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SUMMARY

Here, we present Perturb-ATAC, a method that com-
bines multiplexed CRISPR interference or knockout
with genome-wide chromatin accessibility profiling
in single cells based on the simultaneous detection
of CRISPR guide RNAs and open chromatin sites
by assay of transposase-accessible chromatin with
sequencing (ATAC-seq). We applied Perturb-ATAC
to transcription factors (TFs), chromatin-modifying
factors, and noncoding RNAs (ncRNAs) in �4,300
single cells, encompassing more than 63 genotype-
phenotype relationships. Perturb-ATAC in human
B lymphocytes uncovered regulators of chromatin
accessibility, TF occupancy, and nucleosome
positioning and identified a hierarchy of TFs that
govern B cell state, variation, and disease-associ-
ated cis-regulatory elements. Perturb-ATAC in
primary human epidermal cells revealed three
sequential modules of cis-elements that specify ker-
atinocyte fate. Combinatorial deletion of all pairs of
these TFs uncovered their epistatic relationships
and highlighted genomic co-localization as a basis
for synergistic interactions. Thus, Perturb-ATAC is
a powerful strategy to dissect gene regulatory net-
works in development and disease.
INTRODUCTION

Gene expression in eukaryotic organisms is regulated by the

interplay of thousands of trans-acting regulatory factors and mil-

lions of cis-acting DNA elements (Kundaje et al., 2015). However,
it is challenging to characterize each trans-factor or cis-element

because epigenetic assays require large amounts of cellular

material and are difficult to couple with genetic perturbations

at scale. Therefore, most studies are limited to measuring how

single genetic perturbations affect chromatin state in bulk cell

populations.

We recently developed the assay for transposase-accessible

chromatin with sequencing (ATAC-seq), which utilizes a hyper-

active transposase (Tn5) to measure the activity of regulatory

DNA elements (Buenrostro et al., 2013). This method informs

the identification of enhancers, the positioning of nucleosomes,

and the inference of transcription factor binding (Buenrostro

et al., 2013; Schep et al., 2015, 2017). Importantly, ATAC-seq

can be performed in single cells (scATAC-seq), uncovering

cell-to-cell variability and rare epigenomic phenotypes (Cusano-

vich et al., 2018; Satpathy et al., 2018; Buenrostro et al., 2018).

Additionally, single-cell ATAC-seq profiles can be paired with

orthogonal measurements of RNA or protein expression in the

same cell (Satpathy et al., 2018; Chen et al., 2018a).

Similar advances in the ability to measure transcriptomes

in single cells have recently allowed high-throughput genetic

screens coupled with simultaneous transcriptome phenotyping

(Dixit et al., 2016; Adamson et al., 2016; Jaitin et al., 2016;

Datlinger et al., 2017). We further develop this concept of high-

content genetic screening by measuring the effects of CRISPR

perturbations on the epigenome. This method, termed perturba-

tion-indexed single-cell ATAC-seq (Perturb-ATAC), measures

CRISPR single guide RNA (sgRNA) sequences and ATAC-seq

profiles in single cells. We performed Perturb-ATAC in 2,936

immortalized B lymphoblasts and 1,356 primary human keratino-

cytes, encompassing 63 genotype-phenotype relationships.

Analysis of a CRISPR interference (CRISPRi) screen in

GM12878 lymphoblasts identified trans-factor control of several

layers of epigenetic regulation. Single-cell ATAC-seq in primary

human epidermal cells identified three regulatory modules in
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keratinocyte differentiation, and a Perturb-ATAC CRISPR-dele-

tion screen revealed key transcription factor (TF) regulators of

each module. We mapped epistatic relationships between TFs

using multiplexed perturbations and suggest that genomic co-

localization and co-expression of TFs may predict genetic inter-

action. Perturb-ATAC is a tool for studying relationships between

factors that control chromatin states using high-throughput,

high-complexity single-cell screens.

RESULTS

Perturb-ATAC: Simultaneous CRISPR Guide Detection
and Epigenome Profiling in Single Cells
In the Perturb-ATAC protocol, cells are first captured on the inte-

grated fluidics circuit (IFC; Fluidigm) in single-cell chambers and

subjected to lysis and DNA transposition with the Tn5 enzyme

(Figure 1A). After transposition, Tn5 is released from open chro-

matin fragments, and CRISPR sgRNAs or sgRNA-identifying

barcodes from each cell are reverse-transcribed using target-

specific primers. All chamber contents are then amplified by

PCR. Single-cell libraries are then collected, and sgRNA or

ATAC amplicons are further amplified separately with cell-iden-

tifying barcoded primers, pooled, and sequenced.

We first adapted a CRISPRi sgRNA vector to perform a simple

mixing experiment with three populations of sgRNA-targeted

cells (Adamson et al., 2016; Cho et al., 2018). We generated

a sgRNA vector with unique 22- bp guide barcodes (GBCs)

that corresponded to the identity of sgRNAs encoded by each

vector (Figures 1A and S1A; Table S1). Using this vector, we

targeted immortalized B lymphoblasts stably expressing

dCas9-Krüppel-associated box (KRAB) with either non-human

genome-targeting (NT) sgRNAs (NT1 or NT2) or sgRNAs target-

ing the promoter of the TF SPI1 (also known as PU.1), which is

required for B cell development (Scott et al., 1994, 1997;

McKercher et al., 1996). We then pooled cells and performed

Perturb-ATAC on 309 single cells to assess the fidelity of pairing

GBC detection with measurement of the epigenome. To elimi-

nate the likelihood of recombination of sgRNAs and GBCs be-

tween vectors, as described recently(Adamson et al., 2018;

Feldman et al., 2018; Hill et al., 2018; Xie et al., 2018), we per-

formed packaging steps in separate cultures. Transduced cells

were enriched by fluorescence-activated cell sorting (FACS) pu-

rification of mCherry+ cells and identified the sgRNA identity of

each cell by amplifying the GBC (Figure 1A).

We used stringent cutoffs to assign the presence or absence of

a GBC (Figure S1B). First, we counted reads for each possible

GBC in every cell and adjusted for sequencing depth (Figures

S1B andS1C). Next, we set aminimumcutoff of 1,000GBC reads

per cell and removed cells with a high percentage of background

reads (STAR Methods). As expected, reads were almost exclu-

sively assigned to one GBC (NT1, NT2, or SPI1); multiple GBCs

were only detected in 9 of 309 cells. These results demonstrate

that Perturb-ATAC consistently detects GBCs with high confi-

dence and a low false positive rate (Figures 1B, S1B, and S1C).

Next, we evaluated the quality of ATAC-seq reads; high-qual-

ity single-cell ATAC-seq profiles were obtained in 79.2% of cells

in which GBCs were also detected (Figure 1C). Cells passing

filtering yielded an average of 11.33 3 103 fragments mapping
362 Cell 176, 361–376, January 10, 2019
to the nuclear genome, and approximately 43.05% of reads

were within bulk ATAC-seq peaks, similar to previously pub-

lished single-cell ATAC-seq as well as high-quality bulk ATAC-

seq datasets (Buenrostro et al., 2015; Corces et al., 2017;

Figure 1C). Single-cell ATAC-seq reads recapitulated the char-

acteristics of bulk ATAC-seq data, including insert size period-

icity and fragment enrichment at transcription start sites (Fig-

ure 1D). These results indicate that GBC detection does not

interfere with the generation of ATAC-seq libraries in single cells.

Finally, we asked whether GBC-expressing cells exhibited the

expected ATAC-seq phenotype. We first examined the promoter

of SPI1, where SPI1-targeted sgRNAs were expected to recruit

dCas9-KRAB. In cells expressing SPI1 sgRNAs, we observed a

loss of accessibility at the promoter comparedwith cells express-

ing NT sgRNAs (Figure 1E). More broadly, SPI1-targeted cells ex-

hibited similar changes in accessibility across all peaks that were

changed in bulk ATAC-seq experiments (Figure 1F). We then

measured global TF activity by determining the relative accessi-

bility of all SPI1 motif-containing sites (51,862 sites). We found

that SPI1 sites exhibited a significant loss of accessibility in

SPI1-targeted cells compared with NT cells (false discovery rate

[FDR] < 1e�3, permutation test; STAR Methods), similar to bulk

SPI1-targetingexperiments (Figure1G).Altogether, thesefindings

demonstrate that Perturb-ATAC simultaneously measures GBC

sequences and ATAC-seq data in single cells with high fidelity.

Perturb-ATAC Identifies Epigenomic Functions of
Chromatin Regulators, Transcription Factors, and
Noncoding RNAs in B Cells
We next performed an expanded Perturb-ATAC screen to

compare how broadly expressed and lineage-specific trans-

factors shape the chromatin landscape of B lymphoblasts. We

generated 40 sgRNA genotypes in 2,627 single cells, derived

from single or dual targeting of the promoters of 12 trans-factors

and2NTcontrol sgRNAs (TableS2). The12 targeted trans-factors

included TFs (EBF1, IRF8, NFKB1, RELA, and SPI1), chromatin

modifiers (BRG1, DNMT3A, EZH2, and TET2), and noncoding

RNAs (7SK,EBER1,andEBER2) that havebeenshownpreviously

to affect normal and neoplastic B cell development and function

(Nutt and Kee, 2007; Lunning and Green, 2015). CRISPRi guide

RNAs were designed to maximize knockdown efficiency and

minimize off-target effects (Figures S2A–S2C; Table S1). We

distinguishedcells receivingeitheroneor twoGBCs,asdescribed

above (Figures 2A and 2B). High-quality ATAC-seq profiles were

obtained in 85.3% of cells in which GBCs were also detected.

Cells passing filtering yielded an average of 10.68 3 103 frag-

ments mapping to the nuclear genome, and approximately

43.85% of reads were within peaks present in bulk profiles (Fig-

ure 2C). Rare ATAC-seq reads mapping to the viral construct

did not appear to influence ATAC-seq profiles, and observed

accessibility at potential sgRNA mismatch loci indicated no

evidence of off-target repression (STAR Methods; Figure S2D).

Cells processed across several microfluidic chips exhibited no

noticeable chip bias in ATAC-seq signal (Figure S2E).

Weaggregated cells basedonGBC identity andanalyzed three

levels of epigenetic regulation: accessibility of DNA elements,

trans-factor activity genome-wide, and nucleosome positioning

(Figure 2D). Depletion of EZH2, a catalytic subunit of Polycomb
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Figure 1. Perturb-ATAC Identifies sgRNA Barcodes and Expected Chromatin Phenotypes in Single Cells

(A) Schematic of the Perturb-ATAC protocol, lentiviral construct, and sequencing library generation for sgRNA detection.

(B) Scatterplot of guide barcode (GBC) reads from a pool of cells transduced with one of two constructs.

(C) Scatterplot of ATAC fragments and the fraction of ATAC fragments in peak regions for each cell. Colors indicate GBC detection in each cell.

