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Cancer sequencing studies have primarily identified cancer 
driver genes by the accumulation of protein-altering mutations. 
An improved method would be annotation independent, 
sensitive to unknown distributions of functions within proteins 
and inclusive of noncoding drivers. We employed density-based 
clustering methods in 21 tumor types to detect variably sized 
significantly mutated regions (SMRs). SMRs reveal recurrent 
alterations across a spectrum of coding and noncoding elements, 
including transcription factor binding sites and untranslated 
regions mutated in up to ~15% of specific tumor types. SMRs 
demonstrate spatial clustering of alterations in molecular 
domains and at interfaces, often with associated changes in 
signaling. Mutation frequencies in SMRs demonstrate that 
distinct protein regions are differentially mutated across tumor 
types, as exemplified by a linker region of PIK3CA in which 
biophysical simulations suggest that mutations affect regulatory 
interactions. The functional diversity of SMRs underscores both 
the varied mechanisms of oncogenic misregulation and the 
advantage of functionally agnostic driver identification.

In cancer, driver mutations alter functional elements of diverse 
nature and size. For example, melanoma drivers include hyperacti-
vating mutations mapping to single amino acid residues (for example, 
BRAF Val600; ref. 1), inactivating mutations along tumor-suppressor 
exons (for example, in PTEN1) and regulatory mutations (for example,  
in the TERT promoter2). Cancer genomics projects such as The 
Cancer Genome Atlas (TCGA) and the International Cancer Genome 
Consortium (ICGC) have substantially expanded our understand-
ing of the landscape of somatic alterations by identifying frequently 
mutated protein-coding genes3–5. However, these studies have focused 
little attention on systematically analyzing the positional distribution 
of coding mutations or characterizing noncoding alterations6.

Algorithms to identify cancer driver genes often examine non-
synonymous-to-synonymous mutation rates across the gene body 
or recurrently mutated amino acids called mutation hotspots5, as 
observed in BRAF7, IDH1 (ref. 8) and DNA polymerase ε (encoded 
by POLE)9. Yet, these analyses ignore recurrent alterations in the  
vast intermediate scale of functional coding elements, such as  
those affecting protein subunits or interfaces. Moreover, where 
mutation clustering within genes has been examined10–12, analyses 
have employed windows of fixed length or identified clusters of non
synonymous mutations, assuming that driver mutations exclusively 
influence protein sequence and ignoring the importance of exon-
embedded regulatory elements13–18.

A significant proportion of regulatory elements in the genome  
are located proximal to or even in exons15,19, suggesting that many 
may be captured by whole-exome sequencing. Efforts to characterize 
noncoding regulatory variation in cancer genomes have primarily 
examined either (i) pan-cancer whole-genome sequencing data or  
(ii) predefined regions—such as ETS-binding sites, splicing signals, 
promoters and UTRs—or mutation types20–23. These approaches 
either presume the relevant targets of disruption or disregard the 
established heterogeneity among cancer types at the level of driver 
genes and pathways5,24,25 as well as in nucleotide-specific mutation 
probabilities3,4. Yet, systematic analyses of genomic regulatory activity 
in animals have identified substantial tissue and developmental stage 
specificity26–28, suggesting that mutations in cancer type–specific 
regulatory features may be significant noncoding drivers of cancer.

To address these diverse limitations, we employed density-based 
clustering techniques using cancer-, mutation type– and gene- 
specific mutation models to identify regions of recurrent mutation 
in 21 cancer types. This approach permitted the unbiased identifica-
tion of variably sized genomic regions recurrently altered by somatic 
mutation, which we term significantly mutated regions (SMRs).  
We identified SMRs in numerous well-established cancer drivers as 
well as in new genes and functional elements. Moreover, SMRs were 
associated with noncoding elements, protein structures, molecular  
interfaces, and transcriptional and signaling profiles, thereby provid-
ing insight into the molecular consequences of accumulating somatic 
mutations in these regions. Overall, SMRs identified a rich spectrum 
of coding and noncoding elements recurrently targeted by somatic 
alterations that complement gene- and pathway-centric analyses.
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RESULTS
Multiscale detection of SMRs
We examined ~3 million previously identified5 somatic single-nucleotide  
variants (SNVs) from 4,735 tumors of 21 cancer types, recording29 
their impact on protein-coding sequences, transcripts and adjacent 
regulatory regions (Supplementary Fig. 1). We note that 79.0%  
(n = 2,431,360) of these somatic mutations do not alter protein-coding 
sequences or their splicing and thus were not previously considered 
in the analysis of cancer driver mutations5 (Fig. 1a).

To discover both coding and noncoding cancer drivers, we applied an 
annotation-independent density-based clustering technique30 to iden-
tify 198,247 variably sized clusters of somatic mutations within exon-
proximal domains of the human genome (Fig. 1b and Online Methods). 
We included synonymous mutations because functionally important 
noncoding features can be embedded within coding regions13–18.

Mutation density scores within each identified cluster were derived 
as the Fisher’s combined P value of the individual binomial probabilities  
of observing k or more mutations for each mutation type within the 
region in each cancer type (Online Methods). We evaluated mutation 
density for each cluster using gene-specific and genome-wide models 
of mutation probability (Supplementary Fig. 2), which were well 
correlated (Supplementary Fig. 3a), selecting the more conservative 
estimate for each cluster as the final density score (Online Methods).  
Gene-specific mutation probability models accounted for sequence 

composition (GC content) as well as differences in local gene expres-
sion and replication timing, which have been shown to correlate 
with somatic mutation rate4. To avoid skewed mutation probability 
estimates due to selection pressure on exons, we applied a Bayesian 
framework to derive gene-specific mutation probabilities given 
intronic mutation probabilities in cancer whole-genome sequencing 
data3,20 while controlling for differences in sensitivity in whole-exome 
and whole-genome sequencing (Online Methods).

Although many known cancer-related genes did not display signals of 
high mutation density, increasing density scores correlated with stronger 
enrichments (up to 120×) for somatic SNV–driven cancer genes (n = 158),  
as determined by the Cancer Gene Census (CGC; Supplementary  
Fig. 3b,c)31,32. Moreover, ~10% of genes associated with SMRs in the 
quintile with the top density scores were not found previously in a gene-
level analysis5 or in the CGC. Thus, high density scores are enriched for 
known cancer genes but also nominate potentially new drivers.

We applied Monte Carlo simulations to select density score thresh-
olds controlling the false-discovery rate (FDR) to ≤5% (Supplementary 
Fig. 4 and Supplementary Table 1). We identified 872 significantly 
mutated regions (SMRs; Fig. 1c) that were altered in ≥2% of patients 
in 20 cancer types for further characterization (Fig. 1d). SMRs 
spanned 735 genomic regions, which were assigned unique SMR codes  
(for example, TP53.1). Note that some SMRs (n = 120) appeared in 
more than one cancer type.
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Figure 1  Identification of SMRs in 21 cancer types across a broad spectrum of functional elements. (a) Pan-cancer distribution of mutation types for  
n = 3,078,482 somatic SNV calls. (b) Exons and exon-proximal domains (±1,000 bp) were scanned for clusters of somatic mutations (orange; DBSCAN). 
The distance parameter ε is dynamically defined as the average distance of mutated positions (dp) in the domain size (ds). Clusters (green) are divided 
if subclusters with higher mutation densities (P < 0.05, binomial test) were found in a second-pass analysis with ε defined as the average distance of 
mutated positions (cp) within the cluster of size cs (see the Online Methods for details on density scoring and FDR calculation). (c) Per-cancer mutation 
frequency and density scores for the SMRs discovered (color-coded by type and labeled by associated gene). The distribution of density scores in 
evaluated regions (top) and the distribution of SMR region types (bottom) are shown in insets. Dashed lines indicate the minimum, median and maximum 
density score FDR (5%) thresholds. The “Exon*” label refers to coding exons and noncoding genes. (d) The number of SMRs with FDR ≤5% and mutation 
frequency ≥2% per cancer type. Gray bars represent SMRs with FDR ≤5% but mutation frequency <2%. (e) SMR size distribution. (f) Concordance 
between SMRs discovered by employing background models derived from whole-genome sequencing (WGS based) or whole-exome sequencing (WES based).  
(g) Categories with significant fold change in mutation type representation between SMR-associated and input mutations are denoted (*P < 0.01).  
(h) Distribution of the number of mutations per sample in SMRs (blue) and 58 recurrently altered noncoding regions20 (green). Horizontal lines indicate 
the number of regions where mutations derive from distinct samples (that is, where mutations/samples equals 1).
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We classified SMRs into high-, medium- and low-confidence sets 
on the basis of their density scores and contribution from mutator 
samples (Online Methods and Supplementary Table 2). We observed 
correspondingly high (63.3×; P = 2.5 × 10−46), medium (6.2×; P = 
2.6 × 10−10) and low (5.0×; P = 5.0 × 10−4) enrichments for somatic 
SNV–driven cancer genes in these sets. To control for unaccounted 
processes that could result in clusters of mutations with no selective 
advantage in cancer, we leveraged single-nucleotide and trinucleotide 
density scores from intronic mutation clusters under the assump-
tion that these clusters are non-functional (Online Methods). This 
procedure identified 205 ‘robust’ SMRs that passed a false-discovery 
threshold (FDR ≤ 5%) in these secondary tests or were found in mul-
tiple cancer types. Fully 95.0% of high-confidence SMRs in the can-
cer types where these tests could be applied satisfied these stringent 
alternate criteria (Supplementary Fig. 5). Over 87% of SMRs were 
contained within mappable (100-bp) regions of the genome, and an 
analysis of 6,179 recently published breakpoints33 yielded a single 
SMR (in PTEN) within 50 bp of a resolved breakpoint, suggesting 
that the observed mutation density in SMRs is not attributable to 
mapping artifacts.

