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SUMMARY

Argonaute proteins loadedwithmicroRNAs (miRNAs)
or small interfering RNAs (siRNAs) form the RNA-
induced silencing complex (RISC), which represses
target RNA expression. Predicting the biological tar-
gets, specificity, and efficiency of both miRNAs and
siRNAs has been hamstrung by an incomplete
understanding of the sequence determinants of
RISC binding and cleavage. We applied high-
throughput methods to measure the association
kinetics, equilibrium binding energies, and single-
turnover cleavage rates of mouse AGO2 RISC. We
find that RISC readily tolerates insertions of up to 7
nt in its target opposite the central region of the guide.
Our data uncover specific guide:target mismatches
that enhance the rate of target cleavage, suggesting
novel siRNA design strategies. Using these data, we
derive quantitative models for RISC binding and
target cleavage and show that our in vitro measure-
ments and models predict knockdown in an engi-
neered cellular system.

INTRODUCTION

In eukaryotes, Argonaute (AGO) proteins loaded with �21- to

23-nt RNA guides form the RNA-induced silencing complex

(RISC). In the RNAi pathway, small interfering RNAs (siRNAs)

direct RISC to bind and cleave extensively complementary

RNA targets at the phosphodiester bond opposite guide posi-

tions g10 and g11 (Hammond et al., 2000; Zamore et al., 2000;

Elbashir et al., 2001). Synthetic siRNAs have become a mainstay

of molecular biological research, and the first siRNA drug was

approved in 2018 (Wittrup and Lieberman, 2015; Chakraborty

et al., 2017; Dowdy, 2017; Adams et al., 2018). In contrast, ani-

mal miRNAs bind targets through their seed sequence—guide

bases g2–g7—and accelerate target degradation (Baek et al.,
2008; Selbach et al., 2008; Guo et al., 2010) or inhibit mRNA

translation (Doench et al., 2003; Doench and Sharp, 2004; Hen-

drickson et al., 2009; Bazzini et al., 2012).

AGO proteins assign distinct functions to regions of the small

RNA (Lewis et al., 2003; Krek et al., 2005; Wee et al., 2012; Sal-

omon et al., 2015). By pre-organizing guide nucleotides g2–g5

into the seed sequence (Wang et al., 2008; Elkayam et al.,

2012; Schirle and MacRae, 2012; Schirle et al., 2014), AGOs

reduce the entropic penalty of target binding and accelerate

RNA hybridization to near-diffusion-limited rates (Parker et al.,

2009; Salomon et al., 2015).

The sequence determinants of RISC binding and cleavage

have been identified chiefly from low-throughput, quantitative

biochemical assays (Wee et al., 2012; Deerberg et al., 2013; Jo

et al., 2015; Salomon et al., 2015). These methods sample a

small portion of the sequence space occupied by RISC targets.

Conversely, high-throughput sequencing methods that rely on

crosslinking miRNAs to their targets (Chi et al., 2009; Helwak

et al., 2013; Clark et al., 2014) cannotmeasure the effect of target

sequence on binding kinetics. The lack of high-throughput data

precludes accurate prediction of RISC targets from fundamental

biophysical principles, frustrating efforts to predict the identity

and extent of repression ofmiRNA targets and limiting the design

of specific and potent siRNAs.

Here, we report RISC binding affinity, association kinetics, and

rates of cleavage for �20,000 target variants of two miRNAs:

let-7a and miR-21. We use target RNA libraries comprising

both canonical and noncanonical targets to probe the effects

of mismatches, guide and target bulges, and local secondary

structure. Our data highlight the distinct binding determinants

for let-7a and miR-21: let-7a binds mainly via its seed, whereas

miR-21 binding requires both seed and 30 supplemental pairing.

Remarkably, RISC binding tolerates asmany as 7 nt inserted into

the target across from the central region of the guide. Finally, we

describe specific mismatches flanking the cleavage site and at

the 30 end of the guide that enhance target cleavage. Our quan-

titative, high-throughput biophysical measurements allow us to

construct predictive models for target binding and cleavage,

and we use these models to explain knockdown of thousands

of miR-21 targets in living cells.
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Figure 1. High-Throughput Characterization of RISC Binding to In Situ Transcribed RNA

(A) Schematic of RISC binding to RNA targets in a sequenced flow cell.

(B) Summary of the let-7a target library. The number of targets in each class is indicated by the sum of targets with an affinity <10 pM (dark blue), affinities ranging

between 10 pM and 10 nM (light blue), and targets with affinity >10 nM (gray). The number of targets for which association was measured is shown in orange.

(C) A representative set of RISC association data for a single target. Error bars correspond to the 95% confidence interval on themedian fluorescence. The plot to

the right shows the relationship between RISC concentration and observed rate, from which the association rate was determined.

(D) Representative binding isotherms for four RISC targets (shown in corresponding color in schematic) containing different degrees of complementarity to the

guide (in gray). Error bars correspond to the 95% confidence interval on the normalized fit maximum fluorescence from each association experiment.

See also Figure S1.
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RESULTS

High-Throughput Measurement of RISC Binding
To define the sequence determinants of RISC binding, we de-

signed libraries comprising �20,000 distinct RNA targets per

guide, including all singly and doubly mismatched targets; a

subset of targets withR3 mismatches; targets containing inser-

tions (%7 nt) and deletions; as well as targets predicted by

TargetScan, Diana-microT, miRanda-mirSVR, and PicTar2 and

targets identified by CLASH (Figures 1B and S1A; Krek et al.,

2005; Betel et al., 2010; Reczko et al., 2012; Helwak et al.,

2013; Khorshid et al., 2013; Agarwal et al., 2015). Target libraries

were sequenced on an Illumina MiSeq and transcribed in situ to

generate clusters of RNA tethered to DNA templates of known

sequence (Figure 1A; Buenrostro et al., 2014; She et al., 2017;

Denny et al., 2018). To eliminate potential secondary structures

and cryptic binding sites, DNA oligonucleotides were annealed

to the RNA flanking the target sequence. We measured binding

kinetics using catalytically inactive D669A mutant AGO2 (Liu

et al., 2004) and cleavage using wild-type AGO2 loaded with 30

Alexa-Fluor-555-labeled let-7a, a seed-driven miRNA, or

miR-21, a miRNA that requires 30 supplemental pairing for its

highest affinity binding (Salomon et al., 2015). RISC was

continuously flowed into the MiSeq chip at 37�C at multiple con-

centrations, enabling determination of the association rate (kon;

Figure 1C) and dissociation constant (KD; Figure 1D) for tens of

thousands of target RNAs. All experiments included a large num-
2 Molecular Cell 75, 1–15, August 22, 2019
ber of replicate clusters for each target sequence (�50/target),

enabling accurate measurement and error estimation for all re-

ported values (STAR Methods). By constraining the maximum

fluorescence values to an empirical distribution defined by

high-affinity variants, we were able to estimate KD values be-

tween 10 pM and 10 nM. Variants with KD values near the detec-

tion limit were defined by fewer points and typically had larger

confidence intervals on their affinities. To test whether KD esti-

mates near the detection limit were robust, we progressively

removed the highest and lowest concentrations from our KD

curves and found that, even when KD values were defined by a

single point, they were fit to nearly identical KD values as were

originally determined using all concentrations (STAR Methods;

Figure S1C).

RISC Association Proceeds via Binding of the Seed
Region
Consistent with previous results, guide:target complementarity

within the seed determines the rate of RISC target binding in

our assay (Figures 2A–2D and S2A; Wee et al., 2012; Chandra-

doss et al., 2015; Salomon et al., 2015). For both guides, mis-

matches with seed nucleotides g2–g5 most slowed association

rates; these nucleotides are pre-organized into a helical geome-

try and are accessible for the initial target search (Figure 2B;

Schirle et al., 2014; Salomon et al., 2015). Mismatches at seed

positions g7 and g8 and mismatches outside the seed generally

slowed the association rate of RISC with target <2-fold
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Figure 2. Sequence Determinants of AGO2 Association Kinetics

(A) Association rates for miR-21 (upper left) and let-7a (lower right) loaded RISC binding to single and double mismatched targets. To find the rate corresponding

to a particular double mismatch, identify the first mismatch on the horizontal axis and the second mismatch on the vertical axis. The intersection indicates the

double mismatched target. Axes are labeled with the 30 end of the target (50 end of the guide) starting at position 1. Gray crosses indicate missing data. Colors are

centered on the association rate of the perfectly complementary (PC) target (white) with blue representing faster and red slower. Color bar is displayed in (C).

(B) Association rates for tandem double mismatches mapped onto the AGO2 crystal structure (PDB: 4W5N).

(C) Association rates for miR-21 (upper left) and let-7a (lower right) targets containing stretches of complementary nucleotide mismatches (e.g., A to U). Examples

are shown for mismatch stretches 2–4 and 5–9 on the right of the panel. For the 2–4 mismatches, the corresponding targets in the heatmap are located at the

intersection of 2 on the ‘‘beginning complement mismatch’’ axis and 4 on the ‘‘ending complement mismatch’’ axis. Colors are scaled as in (A).

(D) Change in association rates for tandem triple mismatches of miR-21 targets relative to a PC target (dotted line). Each box plot includes the 27 triple

substitutions for the three indicated target bases.

(E) Change in association rates for perfect complement miR-21 targets with increasingly long hairpins bound to either the seed (blue) or non-seed (orange) end of

the target sequence relative to a PC target with no flanking complementarity (dotted line). For each length of complementarity to the target sequence, there are up

to five corresponding stem loops of different lengths.

(F) Change in association rates for miR-21 targets containing 1–3 insertions of each base relative to a PC target (dotted line).

(G) Change in association rates for miR-21 targets containing single and double deletions relative to a PC target (dotted line).

See also Figure S2.
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(Figures 2A–2D and S2A). Target libraries also contained RNA

with stretches of mismatches starting at every target position

and ending at every other position: provided the target was fully

complementary to the let-7a or miR-21 seed, target association

rate was unaffected by as many as 13 contiguous mismatches

(Figure 2C).

Secondary structure likely affects miRNA activity by

competing with miRNA binding (Kedde et al., 2010). Among

our targets, non-seed mismatches primarily slowed RISC asso-

ciation by sequestering the target site in a stable secondary

structure. We used RNAfold (Lorenz et al., 2011) to predict the

structure of every target sequence in each library: for targets

where mismatches outside the seed slowed association >2-

fold, 67% of let-7a targets (407) and 63% of miR-21 targets

(1,281) had predicted internal secondary structures more stable

than�1.5 kcal∙mol�1 (Figure S2B). For example, amiR-21 target

bearing t12C (3.7-fold decrease) or t12G (3.1-fold decrease)

instead of t12U formed a hairpin that slowed target binding as

much as a seed mismatch (Figure S2C). t1G substitutions also

slowed miR-21 RISC target finding �5-fold by stabilizing an

RNA hairpin (DGRNAfold = �4.74 kcal∙mol�1) that occludes the

target seed (Figure S2C). let-7a target sequences formed fewer

internal structures, likely because the fully complementary

let-7a target sequence contains no guanine nucleotides. The

observed effects of secondary structure are consistent with pre-

vious results showing that structures sequestering the seed

match reduce RISC cleavage more than structures sequestering

the 50 region of the binding site (Ameres et al., 2007). Our libraries

also included targets with progressively longer hairpins at either

end of the target, enabling systematic investigation of the effects

of secondary structure. In contrast to structures sequestering

the seed-complementary target nucleotides, structures that

sequestered non-seed pairing regions of the target did not affect

RISC association (Figure 2E). Thus, RNA structure in the seed

sequence can modulate RISC association kinetics.