(D) Histograms of ATAC fragment size distribution, indicating the expected nucleosome phasing (left) and relative frequency of ATAC insertions at transcription

start sites (right).

(E) Genomic locus of the SPI1 gene, indicating DNase I hypersensitivity sequencing, bulk ATAC-seq, and Perturb-ATAC-seq. The SPI1 promoter region exhibits

selective loss of accessibility in cells expressing SPI1 sgRNA.

(F) Accessibility in merged single cells of individual genomic regions altered in bulk ATAC-seq. *p < 1e�3 by Kolmogorov-Smirnov (KS) test.

(G) Relative accessibility of SPI1 motif-containing regions (Z score of the SPI1 motif versus all other genomic features). *false discovery rate < 1e�3 by per-

mutation test.
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Figure 2. Perturb-ATAC Screen for Control of Accessibility Landscape by Transcription Factors, Long Noncoding RNAs, and Chromatin

Regulators

(A) Histogram of total GBC reads per cell.

(B) Histogram of the second most common GBC identified in each cell. Cells on the low end of the distribution express a single guide RNA, whereas cells on the

high end express two guide RNAs.

(C) Scatterplot of ATAC fragments and fraction of fragments in peak regions. Cells are colored by GBC read count.

(D) Heatmap of cells (rows) versus GBCs (columns), indicating the proportion of reads associated with each barcode.

(E) Left: volcano plots showing significantly altered genomic features between cells carrying non-targeting (NT) guides and guides targeting EZH2, SPI1, and

EBER2 (FDR % 0.025). Right: scatterplots of mean accessibility versus accessibility fold change of individual genomic peaks.

(legend continued on next page)
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repressive complex 2 (PRC2), which deposits repressive His-

tone 3 lysine 27 trimethylation (H3K27me3) chromatin marks,

significantly increased accessibility at regions marked with

H3K27me3 (chromVAR accessibility gain, 0.78; FDR < 0.0001;

Figure 2E). Similarly, the most significant change in TF motif

accessibility in SPI1-targeted cells was at SPI1-motif-containing

regions (chromVAR accessibility loss, 2.17; FDR < 0.0001; Fig-

ure 2E). In contrast, SPI depletion increased the accessibility of

IRF motif regions, demonstrating that SPI1 exhibits activating

and repressive functions, as reported previously (van Riel and

Rosenbauer, 2014).Other altered TFmotifs inSPI1-targeted cells

included BCL11A, SPIB, andMEF2C factors, consistent with the

function of SPI1 in regulating factors required for B cell lineage

commitment (Figure 2E; Table S3; Su et al., 1996; Liu et al.,

2003; Stehling-Sun et al., 2009). Finally, targeting of the noncod-

ing RNA (ncRNA) EBER2 identified 90 significantly altered fea-

tures, including regions containing the PAX5 motif, a factor that

physically interacts with EBER2 to control gene expression (Lee

et al., 2015). These results demonstrate that Perturb-ATAC iden-

tifies epigenomic phenotypes associated with perturbations of

diverse categories of trans-factors.

An analysis of ATAC-seq profiles derived from 40 single- and

double-GBC genotypes (including NT controls) revealed accessi-

bility changes in 10,103 open chromatin sites (mean, 404;

range, 0–2,250 sites; per genotype) and 833 features (mean, 23;

range, 0–110 features; per genotype; Figures 2F and S3A–S3C;

Table S3). We clustered feature accessibility across all perturba-

tions and found three sub-clusters of trans-factorswith correlated

effects (Figure 2F). Cluster 1 included the B cell lineage-deter-

mining TFs IRF8 and RELA and the chromatin regulators BRG1

and DNMT3A, suggesting that these factors may cooperate to

establish the B cell chromatin landscape (Corces et al., 2016;

Lara-Astiaso et al., 2014). Interestingly, two nuclear factor kB

(NF-kB) subunits, NFKB1 and RELA, showed overlapping and

distinct effects, in linewithprior studiesdemonstratingdifferences

in the binding patterns of NF-kBsubunits through the formation of

distinct proteincomplexes (Figures2FandS3B;Zhaoetal., 2014).

Consistent with reports of its repressor activity, IRF8 depletion

increased accessibility at IRF sites (Tamura et al., 2008). Cluster 2

included the ncRNA7SK,which represses enhancer transcription

(Flynnet al., 2016), and the chromatin remodeler EZH2 (Figure 2F).

Cluster 3 included the highly homologous ncRNAs EBER1 and

EBER2 as well as TET2 and EBF1. Cells depleted of EBER1 or

EBER2 exhibited similar ATAC-seq profiles, highlighting their

functional similarity (r = 0.714, p = 2.25e�85; Figures 2F and

S3B; Arrand et al., 1989; Samanta et al., 2006), and loss of either

factor altered accessibility at EBF1 sites, consistent with these

factors acting in the same pathway (Figure S3B).

Finally, we used the diversity in ATAC-seq fragment sizes to

infer the occupancy and positioning of nucleosomes in each

perturbation condition (Schep et al., 2015; Figure S3D; STAR

Methods). To validate this approach, we examined the profiles
(F) Heatmap of perturbed factors (rows) versus genomic annotations (columns) in

Only annotations significantly altered in at least one perturbation are shown.

(G) Heatmaps indicating the number of significantly altered features (left, absolut

regions (center, absolute log2 fold change [log2FC] R 1.5, mean reads per ce 0.4

altered peaks (right) for each single perturbation.
of sub-nucleosome-sized and nucleosome-sized fragments

surrounding CTCF binding sites (Figure S3E). As expected,

sub-nucleosome fragments were enriched at the CTCF

motif, indicating a central nucleosome-free region. In contrast,

nucleosome-sized fragments were enriched upstream and

downstream relative to the CTCF motif, representing the +1

and �1 nucleosomes (Vierstra et al., 2014).

We quantified a score representing the flanking accumulation

and central depletion of nucleosome-sized ATAC-seq fragments

in each perturbation (Figure 2G). At regions exhibiting an altered

ATAC-seq signal, we compared this score between control and

perturbed cells. Although some factors operated in the context

of stable nucleosomes, others altered local nucleosome profiles.

Depletion of either NFKB1 or RELA resulted in a stable nucleo-

some structure surrounding regions that gained accessibility,

suggesting that these factors influence the binding of co-factors

in an independently established nucleosome-free region (Fig-

ure S3F). However, regions that gained accessibility in

DNMT3A-depleted cells exhibited a stronger central nucleo-

some, consistent with a model in which DMNT3A recruits nega-

tive regulatory factors to an open chromatin region. Reflecting

another distinct mechanism, regions losing accessibility upon

depletion of 7SK exhibited a stronger central nucleosome struc-

ture in 7SK-depleted cells, possibly indicating that 7SK interacts

with nucleosome remodeling factors, as shown for the BAF com-

plex (Figure S3F; Flynn et al., 2016). Overall, these results

demonstrate that trans-factors regulate nucleosome positioning

in distinct ways and that Perturb-ATAC can read out nucleosome

structure changes associated with perturbations.

Discovery of Gene Regulatory Networks Controlled by
trans-Factors
We next analyzed Perturb-ATAC profiles to identify relationships

between trans-factors. We were inspired by studies analyzing

intercellular heterogeneity to infer relationships between cellular

features (Klein et al., 2015; Heath et al., 2016). For example, co-

varying accessibility between sets of regions bound by two

trans-factorsmay reflect common regulation. In contrast, inverse

correlation may indicate that one factor controls the activity or

expression of a negative regulator of the other set of regions.

Using this framework, we measured the effects of perturbation

on co-varying regulatory networks (Figure 3A).

We assessed feature correlations in NT cells and identified five

modules (Figures 3B, S4A, and S4B; STAR Methods). Module 1

features included factors broadly involved in hematopoietic

development, such as SPI1 and IRF8. Module 2 included the

chromatin regulators CTCF and CHD1. ETS factors, which

have roles in B cell development and immunological function,

were highly correlated in module 3. Module 4 contained homeo-

box domain TFs, and module 5 features included specific

regulators of B cell development, such as IKZF1 (also known

as Ikaros), BCL11A, EBF1, NFKB, MEF2C, and AP-1 factors.
dicating the difference in accessibility between perturbed and NT control cells.

e chromVAR deviation Z R 0.75, FDR % 0.05), the number of altered genomic

), or quantification of the ratio of flanking to central nucleosome occupancy at
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Figure 3. Perturbations Influence Inter-cellular Variability and Correlated Activity across Features

(A) Example workflow identifying genomic features with correlated activity across cells. Left: heatmap indicating correlation of motif activity across cells. Center:

comparing NT control cells with perturbed cells identifies motif pairs that change in correlation as a result of perturbation. Right: functional relationships constrain

hypothetical regulatory networks.

(B) Heatmap of Pearson correlations between features in NT cells.

(C) Heatmap displaying the difference in correlations between NT and IRF8 knockdown cells.

(D) Heatmap of module 5 feature correlations in NT (bottom half) and IRF8 (top half) knockdown cells.

(E) Heatmap displaying module 2 feature correlations in NT cells (bottom half) and DNMT3A (top half) knockdown cells.

(F) Scatterplots of accessibility for cells with line of linear best fit demonstrating correlation under specific conditions.

(G) Hypothetical model of IRF8 co-factor activity with AP-1 and IKZF1.

(H) Heatmap of the fraction of altered feature-feature correlations within modules by perturbation, showing specific effects on particular modules in different

perturbations.
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Figure 4. Epistasis Analysis Identifies the Functional Interaction between a Broadly Active Chromatin Regulator and Lineage-Specific

Transcription Factors

(A) Schematic of calculation of expected accessibility in double knockdown based on the additive model of each single knockdown.

(B) Distribution of accessibility at SPI1 binding sites (left) and IKZF1 binding sites (right) for individual cells under single or double knockdown conditions.

(legend continued on next page)
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Network reconstruction in perturbed cells highlighted the

modules regulated by each perturbed factor (Figures 3C–3E).

For example, depletion of IRF8 re-wired the developmental

features of module 5 so that AP-1 factor activity was no longer

coordinated with the activity of IKZF1, RUNX, and MEF2C (Fig-

ures 3D and S4C). In particular, the correlation between IKZF1

and FOS:JUN (AP-1) in NT cells (r = 0.420, p = 5.60e�6) was

lost in IRF8-depleted cells (r = �0.051, p = 0.627), suggesting

that IRF8 coordinates these two factors (Figures 3F and 3G).

Indeed, IRF8 regulates the expression and activity of IKZF1 in

pre-B cells (Ma et al., 2008; Pang et al., 2016). DNMT3A

depletion altered the coordinated activity of CTCF with other

module 2 factors, including SMAD5 (Figure 3E). Of note, the

loss of co-variation is not dependent on altered accessibility of

each factor, decoupling two mechanisms of TF activity (Figures

3E and S4D).