SMRs display a wide range of sizes (Fig. 1e; median = 17 bp, range = 
1–2,041 bp), are robust to distinct mutation background models (Fig. 1f  
and Online Methods), are not driven by unaccounted mutation con-
texts (Supplementary Fig. 6), and are enriched in protein-coding,  
5′ UTR and splice-site mutations (P < 0.01; Fig. 1g). Notably, SMRs 
are not driven by samples that contribute large numbers of mutations 
per region (Fig. 1h). This is in contrast to recently proposed regions of 

recurrent alteration20 where as few as five regions were driven exclu-
sively by distinct samples (P = 6.0 × 10−45, Wilcoxon rank-sum test). 
Thus, we have identified a diverse set of variably sized SMRs targeted 
by recurrent somatic alterations, and we sought to characterize their 
relevance to functional elements and cancer-associated genes.

SMRs enrich for known cancer genes and implicate new ones
SMRs are predicted to have diverse impacts on 610 genes and are  
8.35-fold enriched in known genes with somatic cancer-associated 
alterations (Lawrence et al.5 or CGC, P = 8.1 × 10−49, hypergeometric  
test), affecting a total of 91 known drivers, including canonical onco-
genes (for example, BRAF, KRAS, NRAS, PIK3CA and CTNNB1)  
and tumor suppressors (for example, PTEN, TP53 and APC). SMR-
associated genes also include 17 CGC genes previously undetected in 
a gene-level analysis5, such as established oncogenes like BCL2 and 
PIM1 and the cancer-associated noncoding gene MALAT1. Most cod-
ing SMRs are driven by nonsynonymous mutations (Supplementary 
Fig. 7), demonstrating that SMRs capture positive selection primarily 
acting on protein alterations. The presence of SMRs implicates 26 
known cancer genes in 31 gene × cancer type associations not uncov-
ered by gene-level analysis5 (Supplementary Table 3). We note, how-
ever, that most known cancer genes do not harbor regions of dense 
mutation recurrence within these data (Supplementary Fig. 8 and 
Supplementary Note), suggesting that SMR identification comple-
ments gene-level approaches.

We discovered SMRs in multiple new cancer driver genes, includ-
ing the breast cancer–associated antigen and putative transcription  

C
on

s.
M

E
LA

T
F

 s
ite

 +
 m

ot
if

C
ons.T

F
 site +

 m
otif

S
ignal

Factors implicated in cancer: 18/23 (78%)

EGR1

NRF1

MAZ UAK35

PAX5

E2F1

NR2C2

SPI1

KIAA0907 YAE1D1< < < 

GABPA
ELK4

ELF1, ELK1
ELF

GABPA
ELF1
ELFRHAB

MELA

DLBC

≥12

≤0

S
ig

na
l

ELK4 motif
(MA0076.2)

0

–0.5

–1.0

–1.5

–2.0

0

–0.5

–1.0

–1.5

–2.0 ELF1 motif
(MA0028.1)

1 2 3 4 5 6 7 8 9 10

Motif position

5 bp
+1,000 bp–1,000 bp

+75 bp–75 bp

1 2 3 4 5 6 7 8 9 10 11

Motif position

9.3% (C>T 100%)
0.9% (C>T 100%)

4 bp
+1,000 bp–1,000 bp

+75 bp–75 bp

SP1, SP2, SP4

GABPA

ELK1
ELK4

ELF1

DNase I

GABPA

Dnase IELF1

C
ons.

S
ignal

TBC1D12

3 bp
+1,000 bp–1,000 bp

+75 bp–75 bp

Dnase I

CTCF

< << <

–l
og

10
 (

q
 v

al
ue

)

z score

0

5

10

15

20

25

E
rg

*
F

LI
1*

F
E

V
*

N
F

A
T

C
2*

E
LK

4*
S

P
IB

E
LK

1*
G

A
B

P
A

P
R

D
M

1*
E

LF
1*

E
ts

1*
E

H
F

*
F

O
X

F
2*

S
T

A
T

2,
 S

T
A

T
1*

F
O

X
O

3*
S

ta
t4

E
2F

6†
S

ox
3*

F
O

X
P

2
S

T
A

T
1*

P
O

U
2F

2
S

T
A

T
3*

Lh
x3

†

IN
S

M
1

N
r2

e3
M

yb
E

H
F

N
r5

a2
E

B
F

1
Z

fp
42

3
R

fx
1

A
rn

t::
A

hr
O

R
A

_1
R

F
LI

1
G

A
B

P
A

F
E

V
E

rg
E

LK
4

H
IN

F
P

H
O

X
A

5
F

O
X

O
3

S
ox

3
P

O
U

2F
2

E
2F

6
S

T
A

T
2/

1
F

O
X

F
2

S
ta

t4
E

ts
1

E
LF

1
P

R
D

M
1

S
P

IB
N

F
A

T
C

2
E

LK
1

C
R

E
B

1

39,605,970

39,605,966

Chr. 7 (+) bp155,904,250

155,904,253

Chr. 1 (+) bp

10.2%
0.9% (G>A) 2.5% (G>A)

5.9% (G>A)

R
P

P
A

 signal (norm
alized)

96,162,370Chr. 10 (+) bp

8.1% (C>T)
10.1% (G>A)15.2%

B
its

M
E

LA
B

its

B
LC

A

MVGPEDADACSGRNPKLLPVPAPDP
< <

Mutant Wild
type

q = 0.0005

p90RSK
(pT359, S363)

Mutant Wild
type

q = 4.3 × 10–5

α-tubulin
(acetyl, K40)

−0.2

0.2

0.6

−2

−1

0

1

2

S
ig

na
l (

fir
ef

ly
/r

en
ill

a)