Insertions and Deletions Minimally Affect RISC
Association Rates
Effects of target insertions on RISC association have not been

systematically studied. BymeasuringRISCassociation to targets

containing 1- to 7-nt insertions, we found that association was

primarily affected when these perturbations were within the

seed-pairing region (Figures 2F and S2D); insertions between t3

and t4 had the largest effects (%8-fold). Targets with one or

two deletions are predicted to require a bulge in the guide strand

to accommodate flanking base pairs. We found that only single

deletions of nucleotide t3 for let-7a and nucleotides t3, t4, or

t12 for miR-21 slowed target finding >2-fold (Figures 2G and

S2E). Removing two consecutive nucleotides from fully comple-

mentary targets only decreased the miR-21 RISC association

rate when the deletions were within the seed (>6-fold reduction;

Figure 2G). In general, insertions were better tolerated than dele-

tions at the same target position. For example, formiR-21, insert-

ing three adenosine, cytosine, or uridine nucleotides between t3

and t4 slowed the association rate less than deleting nucleotide

t3. These data suggest that target bulges in the seed-pairing re-

gion, which are predicted to face the solvent, are more readily

accommodated than unpaired seed nucleotides in the guide,
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which face the protein and have their mobility restricted by a

network of contacts between the miRNA backbone and AGO2.

Seed Complementarity in Concert with 30 Supplemental
Pairing Is Needed for High-Affinity Binding by Some
miRNAs
Recruitment of deadenylases and other mRNA degradation fac-

tors by RISC likely depends on RISC occupancy at one or more

target sites within the mRNA. To identify which target bases

determine the fraction of target RNA bound by RISC, we

measured RISC binding affinity to mismatched targets. For let-

7a, position 3 and 4 mismatches led to the largest changes in af-

finity. In contrast, for miR-21, mismatches throughout the seed

or in the 30 supplemental region had similar effects on RISC affin-

ity (Figures 3A and 3B). let-7a targets containing mismatches at

the same positions asmiR-21 targets often boundwith higher af-

finity (Figures 3A–3C). Both the reliance of miR-21 on supple-

mental pairing and the overall lower affinities of miR-21 RISC

for its targets are likely consequences of the lower GC content

of the miR-21 seed sequence.

In lieu of predicting RISCaffinity for each potential target, many

miRNA target prediction algorithms define canonical site types,

which are thought to possess variable efficacies. For both

let-7a and miR-21, 8-mer sites (targets with complementarity at

positions 2–8 and a t1A) bound with the highest affinity on

average, followed by 7-mer-m8 sites (targets with complemen-

tarity at positions 2–8), 7-mer-A1 sites (targets with complemen-

tarity at positions 2–7 and a t1A), and 6-mer sites (targets with

complementarity at positions 2–7; Figure S3C). We observed a

range of affinities to predicted targets containing the same

seed types. Some of this variance could be explained by pre-

dicted RNA secondary structure (R2 = 0.38 for 8-mer seed tar-

gets; Figure S3E). We removed targets predicted to have internal

structures with DGRNAfold < �2 kcal∙mol�1 and replotted the af-

finity distributions (Figure S3D). Sequence context still strongly

affected binding affinity: the KD values for let-7a (<10 pM

to >10 nM) and miR-21 (37 pM to >10 nM) spanned an �1,000-

fold range, with the most favorable contexts having KD values

comparable to those reported previously (Wee et al., 2012; Salo-

mon et al., 2015). Comparing site types, we found that a t1A

increased binding affinity by an average of 1 kcal∙mol�1; human

AGO2 contains a pocket between the MID and L2 domains that

recognizes an unpaired adenosine through hydrogen bonding

between Ser561 and the N6 amine of the adenine (Schirle et al.,

2014, 2015). All miR-21 site types bound with lower affinity than

the corresponding let-7a site (Figure S3D), again likely a conse-

quence of the greater let-7a seed GC content.

To test whether these differences in affinity reflect differences

in mRNA regulation, we compared the median binding affinities

for each seed type to published RNA sequencing (RNA-seq)

data collected following transfection of a let-7a decoy into 3T3

cells (Werfel et al., 2017). Considering only RNAs containing a

single canonical binding site in their 30 UTR and binning RNAs

by seed type revealed a strong correlation (R2 = 0.99) between

binding affinity and the mean log2 change in target abundance

for each seed type (Figure S3F), suggesting that binding affinity

is a key factor in mRNA repression by miRNAs. For canonical

let-7a targets, we observed <1.5-fold differences in median
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Figure 3. Target Sequence Contributions to AGO2 Binding Energies

(A) Binding energies for miR-21 (upper left) and let-7a (lower right) loaded RISC binding to single and double mismatched targets. Axes are labeled with the 30 end
of the target (50 end of the guide) starting at position 1. White boxes represent missing data. Color bar is displayed in (C).

(B) Effect of tandem triple substitutions in the target sequence on miR-21 (top) and let-7a (bottom) binding affinity. Dashed lines indicate the limits of detection,

and the numbers above and below the line indicate the number of targets in each group that fell beyond those limits.

(C) Binding energies for miR-21 (upper left) and let-7a (lower right) targets containing different length stretches of complementary nucleotide mismatches (e.g.,

A to U).

(D) Binding affinities for targets containing progressively more complementarity to RISC.

(E) Binding affinities for RISC loaded with miR-21 (top) or let-7a (bottom) to targets with 1- to 7-nt insertions. Dashed lines indicate the limits of detection and

points below the line bound with higher affinity than the detection limit.

See also Figure S3.
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association rates (Figure S2F), indicating that the difference in af-

finity and thus regulation at these sites results from increased

dwell times rather than decreased association rates.

Central Pairing Can Reduce RISC Binding Affinity
Guide pairing to target bases t9 and t10 has been shown to

reduce RISC affinity to seed-matched targets, leading to the pro-
posal that pairing at these central positions requires an unfavor-

able conformational change (Schirle et al., 2014; Salomon et al.,

2015). Additionally, natural miRNA targets rarely engage in cen-

tral pairing (Khorshid et al., 2013; Grosswendt et al., 2014). To

further characterize this phenomenon, we examined the

contributions of central bases to binding by looking at all

stretches of contiguous mismatches (Figures 3C and 3D). For
Molecular Cell 75, 1–15, August 22, 2019 5
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seed-matched miR-21 targets, complementarity to each addi-

tional base pair from t10 to t13 decreased binding affinity (Fig-

ures 3C and 3D). This pattern was also observed for let-7a but

only for complementarity to t10 and t11 (Figure 3D). This indi-

cates that complementarity at central positions can reduce bind-

ing affinity for most biological targets, which have little or no 30

pairing. Interestingly, central pairing increased the binding affin-

ity of many targets containing little or no seed complementarity

(Figures 3C, S3A, and S3B), suggesting that the conformation

associated with central pairing may specifically destabilize

seed binding. However, even for seedless miR-21 targets, tar-

gets base paired from t10 to t21 bound with lower affinity than

targets paired from t11 to t21 (Figure 3C).

AGO2 Can Tolerate 7-nt Target Insertions without
Substantial Decreases in Binding Affinity
RISC has been proposed to first find and bind to the seed-

complementary region of a target and then loop out intervening,

non-complementary target sequences in order to pair with com-

plementary 30 supplementary target bases (Schirle et al., 2014;

Bartel, 2018; Sheu-Gruttadauria et al., 2019). Our libraries

included 452 miR-21 and 463 let-7a of 560 possible targets

bearing 1- to 7-nt insertions, allowing us to test whether long

stretches of RNA can be looped out to connect complementary

regions between the guide and target. Only 258 of let-7a and 156

of miR-21 bulged targets detectably reduced RISC binding affin-

ity (Figure 3E). Most (53% formiR-21 and 45% for let-7a) of these

insertions disrupted seed binding. For miR-21, only 9 of 95

(17 were not measured) target insertions between t8 and t12 de-

tectably reduced binding affinity, demonstrating that long

stretches of RNA can loop out to allow for pairing of the guide

to target nucleotides more distant from each other. Functional

biological targets containing large bulges have been described

for miR-122, which binds the hepatitis C viral RNA at a site pre-

dicted to contain a large central hairpin (Machlin et al., 2011;

Luna et al., 2015). Our data suggest that this binding mode

may be more common than previously appreciated: four target

bases complementary to the 30 supplementary region are pre-

dicted to occur by chance every 256 nt.

Mechanisms for High-Affinity Binding to Noncanonical
Targets
Although the seed sequence is the primary specificity determi-

nant for target binding, several classes of ‘‘noncanonical’’ tar-

gets with incomplete seed sequences have been proposed to

support RISC binding (Shin et al., 2010; Chi et al., 2012). Our

target library included 513miR-21 and 1,162 let-7a noncanonical

targets predicted by different algorithms or identified by CLASH.

These putative noncanonical targets include 30 compensatory

and centered sites, as well as sites containing a single G:U

wobble in a 6-mer seed (Betel et al., 2010). The vast majority

(95% for miR-21; 89% for let-7a) did not bind at the concentra-

tions measured (Figure S3C). The two highest affinity let-7a

noncanonical targets formed G:U pairs with the let-7a seed

that were bolstered by 30 supplemental pairing (Figure S3G).

After removing targets predicted to form stable structures

(DGRNAfold < �2 kcal∙mol�1), only 18.7% (104) of the 556 let-7a

and 5% (11) of the 228 miR-21 putative noncanonical sites
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bound with a KD < 10 nM (DG < �11.3 kcal∙mol�1; Figure S3D).

Thus, most noncanonical targets identified by prediction algo-

rithms or CLASH correspond to low-affinity binding sites unlikely

to be substantially occupied in vivo.

Our libraries included many nucleation bulge sites, sequences

in which a nucleotide inserted between t5 and t6 can base

pair with g6. The best-studied let-7a nucleation bulge site,

UAACCUC (Chi et al., 2012), occurred in 32 of the predicted tar-

gets in our let-7a library. let-7a RISC bound these targets weakly:

the median affinity was 9.04 nM (DG = �11.4 kcal∙mol�1), and

binding to 15 sites was below the limit of detection (KD >

10 nM). Just three UAACCUC sites, which were buttressed by

5–7 additional non-seed base pairs, bound with an affinity

<2 nM (DG < �12.3 kcal∙mol�1; Figure S3H), an affinity similar

to a 6-mer site (�12.1 kcal∙mol�1).

Our libraries included targets with different extents of comple-

mentarity but lacking a canonical seedmatch. Some of these tar-

gets are similar to centered sites, which contain 11 or 12 bases of

contiguous central complementarity (Shin et al., 2010). The bind-

ing affinities of these targets demonstrate that the length of

contiguous complementarity needed for high-affinity binding de-

pends on both sequence and position within the guide. For

example, let-7a RISC bound targets with uninterrupted comple-

mentarity from t5 to t17 (KD = 2.5 nM; DG =�12.2 kcal∙mol�1) or

t5 to t16 (KD = 3.5 or 4.1 nM;DG=�12.0 or�11.9 kcal∙mol�1 for

two variants), affinities similar to a 6-mer seedmatch. In contrast,

targets complementary to let-7a from t5 to t15 boundwith affinity

(KD > 10 nM; DG >�11.3 kcal∙mol�1) weaker than a 6-mer seed

match. For miR-21, but not let-7a, targets containing comple-

mentarity from t11 to t21 bound more tightly than either 7-mer-

m8 or 7-mer-A1 sites (Figure 3C). Our data suggest that centered

sites or extensively complementary 30 only sites could be

functional, but the length and position of complementarity

required likely depends on the distribution of GC content within

the miRNA.

Imperfect seed complementarity has been proposed to render

RISC binding dependent on 30 compensatory pairing (Bartel,

2009). Supporting this view, many targets both imperfectly

matching the seed and bearing additional two or three

mismatches outside the seed failed to detectably bind RISC (Fig-

ures S3A and S3B). Thus, target sites without complete seed

complementarity bind only when they contain extensive distal

complementarity.

High-Throughput Measurement of RISC Cleavage Rate
siRNAs are typically designed to be fully complementary to

their target. This design paradigm has been challenged by

evidence that AGO cleavage activity can be enhanced by spe-

cific guide:target mismatches (Tang et al., 2003; Haley and Za-

more, 2004; Ameres et al., 2007). Moreover, mismatches can

allow siRNAs to discriminate between targets that differ by a sin-

gle nucleotide (Dykxhoorn et al., 2006; Schwarz et al., 2006;

Pfister et al., 2009). However, identifying mismatches that

improve siRNA efficacy or specificity currently requires testing

large numbers of individual siRNAs.