Similar interactions were observed for other factors (Figures

3H, S4E, and S4F). The effect of perturbation on a module was

summarized as the number of significantly altered correlations

(Figures S4G and S4H; STAR Methods). For example, depletion

of EBF1 resulted in altered correlation of module 2 as well as its

own module 5. The two NF-kB subunits, NFKB1 and RELA, ex-

hibited distinct effects on module 5, which includes NFKB1 and

RELA, while altering module 4 to a similar extent (Figures 3H and

S4E). Finally, depletion of EBER2 altered interactions between

AP-1, IRF, and NFKB, possibly through viral RNA binding and

activation of viral sensors (Figure S4F; Samanta et al., 2006).

Mapping Epistatic Relationships Reveals Cooperative
Functions of trans-Factors in Development and Disease
We generated dual-perturbed cells to analyze epigenetic

epistasis. For each pair of perturbations, we computed an ex-

pected additive change in accessibility at each genomic feature

from single-perturbed cells and compared that value with the

observed accessibility in dual-perturbed cells (Dixit et al.,

2016; Jaitin et al., 2016; Figure 4A; STARMethods). For example,

SPI1 motif sites were unchanged in EBF1-depleted cells,

whereas depletion of SPI1 strongly decreased the accessibility

of these sites (Figure 4B). In cells depleted of both EBF1 and

SPI1, the observed accessibility matched the expected accessi-

bility based on the combined effect of each factor alone, sug-

gesting that these factors do not interact. Conversely, depletion

of either EBER1 or TET2 alone did not affect accessibility at

IKZF1 binding sites, whereas dual depletion resulted in an unex-

pected increase in accessibility (Figure 4B).
(C) Scatterplot of observed versus expected accessibility for epistatic interactions

Dots highlighted in red indicate significantly altered activity in either single or dou

(D) Histogram of background-corrected interaction degree for each feature. Back

associations.

(E) Scatterplots of observed versus expected interactions, highlighting TFAP2A (r

(F) Scatterplot of observed versus expected change in accessibility at H3K27me

(G) Scatterplot of change in accessibility in EZH2 knockdown cells for subsets of H

cell types.

(H) Left: heatmap indicating change in accessibility because of EZH2 depletion at

each specific other cell type. Right: heatmap indicating change in accessibility of

factor (TF).

(I) Workflow to aggregate SNPs associated with autoimmune diseases with 3D c

(J) Heatmap of the absolute change in accessibility for the SNP-contact feature
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We measured the degree of interaction across all genomic

features and categorized features as additive or non-additive

(Figures 4C and 4D). For example, regions containing TFAP2A

motifs were generally regulated by additive interactions (bottom

5% of all features), whereas regions containing JUND motifs

were generally regulated by non-additive interactions (top 5%

of all features) (Figures 4D and 4E).

Similarly, regions marked by the repressive histone modifica-

tion H3K27me3 exhibited a high degree of interaction, particu-

larly involving EZH2, suggesting that other factors may guide

EZH2 recruitment or activity (Figure 4F). Because many EZH2-

interacting factors were B cell lineage-determining TFs (EBF1,

IRF8, and RELA), we reasoned that these interactions may

repress alternate lineages. Indeed, depletion of EZH2 alone pri-

marily de-repressed regions commonly marked by H3K27me3

across cell types, which may not require additional targeting

specificity, whereas dual depletion of EZH2 and other factors

de-repressed regions specifically active in alternate hematopoi-

etic lineages (Figures 4G and 4H). For example, EBF1 cooper-

ated with EZH2 to repress alternate monocyte and natural killer

cell fates, whereas IRF8 and RELA cooperated with EZH2 to

repress progenitor fates (Figure 4H).

Finally, we used Perturb-ATAC to inform regulators of noncod-

ing genetic variants associated with human disease. We exam-

ined 21 autoimmune diseases, a subset of which demonstrate

an enrichment of causal variants in B cell-specific enhancers

(Farh et al., 2015). We measured the effect of each perturbation

on the accessibility of regions proximal to or engaging in chro-

matin contacts with causal variants (Farh et al., 2015; Mumbach

et al., 2017; Figure 4I; STAR Methods). NF-kB binding sites have

been shown to be enriched near causal variants associated with

multiple sclerosis and systemic lupus erythematosus (Farh

et al., 2015), and these sites demonstrated altered accessibility

in cells where NFKB1 or RELA were depleted (Figure 4J).

Although perturbation of NFKB1 did not alter many other variant

enhancers in isolation, dual perturbation of NFKB1 and other

factors modulated accessibility associated with several dis-

eases, demonstrating that Perturb-ATAC uncovers epistatic in-

teractions relevant to development and disease (Figure 4J).

The Regulatory Landscape of Human Epidermal
Differentiation
Dynamic systems such as tissue differentiation present an

opportunity for high-content screens to assess trans-factors

while internally controlling for experimental variation. The human
. Each dot represents a single annotation in the pairing of two perturbed factors.

ble perturbation.

ground distribution was calculated by permuting single and double knockdown

elatively low interaction degree) and JUND (relatively high interaction degree).

3-marked regions in cells depleted of EZH2 and one other factor.

3K27me3 peaks. Common peaks have H3K27me3 marks across a majority of

regions marked by H3K27me3 in GM12878 and exhibiting the H3K27acmark in

the same regions for cells simultaneously depleted of EZH2 and a transcription

hromatin contact regions.

set of each autoimmune disease and perturbation.
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Figure 5. Modules of Transcription Factors Exhibit Distinct Temporal Activity in Epidermal Differentiation

(A) Schematic of human epidermis and cell culture model of epidermal differentiation (Gray, 1918).

(B) t-distributed stochastic neighbor embedding (t-SNE) projection of TF feature activity for epidermal cells labeled by differentiation day (left) or pseudo-

time (right).

(C) Heatmap of cells ordered by pseudotime (columns) versus TF feature activity (filtered for motifs with dynamic activity). Modules represent collections of TF

features with similar temporal profiles. Target genes are proximal (<50 kb) to genomic regions associated with that module.

(D) Top: histogram of pseudotime values for cells from each day of differentiation. Bottom: average accessibility of each module identified in (C).

(E) t-SNE projections showing TF activity dynamics during differentiation.
epidermis is a constantly renewing stratified epithelial tissue,

and thousands of genes change in expression during terminal

epidermal differentiation as progenitor cells migrate from

the basal layer, begin keratinization, and undergo cornification

to form the outer layer of the skin (Lopez-Pajares et al., 2015).

We sought to understand the role of dynamic chromatin in differ-

entiation by perturbing key TFs.

We first assessed the landscape of chromatin accessibility in

keratinocyte differentiation to identify candidate regulators for

Perturb-ATAC. We cultured human primary progenitor keratino-

cytes under differentiation conditions and performed single-cell

ATAC-seq on cells from each of three time points to capture

undifferentiated, mid-differentiation, or late differentiation cells
(Kretz et al., 2013; Figure 5A; STAR Methods). Although cells

largely separated by their differentiation time point, a few

‘‘precocious’’ differentiating cells were observed in the day

0 population, and some day 6 cells remained in a mid-differenti-

ation state (Figure 5B). Placement of each cell along a pseudo-

time trajectory highlighted the continuous nature of differentia-

tion (Figure 5B; Qiu et al., 2017).

We next determined a set of TFs to perturb by identifying highly

dynamic cis-regulatory features. We analyzed the accessibility of

94,633 cis-elements at the level of 411 TF motifs and chromatin

immunoprecipitation sequencing (ChIP-seq) peaks (Schep et al.,

2017). We identified 67 TFs with dynamic accessibility in differen-

tiation that clustered into three modules (Figures 5C and 5D). The
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first module (30 features, including AP-1 and NF-kB) had

high accessibility in progenitor cells that decreased in differentia-

tion. Genes proximal to module 1 regions included AURKB,

a regulator of mitosis, and COL11A1, a component of the

basement membrane. Module 2 (12 features, including CEBP,

KLF, and ZNF750), exhibited high accessibility specifically during

mid-differentiation. (Figure 5B). The genes KRT78, DSG3, and

HOPXwere proximal to module 2 regions, representing programs

of keratinization, cell-cell adhesion, and transcriptional regulation,

respectively. Finally,module3 (25 features) included target regions

of ETS and IRF family factors and gained accessibility in late differ-

entiation. Associated genes included KLK6 and SERPINA12,

a protease and protease inhibitor, respectively, which regulate

coordinated desquamation of cells from the epidermis.

We used this analysis to prioritize candidate TFs for charac-

terization with Perturb-ATAC. For a candidate module 1 regu-

lator, we selected JUNB, an AP-1 family member that controls

epidermal homeostasis and tumorigenesis (Eckert et al., 2013).

We chose three module 2 regulators: KLF4, which induces

epidermal differentiation genes; ZNF750, a factor engaged in

positive and negative gene regulation in epidermal differentia-

tion; and CEBPA, which has a known role in murine epidermis

(Lopez et al., 2009; Sen et al., 2012). As a module 3 regulator,

we chose EHF, an ETS factor implicated in controlling epidermal

differentiation (Rubin et al., 2017). Closer analysis of these

TFs confirmed patterns of dynamic accessibility matching their

module (Figure 5E).

Perturb-ATAC Screen for TF Control of Cellular
Differentiation Trajectories
We developed a second Perturb-ATAC protocol to achieve two

goals: to directly detect the sgRNA rather than a GBC and to

assess CRISPR gene knockouts rather than CRISPRi. In this

workflow, keratinocytes were first transduced with a lentivirus

encoding Cas9 (STAR Methods). Subsequently, Cas9-express-

ing keratinocytes were transduced with either one or two

sgRNAs corresponding to the five TFs (JUNB, KLF4, ZNF750,

CEBPA, and EHF) or two NT control sgRNAs producing both sin-

gle- and double-targeted cells (Figures S5A and S5B; Table S4).

Cells were maintained under undifferentiated culture conditions

for 7–10 days to allow Cas9 disruption of target genes. Pooled

cells were then transferred to differentiation conditions and

harvested on day 3.

To detect sgRNAs, we performed reverse transcription using a

reverse primer that matched the common 30 end of the sgRNA,

followed by PCR amplification using a pool of forward primers

matching the variable 50 ends of the sgRNAs (Figures 6A and

S6A; Table S4). To analyze sgRNA sequencing reads and assign

Perturb-ATAC genotypes to cells, we first set a plate-specific

depth cutoff to remove failed sequencing reactions (Figure S6B).

An average of 87.9%of readsmapped to an sgRNA (Figure S6C).

Cells with high background reads (greater than 1%) were

excluded, and the remaining cells clearly separated into single

or double sgRNA-expressing populations (Figures S6D–S6F).

Altogether, we identified 279 single sgRNA-expressing cells

and 235 double sgRNA-expressing cells encompassing 23

distinct genotypes of all expected individual and double CRISPR

perturbations (Figure 6B; Table S5).
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We identified 399 features altered across TF knockout cells

(FDR < 0.1). These features included multiple instances of TFs

autoregulating their target sites (Figure 6C; Table S6). Notably,

ZNF750 target regions were not uniformly more or less acces-

sible inZNF750-targeted cells, consistentwith the role of this fac-

tor as a positive and negative gene regulator (Boxer et al., 2014).

