGGAAGACGTTCCTGGAT
CC, (2) fiduciary marker sequence CTTGGGTCCACAGGACACTCG
TTGCTTTCC, or (3) neither, respectively. Only RNA-encoding clusters
were used for KD fitting. Library variats were assigned to sequencing
data clusters using a unique molecular identifier (UMI, barcode in
Supplementary Fig. 2b) as described in ref. 34.

Fluorescence normalization and determination of the free
energy of binding
The protein-bound fluorescence (green channel) was normalized to
the amount of RNA transcribed (red channel) for a given cluster. The
normalized fluorescence values at varied protein concentration were
used to estimate the equilibrium dissociation constant KD through a
multi-step fitting procedure to allow robust fitting over a range of
affinities as previously described in ref. 34. First, the normalized
fluorescence values were fit to a binding curve to obtain best-fit values
for KD for each variant and variant-independent parameters fmin, fmax,
and KD,NS. Next, the distribution of variant-independent values was
used to refine these parameters for all variants. Finally, the variant-
independent variables were used to refine an estimate for KD for each
variant.

The bindingmodel includes a term for non-specific bindingwhere
a second protein monomer can bind to the RNA–protein complex at
high protein concentrations, as was observed previously for PUM2
(ref. 34, Eq. 1).

R + P"
KD

R � P +P
KD,NS

"
R � P � P ð1Þ

whereR is RNA,P is protein,KD is thedissociationconstant (KD = eΔG/RT),
and KD,NS is the non-specific dissociation constant (KD,NS = e

ΔGNS=RT).
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The normalized fluorescence is related to the protein concentra-
tion [P] by the following equation:

f = fmin + fmax
½P�

½P�+KD
1 +

½P�
½P�+KD,NS

� �
ð2Þ

Single-cluster fitting
Python’s least-squares fitting package (v0.8.3) was used to fit the
above binding model to the normalized fluorescence values of each
individual cluster. During fitting all parameters (KD, fmin, fmax, and
KD,NS) were allowed to vary to find the optimal fit. The initial esti-
mates and constraints are as follows: fmin was initialized as the
median fluorescence values of all clusters at the lowest applied
protein concentration and constrained to be greater than or equal
to zero; fmax was initialized as the maximum observed fluorescence
value for each individual cluster and constrained to be greater than
or equal to zero; KD,NS was initialized as five-fold the highest applied
protein concentration; KD was initialized as the highest protein
concentration.

Defining variant-independent parameters
To increase the confidence of the KD initially fit above, the parameters
fmin, fmax, and KD,NS were estimated based on the per-variant values for
each individual dataset, where the per-variant values are themedian of
the single-cluster values associated with the same molecular variant.
The value for fmin was largely consistent across variants (Supplemen-
tary Fig. 2d). Thus, the median value across all variants was used as an
estimate for fmin. The values for fmin are similar for different salt con-
centrations, with the following values: 0.0134 for the low salt con-
centration and 0.0159 and 0.0388 for the high salt replicate
concentrations. The value of fmax varied widely for variants with weak
affinities where protein binding was not saturating at the concentra-
tions tested. In contrast, the fmax value was consistent for high-affinity
variants (Supplementary Fig. 2e). To find common values for fmax, a
subset of variants with low and precisely measured KD values based on
the single-cluster fits were used to fit a gamma distribution as outlined
in ref. 34. Variants with low KD values were defined as precise if they
had a standard error of ΔG< 1 kcal/mol, a standard error on the fit fmax

less than fmax, and an initial KD value that was <15% of the highest
protein concentration tested. The significance of the data filtering was
assessed by rejecting the null hypothesis that 25% of clusters would
pass all of these filters by chance alone (binomial p value < 0.01). KD,NS

values do not vary considerably for non-saturating variants, similar to
fmin (Supplementary Fig. 2f). The values for ΔGNS are similar for dif-
ferent salt concentrations, with the following values: −8.49 kcal/mol
for the low salt concentration and −8.30 and −8.58 kcal/mol for the
high salt replicate concentrations.