We developed RISC Cleave-’n-Seq (RISC-CNS) to enable

high-throughput measurements of RISC cleavage rates and

rapidly identify favorable guide:target mismatches for an
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Figure 4. RISC Cleave’n-Seq (CNS) Enables High-Throughput Mea-

surement of Single Turnover Cleavage Kinetics

(A) Method to determine single turnover cleavage rates for RISC targets.

(B) Cleavage rates for miR-21 (upper left) and let-7a (lower right) targets with

single and double substitutions. Deep red represents targets for which no

detectable cleavage was observed. Targets colored in blue were cleaved

faster than the fully complementary target.

(C) Cleavage rates of miR-21 (upper left) and let-7a (lower right) targets con-

taining different length stretches of complementary nucleotide mismatches

(e.g., A to U). Color bar is as in (B).

(D) Cleavage rates for miR-21 (top) and let-7a (bottom) targets containing three

consecutive substitutions. The black dotted line represents the cleavage rate of

the fully complementary RNA target, whereas the gray dotted line indicates the

cleavage rate detection limit. The numbers at the bottom of the plot represent

the number of targets in each group for which no cleavage was observed.

See also Figure S4.

Please cite this article in press as: Becker et al., High-Throughput Analysis Reveals Rules for Target RNA Binding and Cleavage by AGO2, Molecular
Cell (2019), https://doi.org/10.1016/j.molcel.2019.06.012
individual siRNA sequence (Figures 4A, S1A, and S1B). RISC-

CNS begins by incubating a library of RNA targets with a

10-fold molar excess of RISC to achieve single-turnover condi-
tions. Cleavage is measured after various times by reverse

transcribing and sequencing the targets remaining uncut.

Normalized sequencing data were fit to single exponential

curves—which yielded essentially the same values as a model

incorporating association and dissociation rates (Figures S4B

and S4C; STAR Methods)—to determine cleavage rates for

22,607 let-7a and 7,841 miR-21 targets (Figure S4A).

Central Target Mismatches Can Both Inhibit and
Enhance Cleavage
RISC cleaves its RNA target at the phosphodiester bond linking

target nucleotides t10 and t11 (Elbashir et al., 2001), and cen-

tral base pairing (g9–g12) is required for efficient target cleav-

age (Haley and Zamore, 2004; Ameres et al., 2007; Wee

et al., 2012) because it moves the scissile phosphate into the

catalytic site (Ma et al., 2005; Parker et al., 2005). RISC-CNS

revealed that, for otherwise fully complementary targets, mis-

matches at t10 and t11 caused the greatest reduction in target

cleavage rate (Figure 4B). For all possible let-7a triple mis-

matches and 21 of 27 miR-21 triple mismatches at t9–t11,

cleavage was undetectable (>500-fold kcleave decrease; Fig-

ure 4D). For both guides, a target mismatch produced by

changing t10U to t10C was better tolerated than other t10

base substitutions, likely because substitution of another

pyrimidine at the cleavage site is less disruptive to the helical

geometry required for cleavage (Figure 4B). Moreover, mis-

matches at t13, a position not usually considered part of

the central region, actually perturbed cleavage more than t12

mismatches.

Surprisingly, some mismatches near the cleavage site

enhanced cleavage. The rate of cleavage for a target bearing

t12A mismatched with the let-7a g12G (0.14 s�1) was 2.5-fold

faster than the fully complementary t12C target (0.055 s�1; Fig-

ure 4B). The let-7a target bearing a t12A mismatch had the

fastest cleavage rate of any single mismatch (Figure 4B; let-7a

diagonal), and the cleavage rates of 37 of the 60 doubly mis-

matched targets containing a t12A mismatch were faster than

the fully complementary target (Figure 4B). Counterintuitively,

the t12 mismatches that most weakened the affinity of let-7a

RISC (Figure 3A) showed the greatest enhancement in cleavage

rates (Figure 4B): changing t12C to a t12A (0.14 s�1) increased

the cleavage rate and a 12G substitution (0.018 s�1) and a

t12U substitution (0.003 s�1) decreased the cleavage rate rela-

tive to the fully complementary let-7a target (0.055 s�1).

miR-21 RISC showed the same trend: t12U > A (0.027 s�1) or

t12U > G (0.019 s�1) slowed the rate of cleavage less than

t12U > C (0.013 s�1) relative to the fully complementary t12A

target (0.087 s�1; Figure 4B). Interestingly, the majority of seed

mismatches had small effects on single turnover cleavage rates

(Figure 4B), and some seed mismatches accelerated cleavage

(t8G or t7C mismatches in miR-21 and t5 mismatches in

let-7a). This finding is not without precedent: certain seed mis-

matches can enhance cleavage by the zebrafish homolog of

AGO2 (Chen et al., 2017). Thus, an siRNA fully complementary

to its target is unlikely to be optimal, perhaps because specific

mismatches reduce strain in the RNA duplex and enable the

RISC:target complex to more fully populate the catalytically

competent conformation.
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Figure 5. Target Insertions and Deletions Result in Out-of-Phase Trends for Cleavage Rates

(A) Cleavage rates for miR-21 (left) and let-7a (right) single insertions (blue dots) and single deletions (orange dots). Indels that correspond to multiple target

positions are plotted in all possible target positions. The cleavage rate of the fully complementary target is indicated by the dotted line. Targets for which no

cleavage was detected are plotted below the solid black line. Orange line, all single deletions; blue line, mean of the single insertions.

(B) let-7a cleavage rates were mapped onto the RNA components of the AGO2 crystal structure (PDB: 4W5O). Target insertions were mapped onto the 9-mer

RNA target such that the mean of all insertions between t1 and t2 are mapped onto t1. Single-deletion cleavage rates were mapped onto the guide strand of the

structure. Cleavage rates near the wild-type rate are colored white, and immeasurably slow cleavage rates are colored deep red. The first frame shows both the

guide and target strands as they enter the central cleft of the protein, and the second frame shows only the guide strand. The third frame shows the guide strand as

it exits the central cleft of the protein.

See also Figure S5.
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Target Mismatches to the Guide 30 End Accelerate
Single-Turnover Cleavage
Target:guide mismatches at the 30 end of the guide (g17–g21)

increase the rate of multiple turnover target cleavage, a phenom-

enon hypothesized to reflect faster release of the cleaved prod-

ucts (Tang et al., 2003; Haley and Zamore, 2004; Wee et al.,

2012; Salomon et al., 2015). In our experiments, such mis-

matches also increased the rate of single-turnover cleavage,

suggesting that unpairing the guide 30 end lowers the barrier to

RISC adopting a cleavage-competent conformation (Figures

4B–4D). Remarkably, single, double, and triple mismatches

from t15 to t21 for miR-21 and t16 to t21 for let-7a increased

the single-turnover cleavage rate (Figures 4B–4D). Even when

nucleotides t15–t21 (miR-21) or t16–t21 (let-7a) were all simulta-

neously mismatched with the guide, the cleavage rate increased

(Figure 4C).

Guide and Target Bulges Have Different Effects on
Cleavage Kinetics
In the context of a fully complementary sequence, single inser-

tions and deletions (indels) had similar effects on RISC associa-

tion rate and binding affinity (Figures S5A and S5B). In contrast,
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insertions or deletions at the same target position had markedly

different effects on the single turnover cleavage rate for both

guides (Figure 5A). Single insertions that disrupted central pair-

ing resulted in nearly undetectable target cleavage

(<0.0002 s�1 for let-7a and <0.001 s�1 for miR-21), insertions

in the seed slightly lowered the cleavage rate, and insertions

opposite the distal 30 end of the guide enhanced cleavage. Inter-

estingly, target deletions between positions t4 and t8 resulted in

cleavage rates that were >30-fold slower than either of the flank-

ing insertions. Unlike target insertions flanking t11, targets

bearing t11 deletions were readily cleaved.

Mapping the let-7a perturbations onto the AGO2 RISC crys-

tal structure (Schirle et al., 2014) suggests an explanation for

the distinct effects of indels on RISC function (Figure 5B).

Because AGO2 constrains the seed nucleotides of its guide

RNA, looping out an extra guide base to accommodate a target

deletion is sterically prohibited. This restriction in guide geom-

etry may force the extra base to be stacked into the duplex, as

was observed in crystal structures of DNA target-bound TtAgo

with DNA guide bulges (Sheng et al., 2017). Accommodating

the extra guide base in the RNA duplex likely distorts the cleav-

age site, preventing efficient cleavage. By base g10, the guide
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Figure 6. Predictive Models for AGO2 Binding Affinity and Cleavage Kinetics

(A) Schematic of alignment of guide and target sequences to identify bound orientation.

(B) Comparison of binding affinity predicted by let-7a- and miR-21-specific models to observed binding affinities.

(C) Comparison of cleavage rates predicted by let-7a- and miR-21-specific models or by a general cleavage model to observed cleavage rates. The color of the

points represents the density of points at that position, with yellow being the densest and purple being the least dense.

(D) Parameters obtained from fitting miR-21 cleavage model or a general cleavage model.

See also Figure S6.
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backbone has begun to exit the central cleft of AGO and is fac-

ing solvent, suggesting that the extra guide base can loop out

of the duplex with less disruption of the cleavage site. By

contrast, the target bases pairing to the seed region have a sol-

vent-facing backbone and unpaired bases are readily looped

out, but as the target strand passes through the central cleft

of the protein, the target backbone begins to abut the PAZ

domain of the protein and becomes sterically constrained.

The significant effects on cleavage activity of helical imperfec-

tions well outside the cleavage site highlights the structural

sensitivity of AGO2.
Models for RISC Binding Affinity and Cleavage Kinetics
To predict the binding affinity and cleavage rates of any miR-21

or let-7a RISC target, we modeled binding and cleavage sepa-

rately for each guide. An alignment algorithm enabled prediction

of the binding register for each target (Figures 6A and S6A). To

model binding affinity, we included one energy parameter for

each base at each position (84 parameters). Because the effect

of indels depends primarily on their position—seed, central, or 30

supplemental—and whether they perturb the guide or target

strand, we included bulge opening and extension penalties for

each of these regions for each strand (12 parameters). We also
Molecular Cell 75, 1–15, August 22, 2019 9
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included a base-pairing initiation term and a term to account for

internal RNA structure. This linear energetic model predicts 61%

of the variance in binding affinity for let-7a and 55% for miR-21

RISC (Figure 6B); more complex models performed marginally

better (Figure S6C).

Next, we sought to define an appropriate set of features for our

cleavage model. Because double-mismatch cleavage rates are

predicted well by single-mismatch cleavage rates (Figure S6B),

we employed a linear model consisting of parameters for each

mismatched base at each position (3 nt 3 21 positions = 63 pa-

rameters). Insertions of different nucleotides generally had

similar effects, allowing us to use single parameters for any

base insertion at any given position (Figure S4G). From positions

t1 to t11, increasing the extent of target bulges led to a

decreasing cleavage rate, whereas increasing the extent of

target bulges from position t12 to t21 had no effect on the cleav-

age rate and, in some cases, increased the cleavage rate (Fig-

ure S4G). As a result, target bulge parameters scaled with bulge

length for bases t1–t11, but not for positions t12–t21 (20 param-

eters). For guide bulges, effects were generally additive, and

multiple guide bulges typically abolished cleavage activity (Fig-

ures S4E and S4F). To account for this, we included guide bulge

penalties for each position from t2 to t20 (19 parameters). A

model containing these 102 parameters was trained on targets

containing single and double mismatches and single indels for

both let-7a (1,766) and miR-21 (2,084). We then predicted the

cleavage rates of targets containing three mismatches or multi-

ple indels (2,361 for let-7a and 2,765 for miR-21). This model fit

well to the data collected on targets with%2 mismatches, inser-

tions, or deletions and quantitatively predicted with high accu-

racy (R2 = 0.71 for let-7a and 0.72 for miR-21) the cleavage rates

of targets containing >2 perturbations (Figure 6C).