For example, the ZNF750-bound enhancer of the epidermal cor-

nified envelope gene SPRR2E lost accessibility upon ZNF750

disruption, whereas other ZNF750 binding sites gained accessi-

bility (Figures 6D and S7A). Globally, ZNF750 knockout resulted

in a nearly even total of 649 gained and 620 lost peaks (FDR <

0.01, FC > 1). Module 2 factors, which had highest accessibility

mid-differentiation, displayed diverging roles in differentiation.

For example, perturbation of ZNF750 increased accessibility

at TP63 and NF-kB motif sites, two factors known to regulate

epidermal identity (Yang et al., 2011). In contrast, perturbing

CEBPA decreased accessibility of TP63 and NF-kB features.

An analysis of the perturbed factors and their target regions

uncovered an inter-connected network of regulation (Figure 6E).

To assess how TF perturbation changed cellular differentiation

trajectories, we derived a differentiation pseudotime from wild-

type cells and projected perturbed cells onto this pseudotime

axis (Figures 6F, S7B, and S7C). We also determined how

feature accessibility changed for each of the three regulatory

modules identified in unperturbed cells (Figure 6G). This analysis

revealed a role for CEBPA in initiating differentiation because

CEBPA knockout cells were biased toward an early differentia-

tion state. Correspondingly, CEBPA knockout cells lost accessi-

bility of module 2 features but gained module 1 accessibility,

indicating that CEBPA knockout cells were unable to fully

engage the mid-differentiation program. In contrast, KLF4

knockout cells shifted toward a later differentiation state.

Together, we identified both the regulatory factors responsible

for distinct epidermal states as well as rerouted differentiation

trajectories in response to TF perturbation.

Comprehensive Epistatic Mapping Reveals the Logic of
Regulatory Synergy
We extended our previous findings on epistasis by analyzing

dual knockout cells. Each perturbation-feature pair was scored

as additive (no interaction), synergistic (positive interaction), or

buffering (negative interaction) (Figures 7A, 7B, and S7D). This

workflow identified 344 additive relationships, 102 synergistic

interactions, and 101 buffering interactions. Unlike in other

systems, we observed a weak correlation between the magni-

tude of single perturbation and the degree of genetic interaction

for that feature (Costanzo et al., 2010; Figure S7E).

This investigation revealed surprising interactions in keratino-

cyte differentiation. For instance, JUNB knockout increased

accessibility of CEBP motif sites, whereas dual EHF and JUNB

knockout had a modest effect, reflecting a negative interaction

between EHF and JUNB (Figure 7C). However, JUNB and EHF

did not interact at their respective target sites, suggesting an

indirect effect. When comparing all pairs of targeted TFs, we

noticed disparities in the prevalence of each interaction cate-

gory, with a more than 3-fold variation in the proportion of syner-

gistic interactions (Figure 7D). EHF and JUNB had relatively low

synergy, in contrast to the high synergy observed for EHF and
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Figure 6. Multiplex Knockout Screen of Transcription Factors in Differentiation

(A) Schematic of sgRNA expression vector and library amplification for direct sequencing readout of sgRNA identity.

(B) Heatmap of sgRNAs (columns) versus single cells (rows), indicating the proportion of all reads associated with each sgRNA.

(C) Heatmap of genetic perturbations versus TF features, indicating activity of TF features in perturbed relative to NT cells. Similar motifs fromAP-1, FOX, and ETS

families were merged.

(D) Genomic locus of SPRR2E gene. Perturb-ATAC tracks show the signal from merged single cells receiving each sgRNA. Shown are H3K27ac and ZNF750

ChIP-seq tracks in day 3 differentiating keratinocytes (from Rubin et al., 2017 and Boxer et al., 2014).

(E) Representation of positive and negative regulation between targeted genes and sets of genomic regions. Arrows are shown with FDR < 0.25, and decreasing

transparency is associated with a lower FDR.

(F) Top: heatmap displaying the frequency of cells in eight bins representing progression along the differentiation trajectory. Bottom: heatmap indicating the

enrichment or depletion of cells in each differentiation bin compared with NT cells. For each perturbation, a custom-reduced dimensionality space was created to

highlight altered features.

(G) Heatmap of perturbations (rows) versus modules (columns). For each module, the mean change in feature activity is shown.
ZNF750. This synergy was particularly apparent at motif sites for

TP63, a master regulator of epidermal homeostasis and differen-

tiation, with dual EHF and JUNB knockout cells increasing TP63

accessibility far more than would be predicted from the single

knockouts (Bao et al., 2015; Figure 7C).

We reasoned that a mechanism to explain synergy between

two factors’ regulation of chromatin state could be genomic
co-localization, analogous to the genetic interactions because

of physical protein interactions observed in yeast (Costanzo

et al., 2010). To test this hypothesis, we computed the degree

of genomic overlap for the target regions of each pair of per-

turbed factors (Figure 7E). Indeed, the factor pairs with the

highest prevalence of synergistic interactions exhibited greater

overlap of target sites, consistent with a co-binding model
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Figure 7. Pairs of Perturbations Exhibit Distinct Patterns of Epistatic Interactions

(A) Example representative peak signal for each category of interaction.

(B) Scatterplots of observed versus expected (based on additive model) accessibility in double knockout cells. Only features significantly altered under either

single or double knockout conditions are plotted. Colors indicate the category of interaction.

(C) Left: heatmap of altered activity of features (rows) in EHF, JUNB, or simultaneous EHF and JUNB knockouts along with their expected activity. Right: similar to

left, for EHF and ZNF750 knockouts.

(D) Proportion of interacting features in each category. Each column represents a pair of targeted genes. Only features altered in either the single or double

perturbation are considered.

(legend continued on next page)
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(Spearman’s correlation = 0.4). Beyond this, we reasoned that

coordinated patterns of gene expression across cell states could

indicate that two factors act in similar pathways and, thus, may

interact and calculated the correlation of expression between

all pairs of TFs studied across a diverse set of tissues. Interest-

ingly, correlated gene expression was associated with synergy

(Spearman’s correlation = 0.358), exemplified by KLF4 and

JUNB,which exhibit the second-greatest degree of synergy (Fig-

ure 7E). This result may reflect the need for strict regulation of

cooperative TF expression across tissues to achieve distinct

cell states.

To further explore the relationship between genomic co-

binding and synergy, we closely examined KLF4 and ZNF750,

which exhibited a high degree of target region overlap.We asked

whether the specific genomic regions at which synergy was

observed were bound by both factors. Using ChIP-seq data

(Boxer et al., 2014), we observed that these 916 regions were,

in fact, commonly bound by both factors, providing strong sup-

port for the model that co-binding underlies epistatic interaction

(Figures 7F and 7G).

DISCUSSION

Previous high-throughput genetic screens have largely relied on

the introduction of genetic variants in a population of cells (for

example, using CRISPR/Cas9), followed by selection of cells

containing variants that confer a limited set of cellular pheno-

types, such as increased cell growth or viability. However, iden-

tifying genetic variants that regulate genome-wide chromatin

states, which are challenging to isolate with standard selection

protocols, requires focused experiments, where candidate fac-

tors are perturbed one by one. Here we address this challenge

by achieving simultaneous measurements of perturbations and

ATAC-seq profiles in single cells. We applied this method to

determine the roles of a diverse set of trans-regulatory factors,

including TFs, chromatin modifiers, and human and viral

ncRNAs. Analysis of Perturb-ATAC data enabled the study of

several layers of chromatin regulation: individual cis-regulatory

elements, inferred TF activity from cis-regulatory modules, and

nucleosome positioning and occupancy. Therefore, Perturb-

ATAC may be particularly well suited for examination of the

precise molecular switches in the noncoding genome that un-

derlie cell state compared with existing methods that pair

whole-transcriptome profiles with perturbations in single cells.

We analyzed 63 genotypes using �4,300 single cells

(�70 cells/genotype) to over-shoot the number of cells required

to reliably measure the effects of perturbations. We suggest that

future screens target fewer cells per genotype (20) while expand-

ing the number of genotypes assayed. Using our microfluidic

platform, this strategy should enable screening of 150 genotypes

in 3,000 cells. However, we foresee technological improvements

that will enable higher throughput and more complex experi-
(E) Top: heatmaps indicating significance of genomic overlap (hypergeometric t

displayed in (D). Bottom: heatmap displaying relative RNA expression of KLF4 a

(F) Left: heatmap indicating relative accessibility of genomic regions (rows) with sy

of the ChIP-seq signal for KLF4 and ZNF750 at regions displayed on the left.

(G) Model of KLF4 and ZNF750 redundancy in maintaining accessibility at co-oc
mental designs. For example, this methodology should be

adaptable to additional high-throughput methods for single-

cell ATAC-seq, such as single-cell FACS (Chen et al., 2018b,

2018a), the split pool approach (Cusanovich et al., 2015, 2018),

or nano-well or droplet-based methods (Mezger et al., 2018).

We designed the Perturb-ATACplatform to be compatiblewith

widely used CRISPR constructs, and therefore, we hope that it

will be easily adaptable to existing screens in diverse systems.

The ability to detect targeted RNA sequences could be easily

adapted to detect alternative CRISPR constructs and classes

of targets, such as orthogonal CRISPR guide RNAs, which could

simultaneously regulate target gene activation and repression in

the samecell (Boettcher et al., 2018;Najmet al., 2018). In addition

to perturbation of trans-regulatory factors, this system could also

be used to target individual cis-regulatory elements; for example,

to study the local effects of enhancer targeting on the expres-

sion of local genes. This approach may be useful to dissect loci

where both cis-regulatory elements and ncRNA transcripts

have been shown to have effects on gene expression (Engreitz

et al., 2016; Cho et al., 2018). Perturb-ATAC provides a high-

throughput platform to link genotypes with epigenetic pheno-

types and ultimately reveal molecular mechanisms that govern

cell fate and function through modulation of the chromatin state.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
est)

nd J

ner

cup
B GM12878 cell line culture

B Human keratinocyte isolation and culture

d METHOD DETAILS

B CRISPRi targeting in GM12878

B Culture, differentiation, and CRISPR knockout in pri-

mary keratinocytes

B Bulk ATAC-seq

B Single-cell ATAC-seq

B Perturb ATAC-seq

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Single cell and bulk ATAC primary processing and

chromVAR analysis

B Guide barcode sequencing analysis for GM12878

experiments

B Direct sgRNA sequencing and analysis for keratinocyte

experiments

B Identification of differentially accessible genomic fea-

tures and regions

B Statistical analysis of SPI1 motif-containing region

accessibility in SPI1-depleted cells
or correlation of gene expression for pairs of TFs corresponding to pairs

UNB across tissues from the Roadmap Epigenomics Project.

gistic behavior in KLF4 and ZNF750 double knockout cells. Right: heatmap

ied loci.