Determining KD

A refined estimate of KD was determined by refitting a single binding
curve to the median fluorescent cluster values at each protein con-
centration per variant, using the fixed variant-independent parameters
for fmin and KD,NS from above. For variants that did not achieve near-
saturation, defined as the median fluorescence values at the highest
concentration of protein being less than the 99.7% confidence interval
of the fit fmax distribution, fmax was resampled from the variant-
independent distribution. For variants that achieved saturation, fmax

was allowed to vary. To obtain error estimates for KD, we resampled
clusters of a given variant 100 times, fitting the median values with
each iteration to determine a 95% confidence interval. The confidence
interval was used to determine an error:

4Gerror =4Gupper bound �4Glower bound ð3Þ

Data filtering
The KD values were used to calculate the free energy of binding, ΔG,
where ΔG=RTln(KD) (Source data). Variants were included in our
analysis if they met the following criteria: (1) Variants with ΔGerror <
1.0 kcal/mol, (2) Five or more clusters per variant in each experiment
and replicate, and (3) observed ΔG values less than −7.69 kcal/mol,
where more than 15% of RNA was bound at the highest protein
concentration.

Combining replicates
A small shift (0.1 kcal/mol) in themean difference between the highest
affinity binders was observed between replicate datasets. This was
corrected by subtracting the offset from the second replicate dataset.
Duplicates were then combined as described by computing the error-
weighted mean:

4Gcomb =
4G1

σ2
1

+
4G2

σ2
2

 !
1
σ2
1

+
1
σ2
2

 !�1

ð4Þ

and the combined error computed via error propagation:

σcomb =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
σ2
1

+
1
σ2
2

 !�1
vuut ð5Þ

Filtering out structured variants
PUF protein binding is affected by RNA structure34,41. In the initial
derivation of the PUM2 thermodynamic model, sequences with pre-
dicted structure were filtered out. For this we used Vienna RNAfold (v.
2.4.14) command “RNAfold -p0 -T25 -C” and constrained the full length
of the designed RNA variants to be single stranded with the exception
of the stemwhenusing ScaffoldS2a andS2b,whichwas truncated, e.g.:

UUCUUUCUUGUAUAUUAUUUCUUUCU

XXXXXXXXXXXXXXXXXXXXXXXXXX

which was compared with the fully unconstrained sequences equally
truncated:

UUCUUUCUUGUAUAUUAUUUCUUUCU

::::::::::::::::::::::::::

Variants were then removed based on their structural stability:

4Gfold =4Gunconstrained �4Gconstrained ð6Þ

with a cutoff of ΔGfold < −0.5 kcal/mol, giving 6180 high precision
affinity variants.

Determining relative affinities
Affinities were determined relative to the linearly boundUGUAUAUAU
sequence. For the reference sequence, an additional structural cutoff
ofΔGfold < −0.2 kcal/molwasusedbefore choosing themedian valueof
all occurrences across the library (n = 237) as reference affinity. The
ΔΔG for all variants were calculated, where:

44Gobs =4Gvariant �4GUGUAUAUAU,median ð7Þ

Assessing alternative binding registers in single mutants
PUF4 can bind in any available register of the RNA variant. To assess
the binding affinity of each alternative registers, the full sequence of
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each single mutant was split into overlapping 9-mer windows shifted
by a single base. Affinity of each window was determined via the
equation below using an additive consecutive model, where X is the
residue (A, C, U, or G), b is the position of the bound residue (1–9), and
ΔΔGb

X the penalty as ascribed by each mutation relative to the PUF4
consensus UGUAUAUUA. Alternative binding registers were deter-
mined by comparing the sequence of the window with highest affinity
with the sequenceof the designed register. All alternative registers and
their associated affinities are listed in Supplementary Fig. 6c. Alter-
native binding registers were only observed for mutants at position 2,
each of which had predicted affinities within 0.5 kcal/mol of experi-
mentally observed values and are within experimental error.