Given that we could accurately predict the cleavage rates for

targets of each guide and that we observed similar qualitative

behaviors for cleavage by RISC when loaded with either let-7a

or miR-21, we constructed a generalizable model to predict

the cleavage rate of any RISC complex. This model included pa-

rameters for transitions or transversions at each position, along

with the bulge parameters described above. We fit this 81-

parameter model to the combined let-7a and miR-21 training

data. The model accurately predicted cleavage rates of targets

(5,126) containing triple mismatches or multiple indels (R2 =

0.66; Figure 6C). The fit model parameters reflect the physical

constraints on RISC cleavage (Figure 6D). For example, trans-

versions perturbed cleavage more than transitions at positions

t6–t11, suggesting that the greater helical perturbations intro-

duced by transversions at positions t6–t11 may propagate to

the cleavage site (Figure 6D). Supporting this view, guide bulges

50 to the cleavage site were also more disruptive (Figure 5).

Conversely, at positions t12–t19, transversions were often

cleaved at faster rates and likely increase the ability of the

RISC ternary complex to obtain a cleavable conformation rela-

tive to more readily accommodated transversions.

RISC Kinetic Parameters Predict Knockdown in Cells
To determine how well in vitro biochemical parameters predict

siRNA efficacy in cells, we deployed a cellular system for

measuring the change in abundance of thousands of miR-21 tar-
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gets. Using CRISPR-Cas9, we deleted the entire pri-miR-21

hairpin from HEK293 Flp-In T-REx cells (Figure S7A). We cloned

a subset of the miR-21 target library (the 6,327 sequences used

in RISC-CNS) into the 30 UTR of an EGFP reporter plasmid and

stably integrated this library into the miR-21�/� cell line. We

then transfected six concentrations of a miR-21 siRNA, isolated

RNA from cells after 48 h, and sequenced uncleaved RNA tar-

gets. After normalizing for sequencing depth, we calculated

the change in steady-state target abundance as the fraction of

counts from each miR-21 transfection relative to the counts

from the mock transfected miR-21 knockout line, which were

highly reproducible between replicates (Figures 7A and 7B).

We derived a biochemical model to predict the change in

target abundance at steady state based on each target’s asso-

ciation, dissociation, and cleavage rate, as well as the free

RISC concentration, the basal mRNA decay rate, and the

miRNA-accelerated decay rate (Figure S7B). Because we were

unable to measure dissociation rates for extremely high affinity

(KD < 10 pM) targets, we used dissociation rates estimated by

multiplying model predicted affinities by measured association

rates (koff = KD 3 kon). The free RISC concentration was fit as a

constant for all targets for each miR-21 transfection concentra-

tion. Because all reporter constructs had essentially the same

30 UTR length and sequence composition, the basal mRNA

decay rate and miRNA-accelerated decay rate were assumed

to be constant for all targets, and these parameters were fit

globally. Unlike RISC-CNS cleavage rates, the flanking context

of targets significantly influenced target knockdown in cells (Fig-

ure S7E), likely due to the greater length of flanking sequence,

which may increase competing secondary structure formation

or binding of cellular proteins. For this reason, only targets con-

taining five adenosines flanking the target region were used in

model fitting and subsequent analyses (4,483 sequences).

Although this does not eliminate differential effects of structure

or other RNA binding proteins on the targets examined, it does

reduce their likelihood of confounding comparative analyses.

Many variants with RISC-CNS cleavage rates >10-fold faster

than their estimated dissociation rates showed little change in

abundance in cells, suggesting that the cleavage rate is slower

in cells than the cleavage rate measured in vitro or that the disso-

ciation rate in cells is much faster than the dissociation rate

measured in vitro. An increase in the dissociation rate could

reflect differences in ionic environment or the activity of RNA hel-

icases or other RNA-binding proteins. To account for this

discrepancy, we fit a single dissociation rate scaling term for

all targets across all treatment conditions. This model performed

well for each of the three highest miR-21 transfection conditions

(R2 = 0.59, 0.56, and 0.55; Figures 7C and S7C).

Next, we examined the effect of single-nucleotide mis-

matches on knockdown in cells (Figures 7D and S7F). In agree-

ment with RISC-CNS results (Figure 4B), t13 mismatches

resulted in less target reduction than most seed mismatches,

highlighting the importance of t13 pairing for efficient target

cleavage. Mismatches from t17 to t21 resulted in target reduc-

tion equal to or greater than that observed for the perfectly

complementary (PC) target, in agreement with our finding that

mispairing at these positions enhances the rate of target cleav-

age. Many targets containing t8G substitutions also exhibited
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Figure 7. Binding Affinity and Cleavage Rate Affect Knockdown in Cells

(A) Scheme used to measure change in abundance of miR-21 targets.

(B) Comparison of normalized counts obtained from replicate miR-21 siRNA transfection experiments at the same concentration. Points are colored by density,

with yellow being the densest and blue being the least dense.

(C) Biochemical model for predicting siRNA knockdown frommeasured kon and kcleave and predicted koff of each target. Sample shown is from the 100-nMmiR-21

transfection. Individual targets are colored by RISC-CNS measured cleavage rate. Red dot, perfectly complementary target. Dotted line has slope of �1 and

intercept of 0.

(D) Knockdown of targets bearing single mismatches at each miR-21 siRNA concentration transfected.

(E) Knockdown of targets with single insertions (blue dots) or deletions (orange dots) following 100 nM transfection. Indels that correspond to multiple target

positions are plotted in all possible target positions. Dotted line, target fully complementary to the siRNA; orange line, all single deletions; blue line, mean of the

single insertions.

(F) siRNA-directed (100 nM) reduction in abundance for all tandem, doubly mismatched targets. Dotted line, target fully complementary to the siRNA.

See also Figure S7.
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greater knockdown than the PC target. Similarly, the effect of

target indels was predicted by RISC-CNS: deletions in the

seed-matching region yielded little or no target knockdown in

cells, and single target insertions between t2 and t9 resulted

in similar or slightly less knockdown than the PC target (Fig-

ure 7E). Although single-nucleotide insertions in the seed-
matching sequence of the target caused only a modest reduc-

tion (<2-fold on average) in siRNA efficacy relative to the PC

target, as RISC-CNS predicted, the insertion of two or more ba-

ses in the seed binding region reduced siRNA efficacy (Fig-

ure S7D). Insertion of 1–3 nt at target positions t11–t15 reduced

RISC activity a similar amount (<2-fold) regardless of the length
Molecular Cell 75, 1–15, August 22, 2019 11
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of the insertion, consistent with the RISC-CNS findings

(Figure S4G).

Finally, our library of targets included all 180 possible tandem

double mismatches (Figure 7F). As predicted by RISC-CNS,

target mismatches to both t20 and t21 enhanced target cleav-

age. Targets bearing tandem mismatches in the cleavage site,

particularly t9t10, were better RISC substrates than targets

with tandem mismatches in either the seed or 30 supplemental

region. Yet such t9t10 mismatched targets—which bind RISC

with high affinity (KD < 10 pM)—were not cleaved in RISC-CNS

experiments. These targets are thus likely substrates for

miRNA-mediated transcript destabilization rather than cleavage

(Hutvágner and Zamore, 2002; Zeng et al., 2002; Doench

et al., 2003).

A limitation of this experimental andmodeling approach is that

we are unable to account for certain target-specific effects, such

as target-directed miRNA degradation (TDMD) (Ameres et al.,

2010). We anticipate that further characterization of this process

for a diversity of targets would enable more accuratemodeling of

knockdown by RISC in future work.

DISCUSSION

Thermodynamic Binding Specificity of miRNAs
Accurate prediction of miRNA-mediated mRNA repression re-

quires a quantitative description of RISC binding affinities for a

range of targets. Although non-seed binding sites have been

proposed to comprise a substantial fraction of miRNA-binding

sites (Loeb et al., 2012; Helwak et al., 2013; Grosswendt et al.,

2014), our data show that the majority of sites lacking canonical

seed-matched sequences bind RISC with affinities below our

detection limit, suggesting that it is unlikely that these sites func-

tion in vivo. Our data suggest that, whenever pairing to the seed

is interrupted by multiple substitutions or bulged nucleotides on

the guide, then a long, contiguous stretch of 30 complementarity

is needed to maintain a physiologically relevant binding affinity.

Large target bulges distal to the seed-matching sequence are

well tolerated by RISC, suggesting that RISC can readily loop out

large stretches of target RNA to add 30 supplemental comple-

mentarity. Finally, our data demonstrate that the specificity land-

scapes of different miRNAs can be highly sequence dependent.

Because miR-21 RISC seed binding is weaker, 30 pairing is

required to achieve an affinity comparable to let-7a RISC for a

seed-matched target. This is likely driven by the low GC content

of the miR-21 seed: miR-21 8-mer targets are bound

�1.5 kcal∙mol�1 (�11-fold) weaker than let-7a (Figures S3C

and S3D), and a similar difference was observed for 7-mer-m8

sites. Thus, miRNAs, such as miR-21, must reach higher than

typical steady-state levels or bind to sites with additional 30

complementarity to produce the same functional effects as

most other miRNAs.

A Physical Model for RISC Binding and Cleavage
Several stepwise models of RISC activity have been proposed

(Ameres et al., 2007; Mayr and Bartel, 2009; Schirle et al.,

2014; Salomon et al., 2015; Bartel, 2018). Our results provide a

detailed, biochemical perspective into key steps on this

pathway. RISC searches for candidate targets by pre-organizing
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seed nucleotides g2–g5 into a solvent-accessible helix (Wang

et al., 2008). Within this region, pairing to guide bases g3

and g4 is particularly essential for productive binding. Upon

binding, the AGO2 a-helix-7 shifts, exposing the distal end of

the seed, allowing target pairing to propagate to guide bases

g6–g8 (Schirle et al., 2014).

During this initial phase of binding, AGO2 undergoes a confor-

mational change, repositioning the 30 supplemental region of the

guide into a near A-form helix. This region is now primed to act as

a second nucleation site. Skipping central guide pairing may

explain why even large target insertions here are well tolerated

by RISC. With binding anchored at two positions, pairing to

highly complementary targets can progress into the central re-

gion. A cleavage-competent conformation requires pairing at

central bases t9–t11, but pairing at positions t8 and t12 is often

dispensable and occasionally detrimental. Continuous base

stacking through the cleavage site is thus not required, and sin-

gle-stranded character here can facilitate cleavage in some

cases. It has been suggested that base pairing downstream of

the 30 supplemental region helps to pull the 30 end of the guide

from the PAZ domain (Tomari and Zamore, 2005), facilitating he-

lix winding and enhancing cleavage. Our data argue against this

idea. Pairing past guide base 16 actually slows the single-turn-

over cleavage rate, suggesting that central and 30 supplemental

pairing may be sufficient to extricate the 30 end of the guide from

the PAZ domain, and unpairing at the 30 end may relieve some

conformational strain at the cleavage site.

The finding that complementarity past guide base g16 is un-

necessary for efficient cleavage by mammalian AGO2 is

consistent with findings for other AGO and PIWI proteins. Mis-

matches from g17 to g21 have little effect on cleavage by

Drosophila Ago2 (Wee et al., 2012). Similarly, the PIWI proteins

Aubergine and Ago3, whose guides range from 23 to 27 nt, are

predicted to cleave targets containing complementarity from g2

to g16 and g2 to g14, respectively (Wang et al., 2014). TtAgo, a

DNA-guided DNA endonuclease from the eubacterium Ther-

mus thermophilus, reaches maximal cleavage rate with targets

paired only from g2 to g16 (Wang et al., 2009). Thus, the

requirement for g2–g16 complementarity for target cleavage

is conserved among Argonautes separated by >2 billion years

of evolution.

Design Principles for Specific and Effective siRNAs
siRNAs are widely used tools in biomedical research, and RNAi-

based therapeutics are now used in humans. Mismatches at the

30 end of the guide have been shown to increase the rate of mul-

tiple-turnover target cleavage, which was proposed to result

from increased product release (Tang et al., 2003; Haley and Za-

more, 2004) and to enhance knockdown of target RNAs in re-

porter assays, which was explained by a decrease in TDMD

(De et al., 2013). Our data identify many mismatches that

enhance target cleavage by two guide RNAs. Consistently, mis-

matches at the 30 end of the guide accelerated single-turnover

cleavage rates. In cells, 30 mismatches enhanced target knock-

down relative to a fully complementary target. In principle, this

effect could result from increased single-turnover cleavage

rates, increased product release, decreased TDMD, or a

combination of all three. Regardless, when designing siRNAs,
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incorporating 30 mismatches, particularly from g18 to g21, will

likely enhance target knockdown.