Cell 176, 361–376, January 10, 2019 373



374
B Inferred nucleosome and sub-nucleosome profiles and

score calculation

B Analysis of inferred regulatory networks

B Analysis of epistasis for accessibility of genomic

features

B Analysis of tissue H3K27me3 and autoimmune-associ-

ated SNPs

B Pseudotime calculation and identification of feature

modules

B Altered differentiation trajectory and module activity

analyses

d DATA AND SOFTWARE AVAILABILITY
SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and six tables and can be

found with this article online at https://doi.org/10.1016/j.cell.2018.11.022.
ACKNOWLEDGMENTS

We thank the members of the Khavari, Chang, and Greenleaf laboratories for

helpful discussions. This work was supported by the Veterans Affairs Office of

Research and Development (to P.A.K.), the NIH (AR45192 and AR43799 to

P.A.K., P50-HG007735 to H.Y.C. and W.J.G., and R35-CA209919 to

H.Y.C.), the Parker Institute for Cancer Immunotherapy (to A.T.S. and

H.Y.C.), and the SclerodermaResearch Foundation (to H.Y.C.). A.J.Rwas sup-

ported by a Stanford Bio-X fellowship. K.R.P was supported by a Stanford

graduate fellowship. A.T.S. was supported by a Parker Bridge Scholar Award

from the Parker Institute for Cancer Immunotherapy and a Career Award for

Medical Scientists from the BurroughsWellcome Fund. W.J.G is a Chan Zuck-

erberg Biohub investigator. H.Y.C. is an investigator of the Howard Hughes

Medical Institute.
AUTHOR CONTRIBUTIONS

A.J.R., A.T.S., H.Y.C., and P.A.K. conceived the project. A.J.R., K.R.P., A.T.S.,

Y.Q., B.W., A.J.O., D.S.K., A.L.J., S.W.C., B.J.Z., and M.R.M. performed the

experiments and analyzed data. P.A.K., H.Y.C., and W.J.G. guided the exper-

iments and data analysis. A.J.R., K.R.P., A.T.S., H.Y.C., and P.A.K. wrote the

manuscript with input from all authors.
DECLARATION OF INTERESTS

H.Y.C. and W.J.G. are scientific co-founders of Epinomics. H.Y.C. is a co-

founder of Accent Therapeutics and a consultant for 10XGenomics and Spring

Discovery. Stanford has filed a provisional patent on ATAC-seq; H.Y.C. and

W.J.G. are listed as inventors.

Received: June 27, 2018

Revised: September 12, 2018

Accepted: November 12, 2018

Published: December 20, 2018

REFERENCES

Adamson, B., Norman, T.M., Jost, M., Cho, M.Y., Nuñez, J.K., Chen, Y.,
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Paul A.

Khavari (khavari@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

GM12878 cell line culture
GM12878 (female) were maintained in RPMI 1640 (Thermo Fisher) with 10% FBS and 1% Penicillin-Streptomycin (Thermo Fisher) at

37�C with 5% CO2. Cells stably expressing dCas9-KRAB-BFP were generated previously (Mumbach et al., 2017) and originally

purchased from the Coriell Institute for Medical Research. Briefly, GM12878 cells were transduced with lentivirus containing a

dCas9-BFP-KRAB-2A-Blast construct and subsequently selected for blasticidin resistance. Cells were maintained between

200,000 to 1 million cells/mL during routine culture.

Human keratinocyte isolation and culture
Primary human keratinocytes were isolated from fresh, surgically discarded neonatal foreskin. All human cells were collected and

analyzed by protocols approved by the Stanford Human Subjects Institutional Review Board and in accordance with the NIH

genomic data sharing policy Keratinocytes were maintained in a 1:1 mixture of Keratinocyte-SFM (Thermo Fisher) and Medium

154 (Thermo Fisher). Keratinocyte differentiation was induced by the addition of 1.2 mM calcium for 3 or 6 days at full confluence.

METHOD DETAILS

CRISPRi targeting in GM12878
To generate the Perturb-ATAC vector with guide barcodes used in the GM12878 experiments, we modified previously-described

CRISPRi vectors (Adamson et al., 2016; Cho et al., 2018). Briefly, we designed three sgRNAs per target gene, each targeting a
e2 Cell 176, 361–376.e1–e8, January 10, 2019
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different region between the transcriptional start site and 200 nucleotides into the gene body. Guides were designed using the

CRISPOR online tool (http://crispor.tefor.net/) and chosen to minimize the number of genomic loci with 0-4 mismatches, with

the intention of minimizing the chance for any off-target CRISPRi activity. For the prediction of repressive activity at mismatch

loci, empirical observations of how sgRNA mismatches at various positions in the sgRNA affect the activity of the dCas9-KRAB

construct were used to calculate a predicted fraction of repressive activity relative to the on-target locus (Qi et al., 2013). As observed

in Qi et al. (2013), a multiplicative model was used, where the total repressive activity of sgRNAs at loci with multiple mismatches is

equal to the product of the predicted loss of activity from each mismatch (i.e., multiple sgRNA mismatches inhibit repressive activity

to a greater extent than the sum of the degree to which each individual mismatch reduces activity).

One sgRNA each was cloned into pMJ114 (bovine U6, Addgene, Cat#85995), pMJ117 (human U6, Addgene, Cat#85997) or

pMJ179 (mouse U6, Addgene, Cat#85996), digested with BstXI and BlpI, using NEBuilder Hifi DNA Assembly Master Mix. Then

the respective U6 promoter and sgRNA sequences were amplified by PCR and assembled into the lentiviral vector (digested using

XbaI and XhoI) using NEBuilder Hifi DNA Assembly Master Mix. Subsequently, individual colonies for each 3x sgRNA plasmid were

digested using PciI and EcoRI, and a randomized 22 bp barcode (ordered from IDT as 50-[overhang][NNN.][overhang]-30) was

assembled with NEBuilder Hifi DNA Assembly Master Mix. The sgRNA sequences and GBC sequences of all plasmids were

confirmed by Sanger sequencing.

To generate CRISPRi virus, we used HEK293T cells (Clontech Lenti-X) maintained in DMEM (Thermo Fisher) with 10% FBS, 1%

Pen-Strep. Cells were seeded at 4 million per 10cm dish, and the following day transfected with 4.5ug pMP.G, 1.5ug psPAX2, and

6ug sgRNA vector usingOptiMEMand Lipofectamine 3000. Two days later, the supernatant was collected and filtered with a 0.44 mm

filter, and virus was concentrated 1:10 using Lenti-X Concentrator (Clontech).

GM12878 maintained in RPMI 1640 (Thermo Fisher) with 10% FBS and 1% Penicillin-Streptomycin (Thermo Fisher) were then

seeded at 300,000 cells per well of a 6-well plate and 40ul of concentrated virus was added to the media the following day. Two

days later, we exchanged the media for media containing 1ug/ml puromycin to select for the sgRNA vector. Selection media was

refreshed on day five, and on day seven cells selection media was exchanged for regular media (containing no puromycin) and cells

were either assayed or frozen in viable conditions with BamBanker cryopreservation media. Cells were sorted by flow cytometry

for viability and expression of mCherry before being assayed by Perturb ATAC-seq. Cells were maintained between 200,000 and

1 million per mL. RNA was extracted with Trizol and purified using QIAGEN RNeasy columns, and gene expression knockdown

was confirmed using the Agilent Brilliant II qRT-PCR 1-Step kit. qRT-PCR was performed in duplicate, and expression values for

each sample were normalized against 18S. Gene expression values for CRISPRi are reported as average fold change against

both non-targeting control samples.

Culture, differentiation, and CRISPR knockout in primary keratinocytes
We generated custom Cas9 and sgRNA expression vectors for CRISPR knockout in keratinocytes. For Cas9 expression, we amplified

theCas9 gene from the lentiCRISPRv2 vector (Sanjana et al., 2014) and cloned this fragment into pLex-MCS (ThermoFisher) alongwith

a fusion P2A-blasticidin resistance cassette in exchange for the IRES-puromycin resistance cassette in pLex-MCS. For sgRNAexpres-

sion, we modified the sgRNA F+E scaffold (Chen et al., 2013; https://www.addgene.org/59986/) in two ways. First, we exchanged the

murine U6 promoter and telomerase-targeting sgRNAwith the humanU6 promoter, stuffer region, and associated BsmBI cloning sites

from lentiCRISPRv2. Additionally, we removed a BsmBI restriction site in the puromycin resistance gene by introducing a non-synon-

ymous mutation. These vectors are available from Addgene as pLex_Cas9 (Plasmid #117987) and pLentiGuide (Plasmid #117986).

To generate lentivirus, we seeded 400,000 HEK293T cells into a single well of a 6-well dish, and the following day we transfected

either our Cas9 vector or sgRNA vector (1.3 ug) along with pMDG (0.3 ug) and p8.91 (1 ug) using Lipofectamine 3000 (Thermo Fisher).

Supernatant was collected at 48hrs and 72 hr, filtered through a 0.45um PES membrane, and concentrated to a pellet with Lenti-X

Concentrator. One unit of Cas9 virus corresponded to the concentrated supernatant from one 6-well of HEK293T. One unit of sgRNA

virus corresponded to one eighth of the concentrated supernatant from one 6-well of HEK293T.

Primary keratinocytes were seeded at 300,000 cells per well of a 6-well dish along with one unit of Cas9 virus and polybrene

(0.1 ug/ml). After one day, two wells were harvested, mixed, and expanded into a 15cm dish containing normal culture media

with 2ug/ml blasticidin. After four to six days of selection, cells were again seeded at 300,000 cells per well of a 6-well dish along

with one unit of sgRNA virus and polybrene (0.1 ug/ml). After one day, one well was harvested and transferred to a 15cm dish

containing normal culture media, puromycin (1 ug/ml) and blasticidin (2 ug/ml). After six days of selection, cells were seeded at

high confluence with 1.2 mM calcium for differentiation. Cells were harvested after three days of differentiation and viably frozen

in culture media with 10% DMSO.

Cas9 nuclease activity was assessed by PCR amplifying �800bp fragments of cDNA surrounding sgRNA binding sites and

analyzing the resulting fragments by Sanger sequencing (oligo sequences in Table S4). Images depicted in Figure S6 were generated

using Geneious 7.1.4. cDNA was generated by extracting RNA from cells with the RNeasy Mini Kit (QIAGEN) and performing reverse

transcription with the iScript cDNA Synthesis Kit (Bio-Rad).

Bulk ATAC-seq
Cells were isolated and subjected to ATAC-seq as previously described (Corces et al., 2017). Briefly, 50,000 cells were pelleted after

sorting and resuspended in 50ul of ATAC resuspension buffer (RSB) with 0.1% NP40, 0.1% Tween-20, and 0.01% digitonin. After
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three minutes, 1ml of ATAC RSB with 0.1% Tween-20 was added, tubes were inverted, and nuclei were centrifuged at 500 rcf. for

10min. Supernatant was carefully removed and nuclei were resuspended in 50ul transpositionmix (25ul TD buffer, 2.5ul transposase,

16.5ul PBS, 0.5ul 0.1% digitonin, 0.5ul 10% Tween-20, and 5ul water). Transposition was performed for 30 minutes at 37 C with

shaking in a thermomixer at 1000 RPM. Reactions were purified with a Zymo DNA Clean & Concentrator 5 kit and library generation

was performed as described previously (Corces et al., 2017).