YAE1D1 KIAA0907 TERT

** * **

W
T

M
T

W
T

M
T

W
T

M
T

A375 HEK

W
T

M
T

W
T

M
T

W
T

M
T

A375 HEK

W
T

M
T

W
T

M
T

W
T

M
T

A375 HEK

** ** **

0

0.4

0.8

1.2

0

0.5

1.0

1.5

2.0

96,162,368

a c

b

e

d f

g
10.2%

A C A G C C T C T T C C G G T C G T C G G A C C G G A A G G A G T T G T T

C C A C C C C C A G A T G G T G G

4 bp 5 bp

9.3%

3 bp

#1 #1#2 #1 #1#2 #1 #1#2

Figure 2  Noncoding SMRs recurrently alter promoters and 5′ UTRs. (a) Transcription factors with enriched (q < 0.01) motifs in small SMRs (≤25 bp) 
across all cancer types are shown. Eighteen of the 23 transcription factors are known to be associated with cancer (*) or to be associated with cell cycle 
control or have developmental roles (†). (b) Cancer-specific motif enrichment analysis. (c,d) Gene structure, ENCODE chromatin immunoprecipitation 
and sequencing (ChIP-seq) and DNase I signals, vertebrate conservation (Cons.; phastCons 100-way), Factorbook transcription factor (TF) binding sites 
and motif occurrences, and somatic mutation frequencies at melanoma SMRs in KIAA0907 (c) and YAE1D1 (d) promoter regions are shown on multiple 
scales (±1,000, ±75 and ±7 bp). Mutation frequencies within each SMR (red) and at each position (purple bars) are shown. Motifs of ETS family 
binding sites that overlap the SMRs are highlighted. (e) Luciferase reporter signal from wild-type (WT) and mutant (MT) promoters in three experiments 
performed in melanoma (A375) and HEK293T (HEK) cells with independent plasmid DNA preps (1 and 2). For each experiment, three replicates were 
performed. Firefly/renilla luciferase signals are shown and were normalized by the mean signal with wild-type promoter for each experiment. **P < 0.05, 
*P < 0.1, two-sided t test. Error bars, s.d. (f) Gene structure, ENCODE CTCF and DNase I signals, and vertebrate conservation (phastCons 100-way) at 
the bladder cancer SMR in the 5′ UTR of TBC1D12 are shown on multiple scales. The position of the start codon is highlighted in green, and the Kozak 
sequence is underlined. (g) Relative protein and post-translational modification signals of wild-type (n = 78) and mutant (TBC1D12.1 SMR altered;  
n = 14) bladder tumors. The central band, box boundaries and whiskers correspond to the median, the interquartile range and the highest and lowest 
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factor ANKRD30A34, in which ~21% of melanomas harbored 
mutations within one or more of three SMRs. Mutations in these 
SMRs were validated in whole-genome sequencing data for six of 
17 cutaneous melanomas3,20. Within the entire gene body, 27 of 118 
whole-exome and ten of 17 whole-genome sequencing data sets from 
patients with melanoma harbored somatic protein-altering mutations 
in ANKRD30A. Overall, of the 185 high-confidence SMRs, 16 were 
associated with new cancer driver genes (Supplementary Table 4). 
As expected on the basis of methodological differences, these puta-
tive new cancer drivers are primarily (~81%) driven by noncoding 
alterations, as discussed in the next section.

SMRs implicate diverse noncoding regulatory features
A significant proportion (31.2%; P < 2.2 × 10−16, proportions test) 
of SMRs are not predicted to affect protein sequences, highlighting 
the potential to discover pathological noncoding variation in whole-
exome sequencing data. In total, 130 SMRs lay within open chro-
matin28 and were enriched in promoter (4.9×; q = 4.0 × 10−9) and 
5′ UTR (6.0×; q = 4.4 × 10−10) features (Supplementary Table 5). 
Three promoter SMRs coincided with regions deemed significantly 
mutated in a pan-cancer analysis of whole-genome sequencing data20.  
Across all cancer types, small (≤25-bp) noncoding SMRs were enriched 
in binding sequences for ETS oncogene family (7.4×; q = 2.6 × 10−6)  
and winged-helix repressor (3.2×; q = 2.0 × 10−4) transcription factors  
(Fig. 2a and Supplementary Table 6). We also detected cancer- 
specific transcription factor motif enrichments within SMRs  
from diffuse large B cell lymphoma, melanoma and rhabdosarcoma 
(Fig. 2b and Supplementary Table 7).

We discovered 4-bp and 5-bp SMRs within open chromatin sites of 
the KIAA0907 and YAE1D1 promoters that were altered in 10.2% and 
9.3%, respectively, of melanomas analyzed by whole-exome sequencing  
(Fig. 2c,d). Somatic mutations in these SMRs were confirmed in 
whole-genome sequencing data for melanomas (n = 1 for KIAA0907 
and n = 2 for YAE1D1 of n = 17 cases)3,20. Yet, these regions did  
not reach significance in a pan-cancer analysis20, highlighting 
cancer specificity in noncoding alterations. In both SMRs, muta-
tions altered core recognition sequences within in vivo ETS fac-
tor binding sites (Encyclopedia of DNA Elements (ENCODE)), 
with varying effects on ETS primary sequence preferences. 
KIAA0907 encodes a putative RNA-binding protein. However, 
intronic sequences in this gene harbor SNORA80E (also known as 
SNORA42), an H/ACA class small nucleolar RNA (snoRNA) with 
increased expression in lung and colorectal cancers35,36, suggesting  
that promoter SMR alterations may enhance transcription at this 
locus. However, we observed no detectable changes in reporter gene 
expression with the mutant KIAA0907 promoter (Fig. 2e). Whereas 
YAE1D1 promoter mutations reduced reporter gene expression 
(Fig. 2e), RNA-level overexpression of YAE1D1 has previously been 
observed in lower crypt-like colorectal cancer37 and a small cohort 
of melanoma samples showed increased YAE1D1 protein levels in 
comparison to untransformed melanocytes38.

In addition to SMRs that influence promoter regions, we observed 
32 SMRs in 5′ and 3′ UTRs, including putative microRNA (miRNA) 
target sites39. Most strikingly, we discovered a 3-bp SMR in the 5′ UTR 
of TBC1D12 that was mutated in ~15% of bladder cancers (Fig. 2f). 
Recurrent mutations were positioned near the start codon (Kozak 
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Figure 3  Structural mapping  
of SMRs onto proteins and  
complexes identifies differentially  
altered regions among cancers  
and molecular interfaces targeted  
by recurrent alterations.  
(a) Nonsynonymous mutation  
frequency per PFAM protein domain per cancer, per residue. The number of genes per domain is shown (left). (b) Alteration frequency matrix of PIK3CA 
SMRs across cancer types and comparison of per-residue alteration frequencies of PIK3CA domains46 in endometrial (UCEC; orange) and breast (BRCA; 
blue) cancer samples. Gray bars represent SMRs in PIK3CA. (c) Co-crystal structure of the PIK3CA (p110α; blue) and PIK3R1 (p85α; gray) interaction 
(Protein Data Bank (PDB), 2RDO, 2IUG and 3HIZ). Residues within endometrial cancer SMRs in PIK3CA (orange) and PIK3R1 (red) are rendered as 
solvent-accessible surfaces. Insets display mutated residues in the PIK3CA.2 and PIK3CA.3 SMR in the α helix (yellow; top) and their corresponding 
side-chain dihedral angles (bottom). (d) Mutations within the PIK3CA.2, PIK3CA.3 SMR α-helix interfere with Arg79-binding contacts at the PIK3R1 
interface, as shown in the wild-type protein (WT) and Lys111Glu mutant. (e–i) Molecular structures are shown of spatially clustered alterations (diffuse 
large B cell lymphoma) (e) and SMRs (multiple myeloma) (f), a DNA (green) interface SMR (g), reciprocal protein interface SMRs (h) and a histone H3.1 
SMR in the TRIM33 interface (i). Structural alignments and molecular visualizations were prepared with PyMOL (Schrödinger). The relative proportions of 
BRAF.1 and BRAF.2 missense mutations per cancer type are shown in f. The PDB codes for e–i are 3CXW, 1UWH, 1H9D, 1U7V and 3U5N, respectively.
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region positions −1 and −3), suggesting a role in translational control. 
Mutations in this SMR were validated in the whole-genome sequences 
of seven cancer types, including two of 20 bladder cancers, two of 40 
lung adenomas and three of 172 breast cancers3,20. Bladder tumors 
with mutations in this SMR displayed altered RPS6KA1 (p90RSK) 
phosphorylation (P = 0.0005, t test, Benjamini-Hochberg), a signal 
of increased cell cycle proliferation40, and altered α-tubulin levels  
(P = 4.3 × 10−5, t test, Benjamini-Hochberg), as determined by reverse-
phase protein array (RPPA) assays41 (Fig. 2g and Online Methods).  
These results establish the usefulness of whole-exome sequencing  
data for identifying recurrently mutated noncoding regions and  
our SMR identification method in pinpointing potentially functional 
noncoding alterations in cancer.

SMRs permit high-resolution analysis of coding alterations
As expected, most exome-derived SMRs lay within protein-coding 
regions. The identification of SMRs across multiple cancer types per-
mitted a systematic analysis of differential mutation frequencies with 
subgenic and cancer type resolution. Although many protein domains 
showed high burdens of somatic alteration in multiple cancers, pro-
tein domains can show remarkable cancer type specificity in burdens 
of alteration, as exemplified by VHL in kidney clear cell carcinoma 
and SET in diffuse large B cell lymphoma (Fig. 3a).