Designing highly specific siRNAs can be achieved by tuning

affinity or cleavage rate. Our cleavage experiments in cells

show that both strategies can discriminate between targets

with single-nucleotide differences. For example, discriminating

between a fully complementarymiR-21 target and onewith a sin-

gle mismatch was most effective when the mismatch was at po-

sition 3 or position 13 (Figure 7D). The effect of a seed mismatch

at position 3 is likely due to decreased affinity (Figure 3A), and at

position 13, the effect primarily reflects a decrease in cleavage

rate (Figure 4B). This information can be used to design highly

specific siRNAs that can discriminate between sequences con-

taining SNPs. Indeed, previous work has suggested that siRNA

mismatches at positions 3 and 13 may enable discrimination be-

tween SOD1 RNAs containing a single mismatch (Schwarz et al.,

2006). However, whether binding or cleavage perturbations

enable better single-nucleotide discrimination will likely depend

on the affinity and concentration of the siRNA. For higher affinity

siRNAs, mismatches affecting binding may be less useful on

their own because dissociation may be much slower than cleav-

age even when a mismatch is introduced. Maximizing siRNA

specificity may also require mismatches at multiple positions,

even when the goal is to discriminate between SNPs, because

the greatest specificity is predicted to occur when the dissocia-

tion rate is similar to or greater than the cleavage rate (Pfister

et al., 2009; Bisaria et al., 2017).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Embryonic Fibroblasts (MEFs)
SV40 large T-antigen immortalized AGO2�/�MEFs stably overexpressingmouse AGO2 (O’Carroll et al., 2007) were cultured at 37�C,
5% CO2 in DMEM (Gibco, Life Technologies) supplemented with 15% heat-inactivated fetal bovine serum (FBS) (Sigma).

METHOD DETAILS

Library Design
Target libraries for let-7a andmiR-21 loaded RISCwere designed to include all singlemismatches, all doublemismatches, a subset of

triple mismatches, all single target insertions and deletions, all target insertions of 2–7 identical nucleotides, pairs of 2–5 consecutive

transitions or transversions, four way combinations of two consecutive transitions or transversions (eight total mismatches), stretches

ofmismatches to the complement target base of all lengths throughout the target sequence, the top 1,000 predicted targets from four

algorithms (TargetScan, Diana-microT, miRanda-mirSVR, and PicTar2), and targets identified with the CLASH experimental method.

Each designed target was placedwithin context sequence that typically consisted of five flanking adenosine nucleotides on the 50 and
30 ends of the target. The predicted targets were includedwith the 5 flanking nucleotides present around the actual target sequences.

Wealso included targets identified fromCLIPexperiments inmice (Chi et al., 2009), but themm9coordinateswere liftedover to hg19 to

identify the corresponding human targets, which were included in the library. Since these lifted targets were not experimentally deter-

mined, they were not used in comparing predicted targets (Figure S3) but were included to add more sequence diversity for model

fitting. The perfectly complementary target was also placed in 225 distinct five nucleotide contexts, and the single mismatches

were placed in four five nucleotide contexts to test for the effects of the flanking sequence. The perfectly complementary target

wasalsoplaced in sequence contexts longer than fivenucleotides thatwere designed to formRNAsecondary structurewith the target

region. An overview of the library designs is shown in Figure S1 and the full list of sequences is available in Table S1.

Assembly and Sequencing of Library
Target libraries were synthesized by Custom Array (Bothell, WA) such that each variant was flanked by common 50 and 30 priming

sequences. Predicted target variants were ordered with an alternate 30 priming sequence so that these variants could be separated

from the rest of the library. Ordered sequences ranged from 73 bp to 129 bp, and sequences shorter than the longest variant had

random sequence appended until all variants were the same length. The first miR-21 library was ordered as a 12,000 oligonucleotide

synthesis and contained 6,327 unique variants. The let-7a and second miR-21 libraries were ordered as part of two separate 92,000

oligonucleotide syntheses and contained 22,641 and 12,768 unique variants respectively.

Synthesized libraries were assembled into full constructs compatible with Illumina sequencing and with generation of RNA on chip

(Figure S1B). The assembly reactions were carried out in a 20 mL volume of 13 NEBNext Master Mix (NEB, M0541) with �10 nM of

synthesized library, 10 nM of ‘‘T7A1 promoter and stall sequence,’’ 50 nM of ‘‘Illumina Adapter (P5) and T7A1 promoter oligo,’’ 50 nM

of either ‘‘Illumina Adapter (P7) and designed library R2 sequence’’ or ‘‘Illumina Adapter (P7) and predicted target library R2

sequence,’’ and 250 nM of both Illumina Adaptor (P5) and Illumina Adaptor (P7) (oligonucleotide sequences available in Table S2).

SYBR green was added at a final concentration of 0.6 3 to assembly reactions so that assembly progress could be monitored. Re-

actions were loaded into aQuantStudio qPCR thermocycler andwent through cycles of 98�C for 10 s, 63�C for 30 s, and 72�C for 30 s

until the SYBR green signal of a reaction began to plateau, after which the reaction was paused and assembly reaction was removed.

Assembly reactions ran between 14 and 19 cycles. Completed assemblies were purified using a QIAquick PCR purification kit, and a

portion of the purified product was visualized on an agarose gel to confirm specific assembly of the intended product.

Assembled libraries were diluted and quantified against a standard library of PhiX (Illumina, Hayward, CA). PhiX standard was pre-

pared by diluting stock PhiX to 200 pM in water and then serially diluting by 2-fold eight times, resulting in a standard curve that
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spanned 200 pM to 1.56 pM. Diluted libraries and the PhiX standard were amplified in qPCR reactions containing 500 nM primers

(Illumina Adaptor Sequences P5 and P7; Table S2) in 1 3 NEBNext Master Mix (NEB, M0541) with 0.6 3 SYBR green. Reactions

were cycled at 98�C for 10 s, 63�C for 30 s, and 72�C for 30 s for a total of 20 cycles. Standards were run in duplicate, and all library

samples were run in triplicate. Quantified libraries were then sequenced on an Illumina MiSeq instrument using custom read 1 and

read 2 primers that flanked the variable region of each library sequence (Table S2). Libraries typically represented 10%–20% of the

total sequencing chip, with the rest of the chip comprised of high-complexity genomic libraries. Libraries were sequenced in two

steps using paired end sequencing with 76-bp reads. Because library variable regions were all shorter than this read length, all var-

iants were fully sequenced in both directions in each sequencing run.

Processing Sequencing Data
Following sequencing, tile and x, y coordinates of each cluster were extracted. Clusters were deemed library members based on

aligning a segment of the read 2 sequence (either 50-AGA TCG GAA GAG CGG TTC AG-30 or 50-CGG ACG CGG GAA GAC AGA

AT-30). Fiducial marks were identified by aligning the exact fiducial sequence (50-TAG CCA GCC TGA TAA GTA ACA CCA CCA

CTG-30). Fiducial marks and library members identified in this manner were used for registering tiles prior to experiments and for

registering sequencing data to images during image processing. Because all library members were shorter than the read sequence,

each variant was fully sequenced twice during sequencing. Only clusters that exactly matched a known library sequence in both

reads were fit in downstream data analysis for determination of kon and KD.

RISC Purification
S100 extract was generated fromSV40 large T-antigen immortalized AGO2�/�MEFs that stably overexpressmouse AGO2 (O’Carroll

et al., 2007). Cell extract was essentially prepared as described (Dignam et al., 1983). Briefly, the cell pellet was washed three times in

ice-cold PBS and once in Buffer A (10 mMHEPES-KOH (pH 7.9), 10 mM potassium acetate, 1.5 mMmagnesium acetate, 0.01%w/v

CHAPS, 0.5 mM DTT, 1 mM AEBSF, hydrochloride, 0.3 mM Aprotinin, 40 mM Bestatin, hydrochloride, 10 mM E-64, 10 mM Leupeptin

hemisulfate). The supernatant was removed, and 0.11 cell pellet volumes of Buffer B (300mMHEPES-KOH (pH 7.9), 1.4M potassium

acetate, 30 mM magnesium acetate, 0.01% w/v CHAPS, 0.5 mM DTT, 1 mM AEBSF, hydrochloride, 0.3 mM Aprotinin, 40 mM Bes-

tatin, hydrochloride, 10 mM E-64, 10 mM Leupeptin, hemisulfate) was added, followed by centrifugation at 100,0003 g for 20 min at

4�C. Ice-cold 80% (w/v) glycerol was then added to achieve a 20% (w/v) final glycerol concentration, followed by gentle inversion to

mix. S100 was aliquoted, frozen in liquid nitrogen, and stored at ‒80�C.
To load AGO2-RISC, 30 nM duplex siRNAwith a 30 Alexa Fluor 555 (Life Technologies) labeled guide strand was incubated in S100

extract for 1.5 h at 37�C in 15mMHEPES-KOH (pH7.9), 100mMpotassiumacetate, 5mMmagnesiumacetate, 5mMDTT, 1mMATP,

25 mM creatine phosphate, 30 mg∙mL�1 creatine kinase. RISC was purified as described (Flores-Jasso et al., 2013). Briefly, the

assembledAGO2-RISCwas incubated overnight at 4�Cwith a biotinylated, 20-O-methyl capture oligonucleotide linked to streptavidin

paramagnetic beads (Dynabeads MyOne Streptavidin T1, Life Technologies). RISC was eluted with a competitor oligonucleotide for

2 h at room temperature. Excess competitor oligonucleotide was removed by incubating the eluate with streptavidin paramagnetic

beads (Dynabeads MyOne Streptavidin T1, Life Technologies) for 15 min at room temperature. The RISC was concentrated, and

the potassium acetate concentration was adjusted to 100 mM (f.c.) by centrifugal ultrafiltration (Amicon Ultra-centrifugal filter, 10K

MWCO, EMDMillipore, Billerica, MA). The concentration of active, purified RISC was measured by pre-steady-state target cleavage

assays at 23�C in the presence of 100 nM 32P-radiolabeled target RNA. The concentration of catalytically inactive, purified RISC was

measured by fluorescence with Typhoon FLA-7000 (GE Healthcare) following denaturing polyacrylamide gel electrophoresis.

Imaging Station Setup
A custom instrument that enables biochemical measurements to be made in a MiSeq flow cell was constructed as described in

(She et al., 2017). The camera, lasers, Z-stage, XY–stage, syringe pump, and objective lens used in the instrument were salvaged

from an Illumina GAIIx. These parts were combined with a fluidics adaptor designed to interface with Illumina MiSeq chips, a tem-

perature control system, and laser control electronics to enable real time biochemical measurements in MiSeq flow cells. Imaging

was performed using either a 400 ms exposure time at 150 mW fiber input power of a 660 nm laser and a 664 nm long pass filter

(Semrock) or with a 600 ms exposure time at 150 mW input power of a 530 nm laser and a 590 nm center wavelength and

104 nm guaranteed minimum 93% bandwidth band pass filter (Semrock).

Generation of RNA on the Sequencing Flow Cell
MiSeq flow cells containing sequenced libraries were loaded into the custom imaging station for in situ RNA generation (Buenrostro

et al., 2014, She et al., 2017). All steps were executed using custom xml scripts to control the imaging station’s pump, stage move-

ment, Peltier heater, lasers, and camera. Unless otherwise stated, all wash volumes were 100 mL and flowed at 100 ml∙min�1.