Single-cell ATAC-seq
Single-cell ATAC-seq was performed as previously described (Buenrostro et al., 2015). In brief, cells were sorted by flow cytometry

for viability and to remove cell aggregates. The C1 Single-Cell Auto Prep System was used with the Open App program (Fluidigm).

The Open App scripts from the ‘‘ATAC Seq’’ collection from Fluidigm were used to prime the C1 IFCmicrofluidic chip, load cells, and

run the ATAC sample prep protocol. Fluidigm scripts are available from Fluidigm Script Hub, https://www.fluidigm.com/c1openapp/

scripthub.

Perturb ATAC-seq
Cell isolation and microfluidic reactions on the IFC

We adapted the C1 Single-Cell Auto Prep Systemwith its Open App program (Fluidigm) to perform Perturb-ATAC-seq. C1 IFCmicro-

fluidic chips were first primed by following the Open App script ‘‘Biomodal Single-Cell Genomics: Prime.’’ Single cells were then

captured using the Fluidigm Open App script ‘‘Biomodal Single-Cell Genomics: Cell Load.’’ GM12878 or keratinocyte cells were first

isolated by FACS sorting and then washed three times in C1 DNA Seq Cell Wash Buffer (Fluidigm). Cells were resuspended in DNA

Seq Cell Wash Buffer at a concentration of 300 cells/mL and mixed with C1 Cell Suspension Reagent at a ratio of 3:2 (cells:reagent).

15 ml of this cell mix was loaded onto the IFC. After cell loading, all wells were visualized by imaging on a Leica CTR 6000microscope

to identify captured cells.

Cells were then subjected sequentially to lysis and transposition, transposase release, quenching with MgCl2, reverse transcrip-

tion, and PCR, using the customOpen App IFC script ‘‘Biomodal Single-Cell Omics: Sample Prep.’’ For lysis and transposition, 30 mL

of Tn5 transposition mix was prepared (22.5 mL 2x TD buffer, 2.25 mL transposase (Nextera DNA Sample Prep Kit, Illumina), 2.25 mL

C1 Loading Reagent without salt (Fluidigm), 0.45 mL 10% NP40, 2.25 mL SuperaseIN RNase inhibitor, and 0.3 mL water). For trans-

posase release, 20 mL of Tn5 release buffer mix was prepared (2 mL 500 mM EDTA, 1 mL C1 Loading Reagent without salt, and 17 mL

10mMTris-HCl Buffer, pH 8). ForMgCl2 quenching, 20 mL ofMgCl2 quenching buffermix was prepared (18 mL 50mMMgCl2, 1 mLC1

Loading Reagent without salt, and 1 mL 10 mM Tris-HCl Buffer, pH 8). For reverse transcription, 30 mL of RT mix was prepared

(15.55 mL H20, 3.7 mL 10x Sensiscript RT buffer (QIAGEN), 3.7 mL 5 mM dNTPs, 1.5 mL C1 Loading Reagent without salt (Fluidigm),

1.85 mL Sensiscript RT (QIAGEN), and 3.7 mL 6 mMRT primer mix (6uM each of V1 GBC sequencing oligos or 6uM each of V1 sgRNA

sequencing oligos, see Tables S1 and S4 for oligo sequences). Finally, for ATAC and GBC/sgRNA PCR, 30uL of PCR mix was pre-

pared (8.62 mL H20, 13.4 mL 5x Q5 polymerase buffer (NEB), 1.2 mL 5 mMdNTPs, 1.5 mL C1 Loading Reagent without salt, 0.67 mL Q5

polymerase (2U/mL; NEB), 0.8 mL 25 mM non-indexed custom Nextera ATAC-seq PCR primer 1, 0.8 mL 25 mM non-indexed custom

Nextera ATAC-seq primer 2, and 3 mL 6 mM GBC or sgRNA primer mix.

7 mL lysis and transposition mix, 7 mL transposase release buffer, 7 mL MgCl2 quenching buffer, 24 mL RT mix, and 24 mL PCR mix

were added to the IFC inlets. On the IFC, Tn5 lysis and transposition reaction was carried out for 30minutes at 37�. Next, transposase
release was carried out for 30min at 50�C.MgCl2 quenching buffer was immediately added and chamber contents were immediately

incubated with RT mix for 30 minutes at 50�C. Finally, gap filling and 8 cycles of PCR were performed using the following conditions:

72�C for 5min and then thermocycling at 94�C for 30 s, 62�C for 60 s, and 72�C for 60 s. The amplified transposedDNAwas harvested

in a total of 13.5 mL C1 Harvest Reagent. Following completion of the on-chip protocol (�4-5hrs), chamber contents were transferred

to 96-well PCR plates, mixed, and divided for further amplification of ATAC-seq fragments (6-7 ml) or GBC/sgRNA fragments (6.5 ml).

For method development and RT primer troubleshooting, the Perturb-ATAC-seq protocol can be exactly scaled 1000x and

performed on 1000 cells in Eppendorf tubes. Following lysis, transposition, and transposase release, RNA can be reverse-tran-

scribed and subjected to PCR amplification to check the amplification efficiency and specificity of a chosen primer set.

Amplification of ATAC-seq libraries

�7 mL of harvested libraries were amplified in 50 mL PCR for an additional 15 cycles with 1.25 mMNextera dual-index PCR primers in

1x NEBnext High-Fidelity PCR Master Mix using the following PCR conditions: 72�C for 5 min; 98�C for 30 s; and thermocycling

at 98�C for 10 s, 72�C for 30 s, and 72�C for 1 min. The PCR products were pooled and purified on a single MinElute PCR purification

column (QIAGEN). Libraries were quantified using qPCR (Kapa Library Quantification Kit for Illumina, Roche) prior to sequencing

using 2x76bp paired-end reads on an Illumina NextSeq 550 or 2x75bp reads on an Illumina MiSeq.

Amplification of guide barcode and guide RNA sequencing libraries

Three rounds of off-C1 PCRwere performed to generate GBC and sgRNA sequencing libraries (See Tables S1 and S3 for V1,V2, and

V3 oligo sequences). First (V1 PCR), 6.5ul of harvested libraries were amplified in a 20 ul PCR (harvested DNA with 10ul NEBNext

Master Mix, 0.1 ul of each V1 primer at 200uM, and remaining volume of water). Reactions amplified for 17 cycles with the following

parameters: 98 C for 30 s, then cycling of 98 C for 10 s, 63 C for 30 s, and 72 C for 45 s, followed by 72 C for 5 min. Second, 2ul of the

V1 PCR product (without purification) was transferred to a subsequent 20ul reaction with 10ul NEBNext Master Mix, 0.1 ul of each V2

primer at 200uM, and remaining volume of water. Reactions were amplified for 15 cycles using the same parameters used for V1
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reactions. A final 20ul V3 cell indexing PCRwas performed using 2ul of the V2 reaction product, 2ul each of Illumina Indexing primers

at 10 uM, 10ul NEBNext Master Mix, and the remaining volume of water. Reactions were amplified for 15 cycles using the same

parameters used for V1 and V2 reactions.

Finally, V3 reactions were pooled and purified using the QIAGEN MinElute kit. Libraries were further purified by size selection on

polyacrylamide gel electrophoresis (6% TBE Novex gel, Thermo Fisher). Libraries were mixed with BlueJuice loading dye (Thermo

Fisher), run for 35 min at 160 V and visualized using SybrSafe stain (Thermo Fisher), using 5ul of stain in 30ml of TBE running buffer

for 10 min. Gels were visualized on a blue-light transilluminator and slices in size range for GBC library fragments (289 bp) or sgRNA

library fragments (232 bp) were cut using a scalpel. Gel sliceswere placed in a 0.75ml tubewith a hole punctured in the bottom using a

syringe, and this tube was placed in a 1.5ml DNA LoBind tube (Eppendorf). These tubes were centrifuged for 3 min at 13k RPM to

crush the gel slice, then 300ul Salt Crush Buffer (500mMNaCl, 1mMEDTA, 0.05%SDS) was added and thismix was incubated at 55

C overnight in a thermomixer with 1000RPMshaking. The next day, sampleswere cooled to RT, centrifuged through a Spin-X column

(one minute, 13k RPM), and purified with a Zymo DNA Clean & Concentrator 5 kit. Libraries were quantified by qPCR (Kapa Library

Quantification Kit for Illumina, Roche) before sequencing on an Illumina MiSeq at 10-14 pM final concentration with 15%–40% PhiX.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single cell and bulk ATAC primary processing and chromVAR analysis
Single cell and bulk ATAC read alignment, quality filtering, and duplicate removal were performed as previously described

(Buenrostro et al., 2015). Briefly, adaptor sequences were trimmed, sequences were mapped to the hg19 reference genome using

Bowtie2 (Langmead and Salzberg, 2012; and the parameter -X2000), and PCR duplicates were removed using Picard Tools. Reads

mapping to the mitochondria were discarded for further analysis. We observed an extremely low rate of ATAC reads matching the

CRISPR viral construct (median 0.0049%) and found no evidence of the abundance of CRISPR construct matching reads influencing

epigenomic profiles.

Single cell ATAC-seq calculation of TF deviation was performed using chromVAR (in R, version 1.1.1; Schep et al., 2017). Briefly, for

each TF, ‘raw accessibility deviations’ were computed by subtracting the expected number of ATAC-seq reads in peaks for a given

motif from the observed number of ATAC-seq reads in peaks for each single cell. Expected reads were calculated from the

population average of all cells for the GM12878 experiment and unperturbed cells only for the keratinocyte experiment. This value

is subtracted by the mean deviation calculated for sets of ATAC-seq peaks with similar accessibility and GC content to obtain a

bias-corrected deviation value, and additionally divided by standard deviation of the deviation calculated for the background sets

to obtain a Z-score.

For the GM12878 experiments, we used a set of peaks derived from DNase I hypersensitivity data (downloaded from http://

genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeUwDnase) from a broad variety of hemopoietic cell lines (all GM lines,

HL-60, Th1, Jurkat, K562) plus additional lines (HepG2, HUVEC, NHEK), to account for the possibility of opening peaks outside the

blood lineage. These peaks were each filtered against the wgEncodeDacMapabilityConsensusExcludable.bed blacklist, sorted by

intensity, and the top 75,000 peaks for each sample weremerged. These peaks were then centered and resized to 1kb uniform peaks

(238,349 final peaks).