Among genes (n = 94) with multiple SMRs, we detected 48 SMRs 
that were differentially mutated across cancer types (Supplementary 
Table 8). A striking example of this differential targeting occurred 
within the catalytic subunit of the phosphoinositide 3-kinase subunit 
PIK3CA (p110α), a key oncoprotein implicated in a range of human 
cancers42,43. We detected six SMRs in PIK3CA across eight cancer 
types (Fig. 3b), with multiple cancer types displaying SMRs mapping 
to the helical (PIK3CA.5) and kinase (PIK3CA.6) domains. In contrast, 
we observed cancer type–specific SMRs (PIK3CA.2 and PIK3CA.3) 
affecting an α-helical region between the adaptor-binding domain 
(ABD) and the linker region between the ABD and Ras-binding  
domain (RBD) of PIK3CA. Up to 14% of uterine corpus endometrial 
carcinomas harbored alterations in these intron-separated SMRs,  

although these regions were not highly recurrently altered in other 
cancers. For example, we observed significant (q = 1.2 × 10−16,  
proportions test) differences in PIK3CA.2 alteration frequencies 
in endometrial and breast cancers (Fig. 3b) and further validated 
these differences (P = 0.02, proportions test) in whole-genome 
sequences3,20. These findings indicate that previously described dif-
ferences44 in total PIK3CA mutation frequency between endometrial 
and breast cancers could, in part, be localized to this region.

Although the oncogenic effects of recurrent mutations mapping to 
the ABD (PIK3CA.1), C2 (PIK3CA.4), helical (PIK3CA.5) and kinase 
(PIK3CA.6) domains of PIK3CA have been previously described, 
mutations affecting the ABD-RBD linker region are poorly under-
stood45–48. Interestingly, missense alterations within this region were 
directionally orientated to one side of the α helix (P = 0.0145, Rayleigh 
test), suggesting changes to a molecular interface (Fig. 3c). Large-
scale molecular dynamics simulations of PIK3CA-PIK3R1 binding 
indicate that PIK3CA.2 (p.Lys111Glu) and PIK3CA.3 (p.Gly118Asp) 
substitutions can alter intermolecular salt-bridge patterns at Arg79, 
which may result in a loss of 1.8 kcal/mol in binding interactions 
in comparison to wild-type PIK3CA (Fig. 3d, Online Methods and 
Supplementary Fig. 9). Taken together, these results suggest a previ-
ously unrecognized mechanism of oncogenic alteration in PIK3CA.

To systematically characterize the location of alterations with respect 
to three-dimensional protein structures, we leveraged structural  
information from 428 SMR-associated and known cancer genes. We 
detected 46 proteins with three-dimensional clustering of missense 
alterations (Supplementary Table 9), as exemplified by PIM1, an 
SMR-associated serine/threonine kinase proto-oncoprotein (Fig. 3e 
and Online Methods). This approach also identified three-dimensional 
clustering between BRAF V600 and BRAF P-loop SMRs (Fig. 3f),  
regions where alterations have been shown to function through distinct 
mechanisms49. Moreover, we found that BRAF V600 alterations were 
more frequent in melanoma and colorectal cancers, whereas BRAF 
P-loop alterations were more common in multiple myeloma and lung 
adenomas (P < 0.01, proportions test). In total, seven of 16 proteins 
with multiple SMRs displayed significant SMR three-dimensional  

Table 1  Recurrently altered protein interfaces uncovered by SMRs

Protein (i)
Partner  

(j) PDB
Chain  

(i)
Chain  

(j) Region
Average  

distance (Å)
Distance  

ratio q value Statusa

VHL TCEB1 3ZUN I H Chr. 3: 10,191,469–10,191,513 7.259 0.395 7.62 × 10−10 Known

VHL TCEB2 1LQB C A Chr. 3: 10,191,469–10,191,513 9.867 0.367 7.62 × 10−10 Known

SPOP H2AFY 3HQH A M Chr. 17: 47,696,421–47,696,467 7.962 0.462 3.72 × 10−8 Known

SMAD2 SMAD4 1U7V A C Chr. 18: 45,374,881–45,374,945 9.231 0.460 5.61 × 10−8 Known

HIST1H2BK DNA 2CV5 D J Chr. 6: 27,114,446–27,114,519 9.730 0.520 3.27 × 10−7 New

TP53 TP53BP1 1KZY B D Chr. 17: 7,578,369–7,578,556 13.253 0.556 5.13 × 10−7 Known

SMAD4 SMAD2 1U7V B C Chr. 18: 48,604,665–48,604,797 11.878 0.694 5.13 × 10−7 Known

DNMT3A DNMT3L 2QRV E F Chr. 2: 25,463,271–25,463,308 10.112 0.380 5.13 × 10−7 Known

SMAD4 SMAD3 1U7F B C Chr. 18: 48,604,665–48,604,797 11.883 0.700 1.94 × 10−6 Known

PIK3CA PIK3R1 3HHM A B Chr. 3: 178,936,070–178,936,099 9.028 0.335 2.56 × 10−6 Known

RUNX1 DNA 1H9D C H Chr. 21: 36,231,782–36,231,792 8.957 0.351 0.001 Known

HIST1H3I TRIM33 3U5N D A Chr. 6: 27,839,651–27,840,062 11.480 0.610 0.001 New

HIST1H2BK HIST1H4b 2CV5 D F Chr. 6: 27,114,446–27,114,519 13.680 0.664 0.002 New

PPP2R1A PPP2R5C 2NPP D E Chr. 19: 52,716,323–52,716,329 7.313 0.247 0.007 Known

HRAS RASA1 1WQ1 R G Chr. 11: 534,283–534,291 5.302 0.350 0.007 Known

PIK3R1 PIK3CA 3HIZ B A Chr. 5: 67,589,138–67,589,149 6.713 0.567 0.008 Known

NFE2L2 KEAP1 2FLU P X Chr. 2: 178,098,799–178,098,815 6.157 0.566 0.009 Known

EGFR EGF 3NJP B A Chr. 7: 55,233,035–55,233,043 8.763 0.386 0.019 Known

FGFR2 FGF8 2FDB R M Chr. 10: 123,279,674–123,279,677 10.288 0.413 0.036 Known

FBXW7 SKP1 2OVR B C Chr. 4: 153,249,384–153,249,385 9.352 0.346 0.036 Known

FGFR2 FGF2 1EV2 H A Chr. 10: 123,279,674–12,327,9677 11.685 0.406 0.037 Known
aWhether the SMR-harboring protein (i) corresponds to a known or new cancer driver gene. bMultiple component partner proteins identified.

http://www.rcsb.org/pdb/explore/explore.do?structureId=3ZUN
http://www.rcsb.org/pdb/explore/explore.do?structureId=1LQB
http://www.rcsb.org/pdb/explore/explore.do?structureId=3HQH
http://www.rcsb.org/pdb/explore/explore.do?structureId=1U7V
http://www.rcsb.org/pdb/explore/explore.do?structureId=2CV5
http://www.rcsb.org/pdb/explore/explore.do?structureId=1KZY
http://www.rcsb.org/pdb/explore/explore.do?structureId=1U7V
http://www.rcsb.org/pdb/explore/explore.do?structureId=2QRV
http://www.rcsb.org/pdb/explore/explore.do?structureId=1U7F
http://www.rcsb.org/pdb/explore/explore.do?structureId=3HHM
http://www.rcsb.org/pdb/explore/explore.do?structureId=1H9D
http://www.rcsb.org/pdb/explore/explore.do?structureId=3U5N
http://www.rcsb.org/pdb/explore/explore.do?structureId=2CV5
http://www.rcsb.org/pdb/explore/explore.do?structureId=2NPP
http://www.rcsb.org/pdb/explore/explore.do?structureId=1WQ1
http://www.rcsb.org/pdb/explore/explore.do?structureId=3HIZ
http://www.rcsb.org/pdb/explore/explore.do?structureId=2FLU
http://www.rcsb.org/pdb/explore/explore.do?structureId=3NJP
http://www.rcsb.org/pdb/explore/explore.do?structureId=2FDB
http://www.rcsb.org/pdb/explore/explore.do?structureId=2OVR
http://www.rcsb.org/pdb/explore/explore.do?structureId=1EV2
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clustering (Supplementary Table 10), which is consistent with  
frequent spatial coherence for pathogenic alterations.