Regeneration of Double-Stranded DNA

For the first experiment after sequencing, DNA not covalently attached to the flow cell surface was removed by heating the flow cell

to 55�C and washing with 100% (v/v) formamide. The flow cell was then heated to 60�C and incubated in Cleavage buffer

(80 mM Tris-HCl (pH 8.0), 80 mM NaCl, 0.05% v/v Tween 20, 100 mM TCEP) for 10 min to remove residual fluorescence from

sequencing reversible terminators.
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Cy3-labeled fiducial mark oligonucleotides and 50 biotinylated roadblock oligonucleotides (Table S2) were hybridized to the

distal end of library ssDNA molecules in multiple phases. First, the flow cell was incubated in Hybridization buffer (5 3 SSC buffer

(ThermoFisher 15557036), 5 mM EDTA, 0.05% v/v Tween 20) containing 500 nM of each oligonucleotide for 12 min at 60�C, followed

by 12 min at 40�C. The flow cell was washed in Annealing buffer (13 SSC, 5 mM EDTA, 0.05% v/v Tween 20), and then incubated in

Annealing buffer containing 500 nM of each oligonucleotide for 8 min at 40�C. Following oligonucleotide hybridization, the temper-

ature was lowered to 37�C and the flow cell was washed with Klenow buffer (13NEB buffer 2 (NEB B7002S), 0.25mMof each dNTP,

0.01% v/v Tween 20). The hybridized oligonucleotides were extended into dsDNA by adding one line volume (65 ml) of Klenow buffer

containing 0.2 U/ml Klenow fragment (30~x50 exo-minus (NEB M0212)) and pumping 9 mL of Klenow buffer every 5 min for a total of

30 min. Following dsDNA generation, the flow cell was washed with Hybridization buffer.

Because the success of RNA generation was determined by annealing of a labeled stall oligonucleotide to the nascent RNA mole-

cule, it was necessary to block this DNA sequence in the event that dsDNA generation was less than 100% efficient. Blocking of the

ssDNA stall sequence was achieved by incubating the flow cell in Hybridization buffer containing 500 nM unlabeled stall oligonucle-

otide for 10min, washing with annealing buffer, and then incubating the flow cell in Annealing buffer containing 500 nMunlabeled stall

oligonucleotide for 10 min. After another Annealing buffer wash, the flow cell was incubated in Annealing buffer containing 500 nM of

labeled stall oligonucleotide for 10 min. The flow cell was imaged after this step to serve as a baseline image for RNA generation.

RNA Generation

After dsDNA generation, the flow cell was incubated for 5 min in 1 mM streptavidin (PROzyme, SA10) in Annealing buffer. The strep-

tavidin binds the biotinylated oligonucleotides used for dsDNA generation and stalls E. coli RNA polymerase holoenzyme (RNAP;

NEB M0551) during RNA generation. After washing with Annealing buffer, the flow cell was incubated for 5 min in 5 mM biotin

(ThermoFisher B20656) in Annealing buffer to saturate the remaining streptavidin binding sites. The flow cell was washed again

with Annealing buffer, and then washed with Initiation buffer (2.5 mM each of ATP, GTP, and UTP in R-reaction buffer (20 mM

Tris-HCl (pH 7.5), 7 mM MgCl2, 20 mM NaCl, 0.1 mM EDTA, 1.5% glycerol, 0.01% v/v Tween 20, 0.5 mM DTT)). One line volume

(65 ml) of Initiation buffer containing 0.06 U/ml of RNAP was applied to the flow cell, after which 9 mL of Initiation buffer was pumped

every 100 s for a total of 10min. Because the Initiation buffer lacks CTP, RNAP is allowed to initiate transcription on dsDNAmolecules

containing the T7A1 sequence, but then stalls part way through transcribing the stall sequence. Unbound RNAP was then removed

from the flow cell with an Initiation buffer wash. RNAP was extended by adding Extension buffer (10 mM NTPs in R-reaction buffer)

containing 500 nM each of labeled stall DNA oligonucleotide and R2 DNA blocking oligonucleotides (Table S2) and incubating for

5 min. The labeled stall oligonucleotide binds to the 50 end of the newly transcribed RNA molecule and serves the dual purpose of

blocking this common sequence while also allowing for assessment of RNA generation efficiency. The R2 oligonucleotides serve

to block the 30 common sequence of each RNAmolecule, leaving only the variable target sequences single stranded. To ensure effi-

cient blocking, the flow cell is incubated in 500 nM of each oligonucleotide in Blocking buffer (1 3 SSC, 7 mM MgCl2, 0.05% v/v

Tween 20) for an additional 10 min. Finally, the flow cell was washed with AGO2 Sample buffer (30 mM HEPES-KOH (pH 7.3),

120 mM potassium acetate, 3.5 mM magnesium acetate, 1 mM DTT, 50 mg/mL BSA, 10 mg/mL yeast tRNAs, 0.05% v/v Tween 20).

Measurement of association rates and equilibrium dissociation constants on chip
After RNA was transcribed in the MiSeq flow cell, AGO2 loaded with a labeled guide was introduced at various concentrations to

measure association kinetics. For let-7a, association was measured at 63 pM, 125 pM, 250 pM, and 500 pM for the entire library.

For miR-21, association was measured at 25 pM, 188 pM, 375 pM, and 1 nM for the second part of the library, and at 50 pM,

125 pM, 250 pM, and 500 pM for the initial library.

Tiles were imaged continuously during the first 20 min of association, with each tile being imaged approximately every 90 s. For

association experiments lasting longer than 20 min, additional images were taken at log spaced intervals. By collecting association

data at multiple concentrations, we were able to fit association constants and were able to use the fraction bound at the end of each

association to construct equilibrium binding curves.

After each association experiment, the chip waswashedwith 500 mLWash buffer (10mMTris-HCl (pH 8.0), 5mMEDTA, 0.05% v/v

Tween 20), and then all protein, RNA and non-covalently attached DNA was stripped by heating the chip to 55�C and flowing 100%

formamide. RNA was regenerated for each subsequent experiment.

Measurement of Cleavage Rates
Transcription of Library

To construct the target libraries for the cleavage experiments, a T7 promoter was added by PCR to the DNA oligonucleotide-pool

library designed for the array experiment. RNA target libraries were transcribed with T7 RNA Polymerase for 3 h using the following

conditions: 16 mMMgCl2, 2 mM Spermidine, 40 mM Tris-HCl (pH 7.5), 0.01% Triton X-100, 2 mM each dNTP, and 40 mM DTT. The

resulting products were treated with DNase-I and purified using QIAGEN RNeasy Mini columns. For let-7a the full designed library

and the library of predicted targets in the short sequence context was used for cleavage experiments. However, for miR-21, only the

initial designed library (6,327 variants), containing the less degenerate sequences for which cleavage is more relevant, was used for

the cleavage experiments.
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Cleavage Experimental Protocol

Cleavage assays were performed in cleavage buffer (30mMHEPES-KOH (pH 7.3), 120mMpotassium acetate, 3.5mMMgCl2, 1mM

DTT, and 0.1% v/v Tween-20). Prior to the reactions, DNA blocking oligonucleotides were annealed to the target RNA primer se-

quences to prevent structure formation or interaction between the primer sequence and the protein by adding 1.253 excess block-

ing oligonucleotides to the RNA in cleavage buffer without MgCl2. The resulting mixture was heated to 70�C and cooled slowly to

room temperature (10 min) to anneal the oligonucleotides to the RNA. After annealing the oligonucleotides, the RNA target libraries

were diluted to the reaction concentrations and MgCl2 concentration was adjusted to 3.5 mM. For each reaction, the RNA target

library concentration was set to 10% of the protein concentration to ensure that there would be minimal depletion of protein. The

miR-21 reactions were performed at 8 nM RISC and the let-7a reactions were performed at 4 nM RISC. High concentrations of

RISC were used to limit the effects of association on the observed cleavage rate such that for the vast majority of target variants

the rate measured would reflect the single turnover cleavage rate constant. Reactions were initiated by mixing the protein and target

libraries at 37�C and incubating for log spaced amounts of time ranging from 15 s to 32 min. Additionally, one reaction was imme-

diately quenched after mixing the components and a no protein control went through the same procedure. The reactions were

quenched at�80�C and once all reactions were complete, they were immediately placed at 95�C to denature the protein and prevent

any additional cleavage in the downstream library generation steps. The reactions were then treated with DNase-I to remove the

blocking oligonucleotides and the resulting RNA was reverse transcribed with superscript IV reverse transcriptase. The resulting

cDNA was barcoded for each time point using NEBNext 2 3 high-fidelity master mix and 250 nM of each time point barcode.

PCR progress was monitored by including 0.6 3 SYBR Green in the reaction and stopped when the SYBR Green signal began to

plateau to minimize the total number of PCR cycles to prevent introduction of bias at this step. The resulting libraries were purified

using QIAGEN QIAquick PCR Purification columns and quantified for sequencing with qPCR (see Assembly and Sequencing of

Library Above).

Sequencing of Cleavage Libraries

Paired end sequencing (2 3 36) of the resulting libraries was performed with 75 bp High Output Next Seq kits on a NextSeq500.

Custom read 1, 2, and index primers were spiked into the run to sequence the cleavage libraries.

Cell Culture
HEK293 Flp-In T-REx cells (Invitrogen) were cultured in DMEM with 10% FBS, GlutaMAX, and penicillin-streptomycin. Cells were

maintained in a humidified CO2 incubator at 37
�C and examined regularly to ensure absence of mycoplasma contamination.

Generation of miR-21 Knockout Cell Line
Cas9-gRNA ribonucleoprotein complexes containing two tracrRNA:crRNAs flanking the miR-21 hairpin (50-TGA TAA GCT ACC CGA

CAA GGT GG-30; 50-CGA TGG GCT GTC TGA CAT TTT GG-30) were transfected into HEK293 Flp-In T-REx cells according to the

Alt-R CRISPR-Cas9 user guide (IDT), except that RNAiMAX was replaced with Lipofectamine 3000 (Invitrogen). Transfected cells

were incubated for 48 h, after which single cells were sorted into 96-well plates. After 3 weeks, viable clones were genotyped using

primers that flanked the miR-21 hairpin (50-TCA AAT CCT GCC TGA CTG TCT G-30 and 50-CCA GAG TTT CTG ATT ATA AAC AAT

GAT GC-30). Homozygous edited clones were further expanded and deletion of the miR-21 hairpin was confirmed by amplification

and electrophoresis of the miR-21 locus and by a TaqMan RT-qPCRmiRNA assay specific for mature miR-21 (Applied Biosystems).

Preparation of miR-21 Library piggyBac Reporter Constructs
All oligonucleotides used to construct the miR-21 plasmid library are reported in Table S2. The CMV promoter, eGFP coding

sequence, and SV40 poly(A) signal sequence were amplified from existing plasmids in the lab. Each of these components was ampli-

fied using primers containing homology arms to neighboring segments, and an EcoRI site was added upstream of the CMV promoter

and a XhoI site was added downstream of the SV40 poly(A) sequence. The promoter, gene, and poly(A) signal sequence were

assembled using NEBuilder HiFi DNA Assembly master mix with equimolar mixing of components. After assembly, the full gene

was amplified further using only the outermost primers.

The PB-U6insert-EF1puro backbone was amplified such that the U6 promoter was removed and an EcoRI site was added up-

stream of the EF1 promoter and an XhoI site was added inside of the 50 piggyBac right (30) inverted repeat. The reporter gene

was inserted into the amplified PB-EF1puro backbone to create the PB-CMV-GFP-EF1puro plasmid, wherein the CMV and EF1 pro-

moters faced in opposite directions.

To prepare themiR-21 target sequences for cloning into the PB-CMV-GFP-EF1puro plasmid, the fully assembled version 1miR-21

(6,327 variants) array library was used as a template. The variable target region of the library was amplified 15 cycles using primers

that introduced restriction sites on each end of the target. The library was then cloned 61 bases downstream of the GFP stop codon

and 93 bases upstream of the SV40 poly(A) signal sequence.

Stable Transfection of miR-21 Target Library
miR-21 knockout cells were grown to 90% confluency in a 6-well tissue culture plate. 200 ng of purified miR-21 target plasmid library

was co-transfected with or without 200 ng Super piggyBac Transposase Expression Vector (SBI) using lipofectamine 3000 (Invitro-

gen) according to manufacturer’s instructions. After 24 h, transfected cells were passaged into a 10-cm tissue culture plates. After
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another 24 h, culturemedia was replacedwith culturemedia containing 2 mg∙mL�1 Puromycin.Mediawas replaced every 3 days until

the negative control cells (those without Transposase expression vector co-transfection) were all dead.