44Gpred =∑
9
b= 144GX

b ð8Þ

Development, testing, and evaluation of PUF4 thermodynamic
binding models
PUF4 binding was predicted for all 6180 filtered sequences by calcu-
lating ΔΔGpred using the ΔΔGb

X and ΔΔGf
Y penalties from the PUM2

additive non-consecutive model described in ref. 34. Due to the high
stability of the hairpin stem for variants with scaffold S2a and S2b, only
the sequence of the loop region was considered. Affinities are then
predicted by computing the relative ensemble affinity of each indivi-
dual variant.

44Gensemble = � RTln ∑n�9
r = 1 e

�44Gr
RT

� �
ð9Þ

The relative ensemble affinity is given by the partition function,
summing over all possible registers and modes. Modes include: addi-

tive consecutive binding (∑9
r = 1e

�44Gr,consec
RT ), single flips (∑10

r = 1e
�ΔΔGr,1�nt,flip

RT ),

two consecutive flips (∑10
r = 1e

�ΔΔG2flips
RT ), and two independent flips

(∑10
r = 1e

�ΔΔG2�ntflip
RT ). The predicted values (Pred. ΔΔG) were compared to

the experimentally observed values (Obs. ΔΔG) in Fig. 3b.

Next, the PUM2model was refined by allowing all flip parameters
to vary and optimize by minimizing the sum of the squared error
between the predicted and measured ΔΔG values. The ΔΔGf

Y para-
meters were optimized using the lmfit package (version 0.8.3) and the
BFGS optimizer, initializing each parameter at the PUM2 parameter
values. Flippenaltieswere allowed to vary from −4 to 4 kcal/mol to find
an optimal value. The final penalties for ΔΔGf

Y can be found in Sup-
plementary Table 1. The improved fit was compared to Obs. ΔΔG
in Fig. 3c.

Finally, all the parameters were optimized except for the con-
sensus bases UGUAUAUAU, which were held at 0 kcal/mol. Bound
penalties (ΔΔGb

X) were initialized as their single mutant values for
UGUAUAUUAU and excluding the values at position 7. Their optimi-
zation was restricted to the larger of the two 95% CI error bounds or
+/−0.75 kcal/mol. Single mutants ΔΔG3

A, ΔΔG3
G, and ΔΔG5

G could not
be determined accurately because they either fell below the structure
cutoff (ΔGfold < −0.5) or not satisfying any of the other cutoffs as laid
out in section “Data filtering” (Supplementary Fig. 6b). These values
were allowed to vary with a larger bound of +/−2.5 kcal/mol. Flip
parameters were initialized at 0 kcal/mol and allowed to vary from
+/−4 kcal/mol. To prevent overfitting, the data was split into equiva-
lently sized and randomly drawn testing and training sets. The model
was first optimized on the training set before applying the derived
parameters on the testing dataset. Supplementary Fig. 4b shows
equivalent fits between both the training and test set with an RMSE of
0.55 kcal/mol and R2 of 0.84. The predicted values (Pred. ΔΔG) were
compared to the experimentally observed values (Obs.ΔΔG) in Fig. 3d.

A parameter sensitivity analysis was performed on the parameters
of the PUF4 model (Figs. 5, 6). A single parameter was allowed to vary

at a time while the other values were fixed. The value was then varied
within the chosen upper and lower bound and the RMSE of Obs. ΔΔG
versus Pred. ΔΔG calculated. Parameters that did not show a distinct
minima were reset to the value where the initial plateau was reached.

BLAST alignment
The DNA sequence for the yeast PUF4 (Uniprot P25339) homology
domain was used as the query sequence for a protein-protein align-
ment with BLAST (blastp). The PUF4 sequence was aligned to the
homology domains for yeast PUF3 (Uniprot Q07807) and human
PUM2 (Uniprot Q8TB72).