We next sought to identify SMRs that might affect the molecular 
interfaces of protein-protein and DNA-protein interactions, a recog-
nized yet understudied mechanism of cancer driver mutation50–52. 
We examined intermolecular distances between SMR residues and 
interacting proteins or DNA and identified 17 SMRs that likely alter 
molecular interfaces (Table 1 and Online Methods). These included 15 
molecular interfaces of protein-protein and DNA-protein interactions 
with established cancer associations, such as the substrate-binding 
cleft of SPOP53 and DNA-binding interfaces on RUNX1 (Fig. 3g). We 
detected reciprocal SMRs at all electrostatic interfaces of the SMAD2-
SMAD4 heterotrimer in colorectal cancer (Fig. 3h), as have been 
recently described54, and reciprocal SMRs at the regulatory PIK3CA-
PIK3R1 interface in endometrial cancer (Fig. 3b). Taken together, 
these results highlight the robustness of SMRs in detecting validated 
driver alterations at molecular interfaces (Supplementary Fig. 10).  
In addition, SMRs pinpoint recurrent alterations at the interface between 
histone H3.1 (Fig. 3i) and TRIM33, an E3 ubiquitin ligase, and at the 
DNA-protein interface of histone H2B (Supplementary Fig. 11). These 
findings underscore and extend recent associations between altered 
epigenetic regulation and histone alterations in tumorigenesis55.

Molecular signatures highlight impact of SMR alterations
We sought to determine the potential functional impact of SMR alter-
ations by their association with molecular signatures. We leveraged 
RNA sequencing (RNA-seq), RPPA and clinical data to ask whether  
(i) SMR alterations associate with distinct molecular signatures or sur-
vival outcomes, (ii) SMR alterations correlate with similar molecular  

profiles in distinct cancers, and (iii) SMR alterations in the same gene 
associate with similar or different molecular signatures.

We found that mutations in SMRs were associated with diverse 
changes in RNA expression, signaling pathways and patient survival 
(Fig. 4a, Online Methods and Supplementary Tables 11–14)56. These 
analyses identified previously unappreciated connections between 
recurrent somatic mutations and molecular signatures, which high-
light recurrent GSK3 pathway alterations in endometrial cancer and 
recurrent mTOR as well as EIF4 and epidermal growth factor (EGF) 
pathway alterations in glioblastoma (Supplementary Table 15). For 
example, synonymous point mutations in a bladder cancer SMR in 
SNX19 (encoding sorting nexin 19) were associated with significant 
increases in the protein expression levels of RAB25 (P = 2.5 × 10−27,  
t test; Fig. 4b and Supplementary Table 12), a RAS family GTPase 
that promotes ovarian and breast cancer progression57,58. These 
increases are consistent with RNA expression differences in RAB25 
(P = 0.02, Wilcoxon rank-sum test; Fig. 4c). Intriguingly, both  
SNX19 and RAB25 are implicated in intracellular trafficking, but the 
mechanism by which synonymous mutations in SNX19 correlate with 
RAB25 expression remains to be determined. In both SNX19 and 
NDUFA13, SMRs with clusters of synonymous mutation overlapped 
open chromatin sites28, suggesting potential regulatory effects.

We identified concordant changes in gene expression for SMR pairs, 
suggesting potential functional relationships, for 23 SMRs from 17 
genes (Fig. 4d). These included multiple well-established mechanistic 
relationships, many of which were supported by RPPA measurements41, 
such as a relationship between PIK3CA and AKT1. Furthermore, this 
analysis indicated that mutations in the same SMR in different cancers 
can elicit similar molecular profiles in distinct cancers. For instance, 

KEAP1

NFE2L2.2

P
IK

3C
A

TP
53

MAPK_pT202_Y204
Akt

MEK1_pS217_S221
YAP_pS127

c.Myc
GATA3
INPP4B

AR
Bcl.2

ER.alpha
JNK2

Tuberin_pT1462
JNK_pT183_Y185

PDK1_pS241
Caveolin.1

AMPK_alpha
DJ.1

PR
Chk2_pT68

FoxM1
p53

Cyclin_B1
X14.3.3_zeta

ASNS
Caspase.7_cleavedD198

Notch1
RBM15

S6
Chk2

Chk1_pS345
Cyclin_E2

p27_pT198
Cyclin_E1

CDK1
X4E.BP1_pT70

X4E.BP1 T
P

53.4
T

P
53.5

T
P

53.2
P

IK
3C

A
.5

P
IK

3C
A

.6
A

K
T

1.1

≤0.5

≥1.5

–log
10  (q

 value)

–2.1

+2.1

R
P

P
A

 signal

Fraction of altered
genes (BLCA)

NFE2L2.2

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n 
of

 a
lte

re
d

ge
ne

s 
(H

N
S

C
)

0

0.5

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

20

60

100

Overlap, log10 (odds ratio)

AKR1C1, AKR1C2,

AKR1C3, AKR1C4

BLCA:LUSC

HNSC:LUSC

BLCA:HNSCB
in

s
G

en
e 

× 
S

M
R

s

0

20

40

–6 +6

O
verlap,

log
10  (odds ratio)

S
M

R
s 

(n
 =

 3
0)

B
LC

A
LU

S
C

H
N

S
C

G
LB

M
LU

A
D

LA
M

L
B

R
C

A
U

C
E

C

log2 (fold change)

3.80

log10 (genes)

≥1.5

0

–log
10  (odds ratio)

NFE2L2.1
NFE2L2.2

TP53.5
MIR142.1
RUNX1.2

IDH2.1
RUNX1.1
PIK3CA.5
PIK3CA.6

TP53.4
PPP2R1A.1

FLT3.1
HRAS.1
KRAS.3
IDH1.1

CHD4.1
DNMT3A.1

AKT1.1
CTNNB1.1

TP53.3
PTEN.2
TP53.2

T
P

53
.2

P
T

E
N

.2
T

P
53

.3
C

T
N

N
B

1.
1

A
K

T
1.

1
D

N
M

T
3A

.1
C

H
D

4.
1

ID
H

1.
1

K
R

A
S

.3
H

R
A

S
.1

F
LT

3.
1

P
P

P
2R

1A
.1

T
P

53
.4

P
IK

3C
A

.6
P

IK
3C

A
.5

R
U

N
X

1.
1

ID
H

2.
1

R
U

N
X

1.
2

M
IR

14
2.

1
T

P
53

.5
N

F
E

2L
2.

2
N

F
E

2L
2.

1
Diffe

re
nt

 ca
nc

er
 ty

pe

Sam
e 

ca
nc

er
 ty

pe

U
C

E
C

U
C

E
C

H
N

S
C

B
LC

A

LU
S

C

NFE2L2.2
NFE2L2.1

log
2  (enrichm

ent)0
1
2
3
4
5

RAB25 (RPPA signal)

P = 2.5 × 10–27 P = 0.02

SNX19.1+

(n = 2)
SNX19.1+

(n = 3)

F
re

qu
en

cy

−3 −2 −1 0 1 2

0
2
4
6
8

12
10

RAB25 (RNA-seq signal)

F
re

qu
en

cy

–10 −5 0 5 10

0

5

10

20

15

a b c

d

e f

g

h

Figure 4  SMRs are associated with distinct molecular signatures. (a) Matched RNA-seq data for nine cancers showed that mutations in 30 distinct 
SMRs associated with ≥10 differentially expressed genes (FDR <5%). (b,c) Normalized RPPA (b) and RNA-seq (c) signals for RAB25 are plotted.  
Red lines represent signals for samples with the mutated SNX19 SMR. (d) Similarity between differentially expressed gene sets associated with 
mutations in each SMR pair. (e) The overlap between differentially expressed genes associated with alteration of the NFE2L2.2 SMR in bladder 
cancer (BLCA) and head and neck carcinoma (HNSC) is shown (top). Differentially expressed genes are sorted by P value, and similarity is quantified 
by Fisher’s exact test odds ratio. The distribution of odds ratios of similarity is summarized for three comparisons (middle). Samples with NFE2L2.2 
mutations exhibit highly increased expression of aldo-keto reductase enzymes (bottom). (f) Relative enrichment for oxidoreductase activity 
(GO:0016616) in specific cancer types (Supplementary Table 13). (g) Structure of the NFE2L2.2 SMR (orange) in the KEAP1-binding domain  
(PDB, 3WN7). A sector of recurrent alterations in KEAP1 (teal) did not pass our 2% frequency cutoff. (h) Patients with breast cancer were grouped  
by mutations in six SMRs in PIK3CA, AKT1 and TP53. Normalized RPPA-based expression data were obtained from the TCPA41. The median RPPA 
signal for 36 markers and the q value (Kruskal-Wallis test) of differential expression between SMRs from TP53 or PIK3CA are plotted (red highlights 
markers with significant intragenic differences, q < 0.05).