Knockdown in Cells
miR-21 knockout cells containing the miR-21 target library were plated in six-well plates at �300,000 cells per well. After 24 h, cells

were transfected with variable miR-21 siRNA (Dharmacon) concentrations (100, 20, 4, 0.8, 0.16, or 0.032 nM) using lipofectamine

3000 (Invitrogen) according to manufacturer’s instructions. Cells were incubated for 48 h, after which RNA was isolated from

each well using a Quick-RNA MiniPrep kit (Zymo). On-column DNase I treatment was performed for all samples according to man-

ufacturer’s recommendation. RNAwas then reverse-transcribed using superscript IV reverse transcriptase and an RT primer specific

to the region immediately 30 to the variable region of the miR-21 target reporter constructs. The resulting cDNA was barcoded and

prepared for sequencing as described for the in vitro cleavage libraries. Paired-end sequencing was performed as described above

for in vitro cleavage libraries.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Processing and Image Fitting
Tomap sequencing data to array experimental images, the previously extracted tile and coordinate information was cross-correlated

to images iteratively. This process resulted in cluster coordinates being mapped to images at sub-pixel resolution as previously

described (She et al., 2017; Denny et al., 2018). After coordinate mapping, each cluster was fit to a two-dimensional Gaussian to

quantify fluorescence.

Association Curve Fitting
Following quantification of cluster intensity at each time point, association rates were fit for each variant. As imaging all DNA clusters

required 18 images to be taken, the time for each image was set as the median time for the 18 images taken in that round of imaging.

To account for variability between illumination and focus in each imaging cycle, the fluorescence intensity at each time point was

normalized by dividing by the median fluorescence intensity of a fiducial mark (a fluorescent DNA oligonucleotide hybridized directly

to single stranded DNA) that otherwise should have constant fluorescence intensity during the experiment. Association rates were

determined by fitting the following single exponential to themedian fluorescence of all clusters representing a singlemolecular variant

at each time point:

fintensity = ðfeq � foÞ �
�
1� e�kobst

�
+ fo

where fintensity is the fluorescence intensity, feq is the fluorescence intensity at infinite time, fo is the fluorescence intensity at time 0, and

kobs is the observed rate. Least-squares fitting here and for the equilibrium and cleavage fitting below was carried out using the

python package lmfit.

Error in the measurement of the observed rates was estimated by bootstrapping the clusters representing each molecular variant.

All clusters representing a single variant were sampled with replacement and the median fluorescence of the resampled clusters was

fit to the above equation. This was repeated 1,000 times to generate 95% confidence intervals on the observed rate constant fits.

After computing the observed association rates, the observed rates for each variant were fit to the following equation to compute

the association rate:

kobs = kon � ½RISC�+ koff

where kobs is the observed rate, kon is the association constant, koff is the dissociation constant, and ½RISC� is the concentration of

loaded AGO2.

Equilibrium Binding Curve Fitting
Initial Fitting of Single Clusters

The maximum fluorescence values determined by fitting the association experiments at each concentration were used to fit equilib-

rium dissociation constants. Using fit feq values, which represent the equilibrium binding at infinite time, ensured that the values used

to fit equilibrium binding curves represented the amount of binding at equilibrium for each concentration. Since we found that the

perfectly complementary target was fully bound at all concentrations that we performed experiments at, we normalized the feqvalues

for all variants to the feq value of the perfectly complementary sequence at a given concentration ðfeq;norm = feq=feq; Perfect ComplementÞ.
This allowed us to account for differences between experiments related to RNA production, illumination, and fiducial mark signal. The

equilibrium fluorescence values at each concentration were fit to the following equation to determine the dissociation constant:

feq;norm = ðfmax � fminÞ �
 

½RISC�
½RISC�+KD

!
+ fmin
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where feq;norm is the normalized equilibrium fluorescence intensity, fmax is the normalized fluorescence intensity when the target is fully

bound, fmin is the normalized fluorescence intensity of the unbound target, ½RISC� is the concentration of loaded AGO2, and KD is the

dissociation constant. Since the fmin was very low for all variants it was constrained to be between 0 and 2 percent of the fully bound

signal for the perfectly complementary target. The fraction bound at each concentration corresponds to the following:

Fraction Bound =
fintensity � fmin

fmax � fmin

Determination of fmax Distribution

After fitting this equation for all variants, it was necessary to account for uncertainty in the true fmax value for variants that were not

fully bound at the highest experimental concentration. To do this we estimated the distribution of fmax values across all variants. This

distribution was estimated by selecting all variants with KD values less than 30 pM, which should be fully saturated at the highest

experimental concentration. The feq;norm values for all of these variants at the highest concentration was then used as the fmax

distribution.

Bootstrapping to Estimate KD and Error

To estimate the KD and error for each molecular variant we first determined if the fmax distribution needed to be enforced. In cases

where the maximum fluorescence achieved at any concentration exceeded the lower limit of the 95% confidence interval of the fmax

distribution or the single cluster fit resulted in a KD more than 8-fold below the highest concentration, the fmax value was allowed to

float during fitting. For these variants, the feq;norm values at each concentration were sampled from the feq values determined when

bootstrapping the association rate fits. This was repeated 100 times to generate 95% confidence intervals for the equilibrium con-

stant. The variants that did not reach a significant fluorescence level at any concentration and were not high enough affinity to reach

near saturation at the highest concentration were also fit by sampling the feq;norm values at each concentration from the feq;norm values

determined when bootstrapping the association rate fits. However, rather than allowing the fmax value to float, a value was selected

from the fmax distribution determinedwith the high-affinity targets (above), and the fmax was constrained to this value during fitting. The

final equilibrium constant was set to the median of these 100 fits and the 95% confidence interval was defined from all the fit values.

Validation of KD Limits of Detection

Despite only measuring binding at four concentrations, we were able to resolve differences in binding affinity between 10 pM and

10 nM. This was possible due to a few experimental features. First, binding was measured to �50 independent clusters in parallel

for each target in our library, a number that far exceeds the number of replicates performed inmost biochemical studies. This allowed

a high-confidence measure of binding signal at each concentration. Second, we were able to accurately quantify the expected fluo-

rescence for saturated binding (i.e., fmax) using strong binders on the chip. Given an accurate measure of expected signal at satura-

tion, as well as an accurate measure of the fraction bound at concentrations with non-negligible (> 5% bound) and non-saturating

(< 86% bound) binding, we could fit a standard binding curve to these points constrained to saturate at our estimate fmax. This fit

thus required a single free parameter, allowing estimation of KD even for targets where only a single concentration exhibited greater

than 5% of maximum binding signal (the amount of binding expected for a 10 nM KD at 500 pM).

To provide evidence that this method accurately estimates the dissociation constant when only 5%–10%binding was observed at

a single concentration, we progressively down sampled the points defining the let-7a KD curves and refit the dissociation constants.

This allowed us to compare dissociation constants defined by�5% binding at the highest concentration to dissociation constants fit

with all four points. When the highest point is removed, leaving a range of 63 pM–250 pM, the dissociation constants are highly corre-

lated with those calculated using the full 63–500 pM concentration range (Figure S1C). Notably, the variants that only have 5%–10%

binding at 250 pM (lighter shaded region in plot), are fit to very similar dissociation constants, with an RMSE of 0.17 kcal/mol

(an average of a 1.3–fold difference in the dissociation constant). Similarly, when the two highest concentration points are removed,

we again observed good agreement between KD fits, and the points with only 5%–10% binding at 125 pM are fit to similar KD values,

(RMSE of 0.26 kcal/mol), as when three points with greater than 5% bound are included (Figure S1C). Finally, when we use only the

lowest concentration point to compute the dissociation constants, we can compare dissociation constants fit with 4 points with > 5%

binding to those fit with a single point with 5%binding (indicated by light shaded region in Figure S1C). The targets with only 5%–10%

binding at 63 pM are fit to KD values that deviate from the four-point fits by an average of 0.39 kcal/mol (�2–fold average difference

in KD), although there is some bias toward higher affinity KD values. This biasmay reflect a systematic deviation in the amount of bind-

ing at specific points, which would likely lead to a small shift in the KD calculated when this is the only point used, when compared to

the KD calculated from multiple points. Interestingly, even the variants with less than 5% binding at a single down sampled point are

still fit to dissociation constants that correlate well with their 4-point dissociation constant (regions to the right of the shaded regions in

the top row of Figure S1C), indicating that our restricted dissociation constant estimation range (i.e > 10 nM; < 5%bound at 500 pM) is

fairly conservative.

For targets with dissociation constants below our lowest concentration (50 pM), we were able to directly observe the amount of

saturating binding ðfmaxÞ for each target. As a result, for any concentrations with sub-saturating binding, we could calculate the frac-

tion bound at that concentration, and the corresponding dissociation constant. To show that we can compute dissociation constants

from a single point with < 86% binding, we again sub-sampled the data. Removing the lowest 1, 2, or 3 concentrations all resulted in

average differences of less than 1.5–fold when the dissociation constants computed from a single concentration with less than 86%

binding were compared to those computed frommultiple concentrations with < 86%binding (light shaded region in Figure S1C). This
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analysis demonstrates that even when KD values were defined by a single point, they were fit to nearly identical KD values as were

originally determined using all concentrations.

Cleavage Rate Fitting
Sequencing data was first converted to counts for sequences in the designed library that had the same sequence in both read1 and

read2. A set of highly degenerate normalization sequences was used to normalize the counts and account for any nonspecific RNA

degradation or differences in sequencing depth at each time point using the following formula:

countsi; normalized = countsi
medianðnormalization countsÞ0
medianðnormalization countsÞi

where countsi is the number of raw sequencing counts for a given variant at time point i, countsi; normalized is the number of normalized

counts for a given variant at time point i, medianðnormalization countsÞ0 is the median number of raw sequencing counts across all

normalization sequences at time point 0, andmedianðnormalization countsÞi is the median number of raw sequencing counts across

all normalization sequences at time point i. For miR-21, the normalization sequences included 10 sequences with long stretches of

central and seedmismatches. For let-7a, since the library tested for cleavage wasmuch larger, all sequences with nucleotides t7–t11

mismatched were used as normalization sequences. Following normalization, the counts for each variant were fit to the following

single exponential equation to determine the cleavage rate:

countsi;normalized = ðcountsmax � countsminÞe�kcleavet + countsmin

where countsmax is the counts at time 0, countsmin is the counts at infinite time, and kcleave is the single turnover cleavage rate. Variants

for which the mean of the final 3 time points was greater than the mean of the first two time points or the overall change in counts was

less than 15%of themedian number of counts were defined as non-cleavers (kcleave < 0.0002 s�1) due to the insufficient loss of signal

throughout the experiment. The cleavage data was also fit to an alternative model that incorporated both binding and cleavage. The

following model:

d½RISC : RNA�
dt

= kon½RNA�½RISC� � koff ½RISC : RNA� � kcleave½RISC : RNA�
d½RNA�
dt

= � kon½RNA�½RISC�+ koff ½RISC : RNA�

was fit to the counts data using the relative association ratesmeasured in the RNA array experiments and the dissociation rates deter-

mined from the association rates and dissociation constants measured in the RNA array experiments. In theory, cleavage rates for

variants with slow association rates (e.g., seed mismatches) or exceptionally fast cleavage rates may deviate from the single expo-

nential approximation. Using the above equations, we simulated the potential effects of using a single exponential fit to estimate the

cleavage rate for variants with different cleavage rates, association rates, and dissociation rates, and showed that, for targets with

slow association rates and fast cleavage rates, it is possible to underestimate the cleavage rate when using a single exponential fit

(Figure S4B). However, when we fit our data to this model, we found that the exponential approximation yields essentially the same

values as a model incorporating the measured relative association rates and dissociation rate (Figure S4C), so the values for the

simpler, single-exponential, model were used.

Like in the array binding experiments, five nucleotides of RNA sequence flanking each side of the target site are accessible in RISC-

CNS. This allows measuring the effect of 225 different five-nucleotide flanking contexts on cleavage rates of a target fully comple-

mentary to let-7a ormiR-21. Flanking sequences had onlymodest effects on cleavage rate (kcleave, mean ± SDof 0.077 ± 0.024 s�1 for

miR-21 and 0.037 ± 0.013 s�1 for let-7a), suggesting that the rates measured by RISC-CNS are generally insensitive to local second-

ary structure or biases from PCR amplification or high-throughput sequencing (Figure S4D).