For the keratinocyte experiment, we merged peaks called on bulk ATAC-seq from undifferentiated cells and cells differentiated

for three or six days (processed bulk ATAC-seq reads available from the ENCODE project portal: https://www.encodeproject.org/

treatment-time-series/ENCSR968JDE/). Peaks were called using the MACS2 command macs2 callpeak–nomodel –nolambda –-call-

summits–shift �75–extsize 150 (Zhang et al., 2008). First, peaks with q-value < 0.01 from each day were merged. In the case of over-

lapping peaks, the summit associatedwith the lowest q-value was selected as themerged peak summit, and the 1kbwindow centered

on that summit was used as the uniform peak for chromVAR (94,633 final peaks).

For GM1878 analysis, narrowPeak ChIP-seq files (optimal IDR thresholded peaks) were downloaded from ENCODE

and imported as supplementary annotations in chromVAR. Prior to use, these files were filtered against the

wgEncodeDacMapabilityConsensusExcludable.bed blacklist. H3K27me3 and H3K27ac narrowPeak files for different tissues

were downloaded from the Roadmap Epigenomics website (http://www.roadmapepigenomics.org/data/).

Guide barcode sequencing analysis for GM12878 experiments
For GM12878 experiments, raw reads for GBC libraries were matched to a list of GBC sequences to generate a table of counts for

each cell and each GBC analyzed in the experiment (see Figure S1, custom scripts written in Python available upon request). First,

any read not containing the expected 27 nt sequence prior to the GBCwas discarded, allowing for a maximum Levenshtein distance

of 2 to account for sequencing errors. The subsequent 22 nt sequence was then compared to a list of GBC sequences, allowing for a

maximum Levenshtein distance of 3 to be considered a match. Note that the minimum Levenshtein distance between any two of our

GBC sequences was 10. This generated a counts-per-cell table for each GBC sequence and cell.

This table was normalized for read depth by plate by assessing the maximum density of log-transformed counts using the

scipy.stats.gaussian_kde function (see Figure S1C). This distribution exhibits a bimodal distribution corresponding to wells with

productive and unproductive GBC detection. A normalized GBC read cutoff of 1000 reads/cell was set (Figure 2A, this was

empirically determined based off the separation between wells with and without a cell capture). Cells displaying high background
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reads, as determined by having greater than 0.005 proportion reads not aligning to the top two GBC sequences, were further filtered

(this cutoff was set from empirical observations of ‘‘background’’ in doublet wells, which are expected to contain up to four GBC

sequences; Figure S1C). We distinguished cells expressing a single or double sgRNAs based off the percent of reads aligning to

the second-most common GBC (single, < 1% double, > 5%). This workflow resulted in far more double-targeted cells than would

be observed solely from the observed doublet rate calculated from the appearance of double GBC-expressing cells in our initial

single-targeting experiment (�2.9%). t-SNE plots shown in Figure S2 were generated using the manifold. t-SNE function in the

Python package scikit-learn.

We empirically determined a target minimum cell number required for analysis by down-sampling cells from a larger pool and

comparing accessibility profiles. This analysis indicated that the vast majority of samples of five cells were highly correlated

(r > 0.8) with a bulk ATAC-seq profile. Additionally, previous reports have shown that aggregation of five or more cells is sufficient

to accurately reproduce chromatin accessibility profiles (Satpathy et al., 2018; Schep et al., 2017). In line with these findings, we

designed Perturb-ATAC experiments to yield the maximal number of genotypes supported by at least five cells; indeed 38/40 geno-

types for GM12878 cells and 23/23 genotypes for keratinocytes consist of greater than five cells.

Direct sgRNA sequencing and analysis for keratinocyte experiments
For keratinocyte experiments, raw reads for sgRNA sequencing were matched to a list of sgRNA sequences used in the experiment.

We required strict matching of the 20bp variable sequence along with 18bp of the standard sgRNA backbone. Matching was per-

formed with custom scripts (available upon request) and resulted in the counts-per-cell table for each sgRNA.

We then normalized this table for read depth by assessing the plate-specific distribution of log-transformed total counts per cell

(Figure S6). The collection of counts per cell exhibited a bimodal distribution likely corresponding to productive and failed sgRNA

detection. We drew a cutoff in between the two modes as a first filter, and further required cells to exhibit low background (reads

associated with the third most common sgRNA in each cell). Cells with greater than 1% of reads associated with background

were excluded from analysis. Finally, we distinguished cells expressing one or two sgRNAs based on the distribution of proportions

of reads associated with the secondmost common sgRNA in each cell. Cells with fewer than 1%of reads associated with the second

most common sgRNA formed a clear mode in this distribution and were considered to express only the most common sgRNA, while

cells with greater than 10% of reads associated with the secondmost common sgRNAwere considered to express both the first and

second most common sgRNAs.

Identification of differentially accessible genomic features and regions
We generated an empirical null distribution of accessibility values for each feature in order to assess the significance of any observed

difference between mean accessibility in a set of perturbed cells compared to cells expressing non-targeting control sgRNAs. For

each genomic feature (peak or chromVARmotif/annotation), we first calculated themedian deviation z-score (for chromVAR features)

or fragment counts (for peaks) in cells expressing each sgRNA or combination of sgRNAs. Cells expressing a targeting sgRNA

in combination with a non-targeting sgRNA were analyzed with targeting sgRNA-only cells. With the goal of assessing the null

hypothesis that targeting and non-targeting cells exhibit the same accessibility, we pooled equal numbers of cells from targeting

and non-targeting cells. This population was then randomly divided into two sets by permuting the cell-genotype labels, and the

permuted median accessibility difference of these two populations were compared to the observed median accessibility difference.

This process was repeated 5000 times to generate a null distribution, and the rate of detecting a median accessibility difference

as extreme or greater in the null distribution compared to the observed targeting cells was reported as the false discovery rate

(FDR). The network representation of altered features in Figure 6E was generated using Cytoscape v3.1.0.

Differentially accessible regions were found using a similar approach with the exception that we limited the set of total regions

under consideration to those exhibiting at least one read per five cells in one of the conditions under consideration for each compar-

ison. Genome browser tracks of differentially accessible regions were generated by pooling cells associated with a particular sgRNA

genotype. We first generated bedGraph files scaled to 500,000 reads using the genomeCoverageBed tool (BedTools v2.17.0) then

generated bigWig files using the bedGraphToBigWig tool from UCSC (http://hgdownload.soe.ucsc.edu/admin/exe/). Tracks were

finally displayed in the WashU Epigenome Browser.

Statistical analysis of SPI1 motif-containing region accessibility in SPI1-depleted cells
For Figure 1G, we determined an empirical false discovery rate for the observed changes in SPI1 motif region accessibility. For

bulk-ATAC and Perturb-ATAC samples separately, we calculated the z-score of the SPI1 motif accessibility change in perturbed

cells compared to all other features. Then to generate a null distribution, we permuted the sample labels between Non-targeting #1,

Non-targeting #2, and SPI1-targeting 1000 times and in each trial recorded the z-score of SPI1 motif change in accessibility

compared to the non-targeting controls. In this analysis, for both bulk-ATAC and Perturb-ATAC, no trial yielded a result as extreme

as the result observed in the unpermuted sample.

Inferred nucleosome and sub-nucleosome profiles and score calculation
The aggregate profiles of nucleosomal signals at differentially accessible regions were derived from total ATAC fragments as

described previously (Bao et al., 2015). Briefly, ATAC fragments sized 180-247bp were considered nucleosome-spanning and
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used to infer positions of nucleosomes in aggregate locus profiles (metaplots). Differentially accessible regions were centered based

on the signal summit as identified by Macs2 (using the flags –-call-summits–shift �75–extsize 150) and filtered for an FDR < 0.1 and

log2 fold change > 1. We then calculated the fragment count in 10bp windows spanning 1000 bp upstream and downstream of the

region summit. These profiles were normalized to the average signal in the 25 downstreamwindows to account for sequencing depth

and the resulting enrichment values were smoothed in R using the smooth.spline() function with parameter spar = 0.5.

To quantify the presence of peak central versus flanking nucleosome in each metaplot, we calculated the ratio of flanking nucle-

osome signal density (�180 to �80bp relative to peak summit and +80 to +180bp relative to peak summit) to central nucleosome

signal density (�20 to +20bp relative to peak summit). We report this ratio as the central nucleosome score.

Analysis of inferred regulatory networks
To identify sets of genomic features whose activities were correlated across single cells, suggestive of shared regulatory relation-

ships, we computed the Pearson correlation of each feature with each other feature across all single cells of a given genotype.

Only features that were significantly altered in at least one genotype were considered, and redundant annotations were removed,

resulting in 390 motif/ChIP feature annotations for analysis. Ward’s hierarchical clustering was performed and features displaying

low intra-cluster correlation were excluded from further analysis (Figure S4A). The modules shown in subsequent analysis were

defined based off Ward’s hierarchical clustering of the remaining features in non-targeting cells. Clustering was performed using

the Seaborn clustermap function using Ward’s method for clustering.

For each Perturb-ATAC genotype, the feature-feature correlation across single cells was computed. The difference in correlation

between a given genotype and non-targeting cells was computed by subtracting the Pearson correlation in the respective genotype

from non-targeting cells. A permutation test was used to assess the significance of the observed change in correlation for any pair

of features. For each genotype, the same number of cells was randomly sampled from all perturbed cells 10,000 times, and the

changes in correlation in the randomly sampled cells relative to non-targeting cells were used to create a null distribution for each

feature-feature pair (in each genotype). A 5% cutoff was used to call significantly altered correlations. To quantify module-level

changes in regulatory relationships, we quantified the percent of all feature-feature pairs in a given module whose correlations

were significantly altered.

Analysis of epistasis for accessibility of genomic features
We assessed the degree of epistasis in double perturbation conditions by comparing observed phenotypes in double perturbation

conditions to phenotypes expected based on a model of non-interaction. For this analysis, we scored the accessibility of genomic

features based on the sum of raw reads accumulating in peaks associated with that feature in each cell. Feature counts were normal-

ized by the total number of reads for features in each cell and log2-transformed with the addition of a pseudocount. For each collec-

tion of cells sharing a genotype, the mean value of log2 counts was compared to the mean value of log2 counts for a mix of cells

expressing non-targeting sgRNAs, resulting in a log2 (fold change of perturbation versus non-targeting). The additive expectation

was based on a multiplicative model of non-interaction, (i.e., CRISPR AB = CRISPR A x CRISPR B), which we calculated by adding

the single perturbation fold changes in log2-space. For each genomic feature, the degree of interaction (difference between observed

accessibility change and that expected under the non-interaction model) was calculated.

To identify generally additive versus non-additive features (Figures 4D and 4E), the interaction degree was averaged across per-

turbations. To compute the permuted background, we permuted the single-double pairings by randomly choosing a double sgRNA

genotype and two random single sgRNA genotypes. The difference between the ‘‘expected’’ change (based on the two random

sgRNA genotypes) and the ‘‘observed’’ changed (based on the random double sgRNA genotype) was then computed. This process

was repeated once for each double sgRNA genotype observed in our dataset.