https://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016616
http://www.rcsb.org/pdb/explore/explore.do?structureId=3WN7
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we found that SMR alterations in the oncogenic transcription factor 
NFE2L2 (ref. 59) were associated with large, concordant transcrip-
tomic changes in four distinct cancer types (bladder, endometrial, 
lung squamous cell carcinoma, and head and neck cancers; Fig. 4e). 
The four genes with the highest increases in gene expression among 
endometrial cancer samples with alterations in NFE2L2.1 were the 
aldo-keto reductases AKR1C1–AKR1C4 (Fig. 4e), which contribute 
to altered androgen metabolism and have been implicated in multiple 
cancer types60–62. Across all four cancer types, genes with expression 
changes in patients with mutations in NFE2L2 SMRs were highly 
enriched for oxidoreductases acting on the CH-OH group of donors 
with NAD+ or NADP as acceptors (4.9–39.0×; P ≤ 0.001, Benjamini-
Hochberg; Fig. 4f). Mutations in KEAP1, encoding an NFE2L2 bind-
ing partner, recapitulated the expression changes observed in patients 
with mutations in NFE2L2 SMRs (P < 0.01, Benjamini-Hochberg;  
Fig. 4g and Supplementary Fig. 12).

The identified SMRs also permitted interrogation of mutations in 
different regions of a given gene with respect to associated molecular 
signatures. For example, in breast cancer, alterations in distinct SMRs 
within TP53 were associated with highly similar changes in protein 
levels. Yet, we observed SMR-specific differences in ASNS levels and 
MAPK and MEK1 phosphorylation among samples with altered TP53 
SMRs (q < 0.01; Fig. 4h). These results establish differences in the 
molecular signatures associated with alterations of SMRs in the same 
gene and are consistent with pleiotropy in established oncogenes and 
tumor suppressors63,64.

The structure of cancer mutations remains largely unseen
SMR analysis leverages structure in the distribution of somatic driver 
mutations to identify cancer-associated regions. We sought an alter-
native metric to assess structure in the distribution of the somatic 
coding mutations analyzed here by measuring the Gini coefficient 
of amino acid substitutions per residue in each cancer type (Fig. 5a). 
Gini coefficients of dispersion were well correlated with sample num-
bers (Spearman’s ρ = 0.74). Subsampling demonstrated that, even 
with sample numbers >850, a large proportion of the structure of 
protein-altering mutations in breast cancer remains unseen (Fig. 5b). 
These findings highlight the value of increasing cancer sample sizes 
in assessing the landscape of driver mutations.

DISCUSSION
With few exceptions, studies of disease-associated variation have 
focused on identifying predefined functional units with recurrent 
alterations. This approach not only assumes accurate annotations but 
ignores the largely uncharacterized spectrum of functional elements 

that may be the targets of pathological variants. Our approach avoids 
these limitations and complements existing gene-level and pathway-
based strategies for discovering cancer drivers by identifying variably  
sized SMRs (Supplementary Table 16). SMR-associated genes include 
known cancer-related genes, such as PIM1 and MIR142, that were 
missed by gene-level analyses, as well as multiple genes with poten-
tially novel roles in cancer development.

Cancer-associated SMRs target a diverse spectrum of functional  
elements in the genome, including single amino acids, complete coding  
exons and protein domains, miRNAs, 5′ UTRs, splice sites and trans
cription factor binding sites, among others. This functional diversity 
underscores both the varied mechanisms of oncogenic misregula-
tion and the advantage of functionally agnostic detection approaches. 
Notably, several of the most frequently altered SMRs lay within non-
coding regions. Strikingly, 17 of 39 promoter and 5′ UTR melanoma 
SMRs overlap the core recognition sequences of in vivo ETS family 
binding sites (odds ratio = 15.2, P = 1.5 × 10−11, Fisher’s exact test). 
In addition, ~15% of patients with bladder cancer harbor 5′ UTR 
alterations in TBC1D12. Together, these results extend the support 
for noncoding drivers in cancer20,23,65 and establish the potential for 
discovering noncoding variation in whole-exome sequencing.

The identification of SMRs provides a subgenic, cancer type– 
specific analysis of somatic mutations and associated molecular signa-
tures. Differences among cancer types in SMR mutation frequencies 
within BRAF, EGFR and a mechanistically uncharacterized α helix 
in PIK3CA demonstrate substructure in the distribution of somatic 
mutations across cancers, a property that may arise from pleiotropic 
functions. The close geometric proximity and directional uniform-
ity of alterations in the PIK3CA helix suggest that mutations in the 
PIK3CA.2 and PIK3CA.3 SMRs function through similar mechanisms. 
Moreover, biophysical simulations indicate that mutations in both 
SMRs result in elevated basal signaling activity of catalytic PIK3CA 
by way of weakened interactions with the regulatory PIK3R1 protein.  
These findings are concordant with recent biochemical evidence48. 
Consistent with pleiotropic dependencies, alterations to SMRs within 
a single gene can be associated with distinct molecular signatures, as 
exemplified by TP53 SMRs in breast cancers. Together, these results 
provide robust support for subgenic functional targeting in distinct 
cancers and genes, and future efforts to examine SMR mutations in 
conjunction with clinical data in much larger patient cohorts may 
permit assessment of the prognostic value of SMRs.

SMR detection would benefit from further improvements of somatic 
mutation models. Here we have applied cancer type–specific models 
that take into account variation in somatic mutation rates through-
out the genome. We controlled for mutational effects stemming from  
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differences in replication timing and gene expression4,66. In addi-
tion, our models capture nucleotide-specific mutation probabilities3, 
account for strand specificity67, leverage whole-genome sequencing 
mutation frequencies to limit effects from purifying selection on exons 
and control mutation processes that may result in mutation clustering 
and trinucleotide mutation biases3. However, tumor-specific DNA 
repair defects3,66,68,69 and cell type–specific chromatin context70 also 
contribute to somatic mutation rates. Mutation models that account 
for cell type–specific expression and chromatin context at refined 
scales may require sequencing cohorts of matched normal tissue and 
increased sample sizes.

Although the sequencing of additional cancer genomes will likely 
further the identification of new cancer driver genes5, characterizing the 
biochemical and cellular consequences of individual mutations is criti-
cal. We demonstrate that identifying the spatial distribution of mutation 
recurrence in the genome, when combined with additional genomic, 
biophysical, structural or phenotypic information, often enhances 
mechanistic insights. Applying recently developed high-throughput 
approaches71–73 to directly interrogate variation within SMRs may 
allow further understanding of the molecular mechanisms driving 
cancer and facilitate diagnostics and therapeutics development.

URLs. Data from Lawrence et al.5 were obtained from TumorPortal 
through http://www.tumorportal.org/. TCGA Data Portal, https://
tcga-data.nci.nih.gov/tcga; UCSC Cancer Browser, http://genome-cancer.
ucsc.edu/.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Scientific computing was performed within Python74,75 and R environ-
ments. Data structure and genomic interval operations were performed 
with PANDAS76 and Pybedtools77, respectively. Statistical computing was 
performed with SciPy and NumPy78, and machine learning methods were 
implemented with SciKit Learn79. Structural and sequence alignment analyses  
were performed with BioPython80, PyMOL (Schrödinger) modules and  
custom scripts. RPPA, RNA-seq and survival analyses were performed in R 
using open source packages (as described below).