RNA-Seq Data Analysis
The raw counts table that included RNA-Seq with (‘‘AL7_Inp_rep1,’’ ‘‘AL7_Inp_rep2’’) and without (‘‘AC_Inp_rep1,’’’’AC_Inp_rep2’’a)

a let-7a decoy was downloaded from ArrayExpress (E-MTAB-5386). Log2 fold change between the control and let-7a decoy exper-

iments was computed with DESeq2. Only genes containing an average of 10 counts or more in these 4 samples were used for down-

stream analysis.

Comparison of Seed Type Binding Affinity
30 UTRs for the Gencode transcripts identified as representative transcripts in TargetScan were downloaded for mm10. We scanned

through each 30 UTR and counted the number of 6-mer, 7-mer-A1, 7-mer-m8, and 8-mer seed sequences. We selected transcripts

containing only a single instance of a canonical seed site and compared themedian log2 change for each of class of seed types to the

median affinity measured for each canonical seed type.
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Model Fitting
Alignment of Sequences

A dynamic programming approach was used to align the target and guide sequences. The following parameters were defined for the

dynamic programming: a parameter for each nucleotide at positions t1–t21 (84 total) that are referred to as Epn where p is the guide

position that the target is bound to (t1–t21) and n is the nucleotide (A, C, G, or U); parameters for opening target and guide bulges in

the seed, central, and 30 supplemental region (6 total); parameters for extension of target and guide bulges in the seed, central, and 30

supplemental region (6 total); and a parameter for initiation of pairing following a bulge or mismatch (Pinit). The parameters used were

inspired by findings in binding experiments.

Fourmatrices (Ntarget3Nguide) were initialized to track the caseswhere the final subproblem endswith amatch (M), amismatch (N),

a target bulge (T), and a guide bulge (G). For all matrices, the rows i represent the position in the target and the columns j represent the

position in the guide. Row 1 of the match matrix is then initialized as follows:

M1;j = Ej; t1

Where t1 is the target nucleotide at position 1. Column 1 of the match matrix was initialized as:

Mj;1 = E1; tj

The following recursions were then used to populate the four matrices:

If ti,gj complementary:

Ni;j =N
Mi;j = Ej;ti +minðMi�1;j�1; Ni�1;j�1 +Pinit; Ti�1;j�1 +Pinit; Gi�1;j�1 +Pinit; PinitÞ
otherwise:

Mi;j =N
Ni;j = Ej;ti +minðMi�1;j�1; Ni�1;j�1Þ
Gi;j = min
�
Mi;j�1 +GBopening; j; Ti;j�1 +GBextension; j; Ni;j�1 +GBopening; j

�

Ti;j = min
�
Mi�1;j +TBopening; j; Ti�1;j +TBextension; j; Ni�1;j +TBopening; j

�
These recursions allowed us to identify the best register ending with a match at ti:gj, a mismatch at ti:gj, and a guide or target bulge at

ti:gj. Following population of the four matrices, the minimum value in the matched matrix was selected as the most likely binding reg-

ister. From the minimum entry in the matrix, a traceback to identify the steps taken to get to that point was performed, enabling to

reconstruction of the optimal binding register.

Model for AGO2 Binding Affinity

To fit a model predicting RISC binding model, all miR-21 and let-7a sequences were aligned with the above method. Features were

defined for each base at each position (21 positions3 4 bases/position = 84 parameters), for opening target and guide bulges in the

seed, central, and 30 supplemental region (2 strands3 3 regions = 6 parameters), for extension of target and guide bulges in the seed,

central, and 30 supplemental region (2 strands3 3 regions = 6 parameters), and for initiation of pairing following a bulge or mismatch.

One additional feature used to account for RNA secondary structure was also included. This feature was calculated as the difference

in the energy of the ensemble of RNA secondary structures formedwhen the seed region was involved in structure andwhen the seed

region was constrained to be unstructured. These RNA structure predictions were made using the following commands in RNAfold.

For the case of no constraint (no region forced to not form structure): RNAfold -T 37 C -p0 --noPS -i inputfile.fa. and for the case when

a constraint was included: RNAfold -T 37 C -p0 --noPS -C -i inputfile.fa. Each of these commands were provided with a fasta file

containing the RNA targets and, for the case where constraints were included they were indicated as:

UUUUUACUAUACAACCUCCUACCUCAUUUUU

..................xxxxxxxx.....

For fitting, data was filtered to only include RNA targets for which we could quantitatively measure a binding constant (10 nM>KD >

10 pM) and only sequences of length 39 nucleotides or less. Testing and training sets of equal size were randomly selected from the

filtered data. All fitting was done using scikit-learn module in Python 2.7. The model was fit with Ridge regression to prevent param-

eters from being fit to large, non-physical values. All fits were performed with an intercept, which represents the intrinsic affinity of the

protein for any nucleic acid strand.
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Fitting of Cleavage Model

For miR-21 RISC, cleavage data was only collected on the original library (7,675 unique sequences; see assembly and sequencing of

library above) that included primarily singlemismatches, doublemismatches, triple mismatches, insertions of different lengths, single

and double deletions, combinatorial insertions, and structured and context variants. We filtered out the structured and context var-

iants when doing the model fitting since this would have introduced many occurrences of the perfect complement target. We filtered

the let-7a cleavage data to include the same classes of variants as the miR-21 data. This enabled comparison of the performance of

the two models, as well as building and testing of a general model with similar data from both guides. Additionally, we are primarily

interested in predicting cleavage for highly complementary sequences, and most of the remainder of the library was designed to test

questions relevant tomiRNAbinding.Many of these targets have large numbers ofmismatches, and as a result, little cleavage activity

is observed. Prior to fitting, the data was filtered to remove targets that we did not measure a cleavage rate for (kcleave < 0.0001 s�1)

and targets that had a poor goodness of fit (R2 < 0.6).

To fit the cleavage model, we first aligned all miR-21 and let-7a target sequences. After alignment we defined features for each

mismatch at each position and for guide and target bulges at each positions. We performed a constrained fit when fitting the models

for let-7a and miR-21 specific cleavage. The mismatch penalties were constrained to be no more than 2 natural logs below and 1

natural log above the observed single mismatch penalties during fitting. The guide and target bulge penalties were constrained to

be no more than 1.5 natural logs below and 0.5 natural log above the observed single bulge penalties during fitting. The model

was then fit to the single mismatches, double mismatches, single position target insertions, and single deletions using the lmfit mod-

ule in Python 2.7. Following fitting of models for let-7a and miR-21, a general model was fit to both datasets. This model included the

same bulge parameters as the guide specificmodels, but only included position specific parameters for transitions and transversions

since the base depends on themicroRNA/siRNA. Thismodel was fit to all single and doublemismatched targets and single insertions

and deletions of let-7a andmiR-21 and tested on triple mismatched targets and targets withmultiple insertions and deletions for both

sequences. Fitting of this model was performed with ridge regression in scikit-learn in Python 2.7.

Analysis of siRNA Efficacy in Cells
Sequence data was converted to counts and normalized as described above for in vitro cleavage data. The change in the abundance

of each target sequence i for each condition j was calculated to be:

fold changei;j =
normalized countsi;j
normalized countsi;0

Where normalized countsi,0 is the normalized count of target i in the mock transfected cells.

Biochemical Model Derivation and Fitting
We aimed to predict mRNA steady state knockdown with a kinetic model of RISC activity. This approach has the benefit of not

requiring any assumptions about the concentration of target RNA relative to the Km of the interaction (the free ligand approxima-

tion)—a significant limitation of many classical biochemical models of enzyme activity. For a given miR-21 target, we considered

the following molecular species and rates:

[mRNA], concentration of unbound target mRNA,

[RISC], concentration of unbound, miR-21-loaded RISC,

[RISC:mRNA], concentration of loaded RISC bound to target mRNA,

[RISC:cutRNA], concentration of loaded RISC bound to cut mRNA,

ktrans, mRNA transcription rate,

kdegrade, basal mRNA degradation rate,

kon, association rate of RISC for target mRNA,

koff, dissociation rate of RISC from target mRNA,

kdecay, rate of miRNA accelerated mRNA decay, not through direct cleavage,

kcleave, single-turnover cleavage rate for RISC on target mRNA,

krelease, rate of product release.

We considered four rate equations describing RISC activity:

d½mRNA�
dt

= ktrans � kdegrade½mRNA� � kon½mRNA�½RISC�+ koff ½RISC : mRNA� (Equation 1)
d½RISC�
dt

= � kon½RISC�½mRNA�+ koff ½RISC : mRNA�+ kdecay ½RISC : mRNA�+ krelease½RISC : cutRNA� (Equation 2)
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d½RISC : mRNA�
dt

= kon½mRNA�½RISC� � koff ½RISC : mRNA� � kdecay ½RISC : mRNA� � kcleave½RISC : mRNA� (Equation 3)
d½RISC : cutRNA�
dt

= kcleave½RISC : mRNA� � krelease½RISC : cutRNA� (Equation 4)

The quantity measured in the in cell knockdown assay is the total uncleaved RNA, or [RISC:mRNA] + [mRNA]. By setting each of the

above equations to 0 and solving the system of equations, it can be shown that:

½RISC : mRNA� + ½mRNA�=

 
kon½RISC�

kcleave + kdecay + koff
+ 1

!
�
 

ktrans
kdecay + kcleave

!
 

kdegrade
kdecay + kcleave

+
kon½RISC�

kcleave + kdecay + koff

! (Equation 5)

The maximum possible mRNA concentration [mRNAmax] was assumed to occur in the absence of any miR-21 siRNA:

d½mRNA�
dt

= 0= ktrans � kdegrade½mRNA� (Equation 6)
½mRNAmax�= ktrans
kdegrade

Therefore, the change in the abundance of a target mRNA is given by:

½RISC : mRNA�+ ½mRNA�
½mRNAmax� =

 
kon½RISC�

kcleave + kdecay + koff
+ 1

!
�
 

kdegrade
kdecay + kcleave

!
 

kdegrade
kdecay + kcleave

+
kon½RISC�

kcleave + kdecay + koff

! (Equation 7)

This equation contains three unknown parameters: kdecay, kdegrade, and [RISC]. Because all targets were placed in a nearly identical

gene context, we assumed that kdecay and kdegrade are constant across all targets and all miR-21 transfections. The free RISC con-

centration [RISC] was constrained to be at most the transfected miR-21 concentration, and was fit for each transfection condition.

We observed that many targets had little knockdown in cells despite having in vitro cleavage rates > 10-fold faster than their corre-

sponding dissociation rates. We surmised that the cellular dissociation rates might be significantly faster than the measured in vitro

rates. To account for this, we added a dissociation rate scaling term C, which was fit as a constant across all targets and all

transfection conditions. Alternatively, if we scaled the cleavage rate rather than the dissociation rate the model performed similarly,

suggesting that it is difficult to know whether cleavage or dissociation is most different in cells.

repression =
1

fold change
=

 
kdegrade

kdecay + kcleave
+

kon½RISC�
kcleave + kdecay + koff � C

!
 

kon½RISC�
kcleave + kdecay + koff � C+ 1

!
�
 

kdegrade
kdecay + kcleave

! (Equation 8)

This model was fit using experimentally measured association rates and cleavage rates for each target. Dissociation rates were in-

ferred frommodel predicted affinities. To limit differential effects of structure or other RNA binding proteins on the targets examined,

only targets containing five adenosines flanking the targets region and that had values for all of the required parameters were used in

model fitting and subsequent analyses (4,483 sequences).

DATA AND CODE AVAILABILITY

The kinetic and thermodynamic measurements generated in this paper are available for download as a supplemental table (Table S1)

and onMendeley Data (https://doi.org/10.17632/fzh7pfpmmb.1). Sequencing data have been deposited in theNCBI Sequence Read

Archive. The accession number for the sequencing data reported in this paper is SRA: PRJNA512481. Custom software for deter-

mination of association rates, cleavage rates, and dissociation constants is available on GitHub.
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