Predicting PUF3 and PUF4 binding sites in the yeast genome
The S. cerevisiae genome was obtained from the Saccharomyces Gen-
ome Database (www.sgd-archive.yeastgenome.org/sequence/S288C_
reference/genome_releases/, version R62-1-1).

The forward and reverse strands were each divided into 11 nt
sliding windows, shifting by a single base. PUF3 (an ortholog of PUM2)
and PUF4 binding affinities were predicted for each 11 nt window using
the PUM2 or PUF4 models, respectively, to determine the relative
ensemble affinity, ΔΔGensemble to each consensus sequence
(UGUAUAUAU for PUF3/PUM2 and UGUAUAUUAU for PUF4). Each
ensemble affinity is the partition function of binding in every possible
register consecutively or flipped, following the equation below:

44Gensemble = � RT ln ∑
9

r = 1
e

�44Gr,consec
RT +∑10

r = 1e
�44Gr,1�nt,flip

RT + e
�44G2�ntflip

RT + e
�44G2flips

RT

� �

ð10Þ

The highest affinity register for each 11 nt windows was sorted
with all of the windows fromhighest affinity to lowest. For any window
with an overlap in sequence to a window higher on the list, the lower
window was removed. Windows with ΔΔG< 4 kcal/mol were kept for
further analysis, resulting in 407,329 and 419,354 binding sites for
PUF3/PUM2 and PUF4, respectively. Comparisons across models were
made by matching the affinities for each model for the same window.

Predicting PUF3 and PUF4 binding sites in the S. cerevisiae
genome with a longer sequence motif
PUF3 has a similar binding motif to PUM2 with an additional pre-
ference for bases CN upstream of the 5′ end of the UGUAUAUAU
consensus. Tomoreaccuratelypredict binding to PUF3, two additional
positions were included in the mathematical model at position −2 and
−1 to the 5′ end, yielding an additional 8 parameters, 4 single mutants
at each position. Parameters were estimated based on PUF3 binding
affinities calculated in ref. 51. TheKD valueswere converted toΔGusing
ΔG= −RTlnKD and relative affinities computed with respect to the
published UGUAAAUA affinity (add references). The final single
mutant parameter for C at position −2 was set to −2 kcal/mol with all
other additional parameters set to 0 kcal/mol (see Supplementary
Table 2).

The upstream preference for PUF3 requires an extension of the
genome analysis window by two bases. The method described above
was repeated with a 13 nt sliding window. To allow for a comparison to
the PUF4 model, its motif was also extended by two bases upstream
with all 8 single mutant parameters set to zero. After filtering, 511936
and 494532 binding affinities with ΔΔG>4 kcal/mol were calculated
for PUF3 and PUF4, respectively.

3′UTR annotation for yeast transcriptome
The 3′UTR annotations for S. cerevisiae were downloaded from the
Saccharomyces Genome Database (www.sgd-archive.yeastgenome.
org/sequence/S288C_reference). The annotation was analyzed in
Python and chromosome, start, stop, and sequence information col-
lated into a BED file and compared to the yeast genome version R62.
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Duplicates and overlapping annotations were removed by selecting
the longest annotated sequence. Binding sites for PUF3 and PUF4were
determined by counting all filtered binding windows within the
annotated sequenceor selecting thehighest affinity bindingwindowas
required.

Predicting the binding affinity of known PUF4 and PUF3 targets
in S. cerevisiae
A list of PUF4 and PUF3 targets was taken from ref. 9. For target sites in
the 3′UTR, the gene location was compared to predicted binding
affinities from the 13 nt window analysis described above. The highest
affinity (lowest ΔΔG) site was determined in each 3′UTR for PUF3 and
PUF4 from the windows described above.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data for Figs. 2c, 3b–d, including the thermodynamic binding
data generated in this study are available in Source data. All other data
supporting the findings of this study are available from the corre-
sponding author on request. Source data are provided with this paper.

Code availability
Key scripts for the analyses reported here have been deposited at
https://github.com/HerschlagLab/PUF4Model.git.
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