Uniform variant annotation. 3,185,590 uniformly processed5 whole-exome 
sequencing somatic variant calls from 21 cancer types were downloaded  
from the indicated URL. We applied snpEff29 to uniformly annotate  
n = 3,078,482 (96.6%) SNV calls from 4,735 tumors, recording (GRCh37.66) 
mutation impact in protein-coding regions, transcribed regions (coding  
plus noncoding exons, introns, 5′ UTRs and 3′ UTRs) and gene-associated 
regions (transcribed 5 kb upstream and 5 kb downstream) and standardize 
gene name assignments. These procedures standardized gene name assign-
ments at multiple scales and removed gene assignments to “?” (n = 64) and 
“—” (n = 130,728) in the original file. In addition, this procedure reduced vari-
ant calls unassigned to any genes (“Unknown”, n = 1,239,475) to n = 899,731  
intergenic calls (>5 kb from annotated exons). This procedure was also  
applied to annotate n = 11,461,951 whole-genome sequencing somatic SNV 
calls from 23 cancer types3,20.

Mutation probability models. For each tumor type and gene, we calculated 
multiple distinct mutation probabilities. First, we calculated the frequency 
of transitions and transversions within the mappable, exonic regions of each 
gene to derive ‘exonic’ mutation probabilities for each gene in the hg19 human 
genome assembly using whole-exome sequencing data. Specifically, these 
probabilities indicate the fraction of mappable (100-bp), exonic reference 
bases (for example, adenines) in each gene that were somatically mutated to 
a specific base (for example, cytosine) per sample, in the cohort of tumor-
specific whole-exome sequencing data.

Because expression levels and replication timing have been shown to be 
major covariates of somatic mutation probability in the genome, we sought to 
refine our mutation probability models for each gene using this information. 
For each gene and in each tumor type, we identified the set of genes most 
similar in expression, replication time and GC content (gene-level features). 
We used previously compiled4 expression and replication timing data and 
derived feature-specific weights defined as the rank correlation between gene 
features and the observed exonic mutation probabilities in each tumor type. 
We then converted gene features into their percentile ranks. Genes were sorted 
sequentially on the basis of the gene feature weights, and the neighborhood of 
the 500 closest genes was selected for each query gene. We then measured the 
sum of correlation-weighted, absolute feature distances between gene pairs 
within the 500-gene rank neighborhood. For each gene, we selected the ≤200 
most similar genes with a normalized distance score ≤1. Lastly, we averaged 
the ‘exonic’ mutation probability per transition/transversion to derive a set of 
‘matched’ mutation probabilities.

To avoid skewed mutation probabilities due to increased selection pres-
sure on exons, we used pan-cancer whole-genome sequencing3,20 data in con-
junction with cancer-specific whole-exome sequencing data. We employed 
a Bayesian framework to derive posterior mutation probabilities for each 
transition and transversion per gene in each of the analyzed cancer types. 
Specifically, we modeled the likelihood of observing a mutation as a binomial 
distribution. We placed a prior beta distribution on the mutation probability  
for each mutation type. The prior distribution was parameterized with  
parameters α = µ × ν and β = (1 − µ) × ν, where µ is the per-base mutation 
probability in the whole-exome sequencing data and ν is the number of exome 
sequencing samples in each cancer type. This parameterization enables the 
variance of the prior distribution to scale inversely with sample size. We used 
the set of genes (≤200) that were matched to the analyzed gene as described 
above. We used all observed intronic whole-genome sequencing mutations in 
this cancer-specific matched set to calculate the posterior mutation probability 
for the analyzed gene. In this framework, the posterior distribution is also 
another beta distribution. We then assigned the expected value of the posterior 

probability distribution as the estimate of the mutation probability for each 
transition/transversion (n = 12). Finally, we calibrated the posterior mutation 
probabilities by the cancer-specific transition/transversion rates such that the 
median ‘Bayesian’ mutation probability was equal to the mean cancer-specific 
‘exonic’ mutation rate.

We computed a ‘global’ mutation probability per tumor type as the average  
probability of transitions and transversions across all genes as observed  
in ‘exonic’ mutation probabilities in each tumor type. The distributions of 
whole-exome sequencing–derived (‘exonic’, ‘matched’ and ‘global’) as well 
as whole-genome sequencing–derived (‘Bayesian’) mutation probabilities 
varied strongly between cancer types (Supplementary Fig. 2a) and among 
genes within individual cancer types, highlighting the importance of such 
cancer- and gene-specific treatment of background mutation probabilities3,4. 
Complementary mutation probabilities were well correlated (Supplementary 
Fig. 2b). The ‘Bayesian’ and ‘matched’ mutation probabilities were well cor-
related among genes (Supplementary Fig. 2c), although ‘Bayesian’ muta-
tion probabilities were better correlated (Supplementary Fig. 2d) with the 
observed whole-genome sequencing intronic mutation densities. These 
‘Bayesian’ (whole-genome sequencing–based) and ‘matched’ (whole-exome 
sequencing–based) mutation probabilities were used for the comparison pre-
sented in Figure 1f.

Lastly, to account for trinucleotide biases3,4 in diverse mutation processes 
and cancer types, we computed ‘trinucleotide’ mutation probability models  
for each tumor type. Specifically, ‘trinucleotide’ mutation probabilities were 
calculated as the fraction of mappable (100-bp), exonic reference bases (for 
example, adenines) within specific trinucleotide contexts (for example, 
CAG) that were somatically mutated to a specific base (for example, cyto-
sine, CAG>CCG) per sample, in the cohort of tumor-specific whole-exome 
sequencing data.

Mutation domain definition. We extended Ensembl (75) exonic regions by 
0 bp and 1,000 bp and merged regions to define n = 305,145 ‘concise’ (C) and 
n = 191,669 ‘expanded’ (E) genomic domains in which mutation clusters were 
evaluated (see below). We identified the n = 279,979 ‘concise’ and n = 175,228 
‘expanded’ domains in which over ≥90% of positions were fully mappable with 
single-end 100-bp reads (ENCODE, UCSC Genome Browser). For each set of 
domains, we computed the number of possible genomic ranges (start, stop), 
which for the ‘expanded’ set amounted to 1,005,774,400,023 ranges (1012.0025). 
In addition, we removed ‘blacklisted’ regions of the human genome previously 
defined by the ENCODE Project81.

Mutator sample identification. Samples harboring aberrantly high burdens of 
mutations in each tumor type were detected using median absolute deviation 
(MAD) outlier detection on the distribution of mutations (log n) per sample. 
As a threshold for consistency, mutator (outlier) samples were selected as 
those exceeding 2 s.d.

Mutation cluster identification. We deployed density-based spatial cluster-
ing of applications with noise (DBSCAN) to detect clusters of ≥2 SNVs within 
exonic domains (above), evaluating density reachability within ε base pairs 
in each cancer type. The reachability parameter ε was dynamically defined 
with ε = dp/ds where dp and ds refer to the number of mutated positions (base 
pairs) and the base-pair size of the domain d, thresholded to 10 ≤ ε ≤ 500 bp.  
In contrast to sliding window approaches or k-means spatial clustering, 
DBSCAN is not confined to evaluating predefined cluster sizes or numbers 
and tolerates noise in spatial density, whereby distal mutations are not assigned 
to clusters. Detected mutation clusters were refined where subclusters of ≥2 
SNVs with significantly higher (P < 0.05, binomial test) mutation densities 
(mutated tumor samples per kilobase) existed.

Mutation cluster scoring. The significance of the observed mutation densities 
in each cluster was determined as Fisher’s combined binomial probability of 
sampling the observed number (k) or more mutations for each mutation type 
within the region. For each region, we computed the above density scores with 
the previously described ‘exonic’, ‘matched’, ‘Bayesian’ and ‘global’ somatic muta-
tion probabilities. As the primary density score (Pdensity), we selected the most 
conservative of the ‘Bayesian’ and ‘global’ density scores, max(PBayesian, Pglobal). 
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Finally, we computed a trinucleotide mutation density score (Ptrinucleotide) for 
each region using the ‘trinucleotide’ somatic mutation probabilities.

Mutation cluster thresholding. We applied the procedures above to detect 
and evaluate mutation clusters in two sets of ‘concise’ (C) and ‘expanded’ (E) 
query domains (described in “Mutation domain definition”). 117,148/198,718 
of the mutation clusters identified in E query domains fell within the C query 
domains, respectively, indicating a 1.7× increase in clusters within the 1,000 
bp–expanded domains.