We further categorized features as additive, synergizing, and buffering for a particular interaction (Figure 7) by comparing the

observed degree of interaction to a null distribution generated by permuting cell identities. This procedure was performed separately

for each feature to account for differences in scale and variability across features. The null distribution was generated by randomly

sampling three pools of cells from all perturbed cells: a null double perturbation set, and two null single perturbation sets. The dif-

ference between observed double perturbation phenotype and the expected value from the non-interaction model was calculated,

and this procedure was repeated 1000 times. Genotypes exhibiting interaction degrees beyond 95% of the null values were consid-

ered interacting. Interactions in which the double phenotype had amore extrememagnitude than expected were labeled synergistic,

while others were labeled buffering.

Analysis of tissue H3K27me3 and autoimmune-associated SNPs
128 consolidated narrowPeak files for H3K27me3 peaks (corresponding to different tissues/cell-types) were downloaded from

the Roadmap Epigenomics Consortium website. Peaks that were found across at least 30 samples were considered common

H3K27me3 peaks. Individual narrowPeak files were then filtered against this set of common H3K27me3 peaks, as well as the

wgEncodeDacMapabilityConsensusExcludable blacklist. The resulting files were subsequently centered and resized to create

uniform 1kb peaks, and imported into chromVAR as an annotation set. To identify peaks repressed in the GM12878 lineage but

active in other tissues, H3K27ac narrowPeaks from blood tissues present in the Roadmap Epigenomics Consortium dataset

were downloaded and intersected with the GM12878 H3K27me3 narrowPeak set using the bedtools intersect command. These
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were similarly filtered aginst the same blacklist, centered, and resized to create uniform 1kb peaks, and imported as a chromVAR

annotation set.

SNPs associated with autoimmune diseases were downloaded from (Farh et al., 2015). These were aggregated by each autoim-

mune disease, and intersected with FitHiC calls (processed using 10kb genomic windows) from GM12878 H3K27ac HiChIP data

(Mumbach et al., 2017). For each disease, the SNP (ultimately resized to a 10kb genomic window), as well as any windows in contact

with that SNP, were aggregated to create a disease-specific chromVAR annotation set. As it is difficult to determine a priori whether

a disease state would result from increased or decreased accessibility at a given site, we reported the absolute value change chrom-

VAR deviation z-score for each genotype.

Pseudotime calculation and identification of feature modules
For the keratinocyte experiment, the normal differentiation pseudotime trajectory was calculated using Monocle 2 (Qiu et al., 2017).

The feature deviation matrix including unperturbed and CRISPR knockout cells was first processed using Seruat 2.0.1 (Butler et al.,

2018) to regress out plate and experiment batch effects. The Seurat function ScaleData was used (with parameters do.scale = F and

do.center = F) to perform batch regression. To identify modules of dynamic features across differentiation, we first filtered for features

that exhibited standard deviation greater than 1.3 in any comparison of normal differentiation conditions (Day 0, 3, or 6). Similar

features associated with the AP-1 motif were merged into a single feature. The matrix of these features versus cells (arranged by

increasing pseudotime) was hierarchically clustered using the heatmap.2 function in the gplots R package, resulting in three major

clusters (referred to as modules).

Individual peaks approximately matching the kinetics of modules were identified in order to find associated genes (Figure 6C).

Peaks exhibiting a log2 fold change less than 0.5 between conditions were considered stable and a fold change greater

than 2 was considered dynamic. Peaks exhibiting decreased accessibility on both Day 3 and Day 6 (relative to Day 0) were consid-

ered Module 1 peaks. Peaks exhibiting increased accessibility on Day 3 versus Day 0 but stable accessibility between Day 6 and

Day 0 were considered Module 2 peaks. Peaks exhibiting stable accessibility between Day 3 and Day 0 but gained accessibility

on Day 6 versus Day 0 were considered Module 3 peaks. Genes (GENCODE definition) were considered potential regulatory targets

of a peak if the gene transcription start site fell within 50kb of the peak.

Altered differentiation trajectory and module activity analyses
For each single perturbation in the keratinocyte experiment, a custom pseudotime was calculated in order assess the enrichment or

depletion of cell occupancy along the differentiation trajectory (Figure 6F). ChromVAR deviations regressed for experimental batch

effects and merged AP-1 features were used for this analysis. Cells from each perturbation were pooled with non-targeting cells and

a custom principal component analysis (PCA) space was generated. Features altered in each perturbation (FDR < 0.1, change in

z-score > 0.25) were selected in order to achieve maximum separation of control and perturbed cells, and a PCA was generated

with the R prcomp function (center = T, scale = T). Next, non-perturbed cells from all stages of differentiation were analyzed and

a trajectory was calculated progressing from undifferentiated cells (Day 0) to mid-differentiation (Day 3) and finally late-differentiation

(Day 6). The trajectory was determined by plotting a linear path between centroids of the three cell populations representing each

stage of differentiation. Finally, the distribution of non-targeting cells and targeted cells was calculated along eight equally sized

bins in this trajectory, and the log2 fold change of the proportion of cells in each been was reported as an enrichment.

DATA AND SOFTWARE AVAILABILITY

The sequencing data (FASTQ files) and processed data files have been deposited in GEO under accession code GEO: GSE116297.
e8 Cell 176, 361–376.e1–e8, January 10, 2019
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Figure S1. Perturb-ATAC CRISPRi Construct and Guide Bar Code Detection Scheme, Related to Figure 1

(a) Schematic of lentiviral plasmid encoding sgRNAs for CRISPRi as well as selection marker containing guide barcode. Stepwise targeted reverse transcription

and PCR steps are displayed from top to bottom. (b) Overview of computational pipeline taking sequencing reads for GBC and producing final table of guide calls

for each cell. (c) Detail on how filtering parameters for per-cell sequencing depth and background reads were derived. Left: distribution of reads aligning to any

guide barcode are displayed for each of three representative plates. Middle: distribution of reads after plate-specific depth adjustment for sequencing depth,

resulting in uniformmedian depth across plates and a uniform filter threshold of 1,000 normalized reads per cell. Right: Distribution of reads per cell not assigned

to two most abundant guides, for cells annotated as single cell or doublet capture. Doublet wells separate into two modes, allowing determination of threshold

separating unexpected high background in single capture wells.
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Figure S3. Identification of Differentially Accessible Genomic Features and Inferred Nucleosome Profiles in the GM12878 Screen, Related to

Figure 2

(a) Violin plots of single cell accessibility relative to mean accessibility in non-targeting cells for significantly altered features in either EBER1, EBF1, EZH2,

or SPI1 targeted cells. Each point represents an individual genomic feature (collection of genomic regions sharing an annotation such as a TF motif or

ChIP-seq peak) in an individual cell. A maximum of 50 features are shown per genotype. (b) Scatterplots of accessibility in knockdown conditions, NFKB1

versus RELA (top) or EBER1 versus EBER1 (bottom). (c) Volcano plots for each single perturbation condition comparing perturbed cells to non-targeting

control cells. Each point represents a genomic feature; significance threshold of FDR % 0.025. (d) Schematic depicting generation of short (< 100bp) ATAC

(legend continued on next page)



fragments from sub-nucleosome regions and large fragments (180-247bp) spanning nucleosome-protected regions. (e) Metaplots of sub-nucleosome and

nucleosome fragment signal at CTCF motif regions overlapping with CTCF ChIP-seq peaks in GM12878. Signal represents average of two non-targeting

cell populations, gray range represents standard deviation between samples. (f) Metaplots of sub-nucleosome and nucleosome signal at differentially

accessible regions.
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Figure S4. Expanded Analysis of Perturbed Intercellular Genomic Feature Correlation Networks, Related to Figure 3

(a) Heatmap of correlationmatrices for genomic features. Values indicate Pearson correlation across non-targeting cells for accessibility of two genomic features.

Ward’s hierarchical clustering was used to identify fivemodules with substantial intra-cluster correlation. (b) Listing of key features in eachmodule. (c) Heatmap of

correlation matrix for genomic features in IRF8 knockdown cells. (d) Left: boxplots of single cell accessibility for CTCF and SMAD5 features in non-targeting and

DNMT3A knockdown cells. Right: histogram of z-score of number of altered correlations for each feature in DNMT3A knockdown cells. (e) Heatmap of difference

in feature correlations between NFKB1 knockdown cells (bottom) and RELA knockdown cells (top). (f) Heatmaps of feature correlations for Module 1 versus

Module 5 in non-targeting cells or EBER2 knockdown cells. (g) Histogram of change in feature correlations for SPI1 knockdown versus non-targeting 1 cells, used

to inform thresholds for designation of altered correlation. (h) Table of counts and highlighted top altered-correlation features based on 5% FDR threshold.
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Figure S5. Perturb-ATAC CRISPR Knockout Constructs and Activity, Related to Figure 6

(a) Schematic of lentiviral plasmids for sgRNA and Cas9 expression. (b) Sanger sequencing traces of the 100bp surrounding sgRNA 30 end for each target gene.

Sequencing proceeded in forward direction (left to right), resulting in abrupt drop in sequencing alignment after sgRNA due to mixture of indels.
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Figure S6. Perturb-ATAC CRISPR Knockout Direct Guide Detection Scheme, Related to Figure 6

(a) Schematic of lentiviral plasmid encoding sgRNA for CRISPR knockout. Stepwise targeted reverse transcription and PCR steps are displayed from top to

bottom. (b) Distributions of reads per cell mapping to a sgRNA variable sequence. For each plate, a clear high mode of reads was identified and used to

determine a depth cutoff. (c) Distribution of proportion of all reads per cell mapping to known sgRNA sequence. (d) Distribution of proportion of reads per

(legend continued on next page)



cell associated with background (third most common) guide sequence. Cells in low mode passed filter. (e) For cells passing previous filters, distribution of

proportion of reads associated with second most common guide. Cells in the low mode of this distribution were considered to express a single guide, while

cells in the high mode were considered to express two guides. (f) Scatterplots of proportion of reads associated with two guide sequences for all cells

passing final filters.
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Figure S7. Altered Features in Keratinocyte Differentiation Induced by Genetic Perturbations, Related to Figures 6 and 7

(a) Signal track indicating a ZNF750 binding site that gains accessibility in targeted cells, indicating repressive activity of ZNF750. (b) Scatterplot of principal

component (PC) values for unperturbed keratinocytes. PC space was generated using altered features from specific single TF knockout cells. Yellow line

represents pseudotime trajectory connecting centroids of cells from each differentiation day. (c) Scatterplot of PC values for all perturbed and non-targeting cells

embedded in PC space generated in (a). Cells are scored and colored by progression along pseudotime trajectory. These pseudotime valueswere used to assess

the enrichment or depletion of knockout versus non-targeting cells in Figure 7F. (d) As in Figure 7B, scatterplots of observed versus expected (based on additive

model) accessibility in double knockout cells. (e) Scatterplot of absolute log2 fold changes of features in single knockout cells versus double knockouts (r�0.18).
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