Empirical FDRs were calculated from ten simulations performed by rand-
omizing mutations within C domains in each tumor type, simulating a total of 
30,784,820 mutations across cancer types. In each simulation, the positions of 
the observed mutations in each domain and tumor type were randomized while 
maintaining reference base identity to retain the observed ‘global’ mutation 
probabilities per transition and transversion (n = 12). In each iteration, mutation 
cluster detection, refinement and scoring procedures were repeated as above. 
For each simulation, we computed the density score (Pdensity) threshold that 
guarantees FDR ≤5%, whereby false and true discoveries are computed as the 
number of clusters from simulated (randomized) and observed domain muta-
tions, respectively. We excluded clusters with outlier density scores from the 
false-discovery set if the clusters were associated with CGC genes (n = 522)31,32, 
as these regions would not represent false discoveries. For each tumor type, the 
expectation value (average) of FDR ≤5% simulation thresholds was defined 
as the final tumor-specific FDR threshold. To control FDRs to ≤5% in the  
E domains, where mutations cannot be randomized owing to the decreased cer-
tainty of whole-exome sequencing coverage, we adjusted FDRs from C domains 
by the 1.7× increase in E/C clusters in each tumor type. E domain 5% FDR 
thresholds per tumor type are provided in Supplementary Table 1.

To assess the robustness of the FDR cutoffs, we expanded the number of 
simulations to 90× and confirmed a 99.2% overlap (Jaccard index) in the 5% 
FDR–thresholded clusters (Supplementary Fig. 4e–g).

We reiterated mutation cluster FDR estimation and filtering using an alter-
nate, conservative density score, Palternate = max(Pmatched, Pglobal), resulting in 
714 regions. Fully 93.2% of these regions were identified as SMRs on the basis 
of the primary density scores (Pdensity).

Mutation cluster filtering. As a final step in calling SMRs, we selected clusters 
with density scores (Pdensity) at the 5% FDR threshold and that were mutated 
in ≥2% of samples in each cancer type. Lastly, clusters associated with pseu-
dogenes, olfactory receptors and other repetitive gene classes were removed. 
This procedure resulted in 872 SMRs, from 735 unique genomic regions, in 
20 distinct cancer types.

Mutation cluster annotation. SMRs were annotated on the basis of mutation 
impact on coding, transcribed and gene-associated regions (see “Uniform 
variant annotation”). For SMRs associated with multiple genes (overlap-
ping annotations), we preferentially assigned SMRs to (i) previously known  
cancer driver genes (as defined by Lawrence et al. or the CGC) or (ii) the 
gene affected by the most severe type of mutation. Where mutation impact 
was insufficient to resolve assignment to multiple genes, we selected the 
gene affected by the largest number of mutations within the SMR. On this 
basis, we assigned each SMR to a single gene, recording the types of mutation 
impacts on the gene and the class of region affected. Region classes included 
exon (coding region and noncoding gene), intron, splice, upstream, 5′ UTR,  
3′ UTR, downstream and other (intergenic). Mutation impacts (from snpEff) 
included, in order of severity, rare amino acid, splice site acceptor, splice 
site donor, start lost, stop lost, stop gain, nonsynonymous coding, splice-site 
branch U12, nonsynonymous start, nonsynonymous stop, splice-site region, 
splice-site branch, start gain, synonymous coding, synonymous start, syn-
onymous stop, noncoding gene (exon), 3′ UTR, 5′ UTR, miRNA, intron, 
upstream, downstream and intergenic.

Mutation cluster classification. SMRs were classified into high-, medium- 
and low-confidence sets as follows. First, SMRs in which alterations fell below 
the 2% mutation frequency threshold following mutator sample (as defined 
above) removal were labeled as mutator driven SMRs. Among SMRs robust 
to mutator removal, those with FDR-corrected density scores significant at 

adjusted P < 0.05 following Bonferroni correction (Pdensity ≤ 5.2 × 10−17) were 
classified as high confidence. Mutator-driven SMRs were classified as low 
confidence. SMRs that did not meet the high-confidence or low-confidence 
criteria were deemed medium confidence.

To control for unaccounted mutation processes that could result in clusters 
of mutations with no selective advantage in cancer, we introduced the assump-
tion that intronic mutations are primarily composed of passenger mutations 
and treated intronic clusters as false discoveries. For each cancer type, the dis-
tribution of density scores from intronic mutation clusters was modeled with 
Gaussian kernel density estimation (KDE) to derive P-value and q-value (FDR) 
estimates that limit the FDR to ≤5%. This approach is limited to the ten cancer 
types with sufficient intronic mutation clusters to permit KD estimates of their 
distribution of mutation density scores (Supplementary Fig. 5). A threshold of 
n ≥ 100 intronic mutation clusters was determined on the basis of the stability 
of FDR thresholds as determined by subsampling intronic mutation clusters 
in melanoma (data not shown). We applied this approach to control FDRs on 
two metrics. First, to account for unaccounted mutation clustering, we applied 
this approach on our expression-, replication timing– and sequence (GC) 
composition–controlled single-nucleotide probabilities (Pdensity). Second, to 
account for biases in trinucleotide mutation frequencies in each cancer type, 
we applied this approach on trinucleotide density scores (Ptrinucleotide). SMRs 
discovered in multiple cancer types and non-mutator-driven SMRs compliant 
with intron-based FDR ≤ 5% thresholds (both Pdensity and Ptrinucleotide) were 
classified as ‘robust’.

Mutation cluster labeling. SMRs with higher than expected prevalence for 
APOBEC mutation signatures69 were labeled (Supplementary Fig. 6d). Finally, 
we annotated SMRs with respect to their 35-bp uniqueness and alignability 
with 50-, 75- and 100-bp single-end reads. SMR coordinates and correspond-
ing annotations are provided in Supplementary Table 2.

Mutation trinucleotide analysis. We evaluated the frequency of trinucleotide 
sequence contexts, as a subset of these (TCW) have been previously shown to 
differ significantly in mutation frequencies from other single-nucleotide con-
texts owing to APOBEC mutational processes69. Although APOBEC mutation 
signatures are identifiable in the data, our SMRs are depleted for such signatures 
(Supplementary Fig. 6a), suggesting that the background models conservatively 
control for this mutation signature. Moreover, we extended these analyses to 
examine two important metrics: (i) unaccounted trinucleotide biases measured 
as the deviation in the observed trinucleotide mutation frequencies on the basis of 
single-nucleotide frequencies and (ii) fold change in frequencies of trinucleotide  
contexts in the SMR mutations as compared to the input mutations.

We observed a low correlation between the unaccounted trinucleotide 
biases and the fold change in trinucleotide contexts in diverse cancer types 
(Supplementary Fig. 6b), further supporting the conclusion that SMRs are 
not driven by unaccounted trinucleotide mutation signatures. These analyses 
were restricted to cancer types (n = 6) that had ≥250 SMR mutation sites to 
prevent noise from cancer types with low numbers of SMR mutations. These 
cancer types encompassed 79% of SMRs. Across cancer types, unaccounted 
trinucleotide frequencies made up only ~7.9% of SMR sequences. For com-
pleteness, we have calculated within each SMR the fraction of mutations that 
are consistent with APOBEC signatures (Supplementary Fig. 6c). As shown 
in Supplementary Figure 6d, only 4% of SMRs had higher than expected 
APOBEC mutation signatures following Holmes-Bonferroni correction. Raw 
(uncorrected) P values would indicate that 12% of SMRs have higher than 
expected APOBEC mutation signatures.

For additional methods describing (i) transcription factor motif  
enrichments, (ii) protein structure mapping, (iii) mutation spatial clustering, 
(iv) mutation dihedral angles, (v) molecular dynamics of PIK3CA-PIK3R1 
binding, (vi) RNA-seq analysis, (vii) RPPA analysis, (viii) functional enrich-
ment analysis, (ix) survival analysis, (x) miRNA target site analysis and  
(xi) luciferase assays, please see the Supplementary Note.

Code availability. The Python and R scripts to process the data and conduct 
the analyses described herein are available from the authors by request. Stand-
alone scripts for molecular and transcriptome enrichment overlap visualiza-
tion are available at http://www.github.com/claraya/SMRx.

http://www.github.com/claraya/SMRx
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