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Integrated single-cell chromatinand
transcriptomic analyses of humanscalp
identify gene-regulatory programs and
critical cell typesfor hair and skin diseases
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% Check for updates Genome-wide association studies have identified many loci associated

with hair and skin disease, but identification of causal variants requires
deciphering of gene-regulatory networks in relevant cell types. We
generated matched single-cell chromatin profiles and transcriptomes
from scalp tissue from healthy controls and patients with alopecia areata,
identifying diverse cell types of the hair follicle niche. By interrogating these
datasets at multiple levels of cellular resolution, we infer 50-100% more
enhancer-gene links than previous approaches and show that aggregate
enhancer accessibility for highly regulated genes predicts expression. We
use these gene-regulatory maps to prioritize cell types, genes and causal
variants implicated in the pathobiology of androgenetic alopecia (AGA),
eczema and other complex traits. AGA genome-wide association studies
signals are enriched in dermal papillaregulatory regions, supporting the
role of these cells as drivers of AGA pathogenesis. Finally, we train machine
learning models to nominate single-nucleotide polymorphisms that
affect gene expression through disruption of transcription factor binding,
predicting candidate functional single-nucleotide polymorphism for AGA
and eczema.

Skin consists of acommunity of cell types from diverse developmen-  and immune niche'™. Disruption of these cellular communities causes
tal origins that perform coordinated functions underlying tissue humanskinand hair diseases such as alopecia areata, when normal hair
homeostasis. For example, skin contains hair follicles that progress  follicle cycling is prevented by autoreactive T cells, or androgenetic
through cycles of growth (anagen), regression (catagen) and resting  alopecia (AGA), where hair follicles gradually miniaturize as a result
(telogen), guided by paracrine signals from their surrounding stromal  of a poorly understood interplay of genetic and hormonal factors.

'Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. 2Department of Dermatology, School of Medicine, Stanford
University, Stanford, CA, USA. ®Division of Dermatology, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA. “Institute of
Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA. °Department of Microbiology and Immunology,
School of Medicine, Stanford University, Stanford, CA, USA. ®Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA,
USA. "Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA. 8Department of Applied Physics, Stanford University,
Stanford, CA, USA. °Chan Zuckerberg Biohub, San Francisco, CA, USA. < e-mail: wjg@stanford.edu

Nature Genetics


http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-023-01445-4
http://orcid.org/0000-0001-6868-657X
http://orcid.org/0000-0002-6261-138X
http://orcid.org/0000-0003-1409-3095
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-023-01445-4&domain=pdf
mailto:wjg@stanford.edu

Article

https://doi.org/10.1038/s41588-023-01445-4

Understanding the pathobiology of these and other skin and hair dis-
eases therefore depends onapproaches capable of identifying pertur-
bations across multiple candidate cell types and states.

While genome-wide association studies (GWAS) have identified
numerous distinct genomic loci associated with complex hair- and
skin-related disorders’®”, identification of specific causal variants
and interpretation of their molecular function remains challenging.
Most GWAS disease risk variants reside innoncoding genomic regions,
and many are predicted to exert their effects through disruption of
cell-type-specific cis-regulatory elements (CREs)'" that may not exert
their effects on the nearest gene. Identifying causal variants and inter-
preting their function thus requires analysis of gene-regulatory net-
works in disease-relevant cell types.

Althoughsingle-cell genomics—primarily single-cell RNA sequenc-
ing (scRNA-seq)—has enabled identification and characterization of the
diverse celltypes in humanskinin healthy and disease contexts" ", many
of these studies are limited by incomplete cell-sampling approaches.
While scRNA-seq assays the transcriptional state of cell types within a
tissue theunderlying CREs are not observed, precluding deeper insights
into how noncoding CRE variation influences disease phenotypes.

Inthis study we characterize gene-regulatory networks in healthy
and diseased skin and hair follicles using paired, single-cell atlases of
gene expression and chromatin accessibility in humanscalp. We iden-
tify enhancer-gene linkages at multiple scales of cellular resolution,
yielding 50-100% more enhancer-gene links than previous multiomic
studies. We identify a subset of cell lineage genes with a dispropor-
tionately large number of CREs, and show that expression of these
highly regulated genes (HRGs) is driven by distinct combinations of
enhancer modules. We predict gene targets of transcription factors
(TFs) driving keratinocyte differentiation trajectories. We integrate
our data with skin and hair disease GWAS loci to identify critical cell
types and putative target genes. AGA GWAS signals were strongly and
specifically enriched in dermal papilla (DP) open-chromatin regions
andlinked totarget genes enriched for rolesin WNT signaling. Finally,
we train machine learning models to nominate potential causal vari-
ants based on their predicted effects on cell-type-specific chromatin
accessibility, identifying 47,19 and 19 prioritized SNPs for AGA, eczema
and hair color, respectively.

Results

A paired transcriptomic and epigenetic atlas of human scalp
We created paired, single-cell transcriptomic and chromatin accessibil-
ity atlases from primary human scalp tissue. We obtained tissue from
three sources: punch biopsies from healthy control volunteers (C_PB,
n=3),patients with alopeciaareata (n = 5) and discarded normal periph-
eral surgicaltissue (C_SD, n=7) (Fig.1a,b and Supplementary Table1).
We dissociated tissue and prepared scRNA-seq and single-cell assay
for transposase-accessible chromatin using sequencing (scATAC-seq)
libraries using the 10X Genomics Chromium platform. We obtained
54,288 single-cell transcriptomes and 45,896 single-cell chromatin
accessibility profiles following quality control and filtering (Extended
Data Fig. 1a-c,f,g), identifying 22 cell clusters in both scRNA-seq and
scATAC-seq datasets (Fig. 1c,d).

To annotate clusters we examined the gene expression and gene
activity scores of known marker genes (Fig. 1e,f and Extended Data
Fig.2a,b)'®'°, To better resolve the heterogeneity of broad cell group-
ings we subclustered five major cell classes (keratinocytes, T lym-
phocytes, myeloid lineage cells, fibroblasts and endothelial cells) in
both scRNA- and scATAC-seq datasets (Extended Data Fig. 3a-c). We
identified 42 scRNA-seq and 38 scATAC-seq ‘high-resolution clusters’,
revealing rare cellular subtypes including DP cells (HHIP, WNT5A and
PTCHI)*, eccrine gland cells (AQPS and KRT19)* and TREM2-positive
macrophages (TREM2 and OSM)*. Both low- and high-resolution
cluster profiles were highly reproducible using subsampled datasets
(Extended DataFig.4).

Using the high-resolution scATAC-seq clusters we identified
589,294 ‘peaks’ of open chromatin corresponding to CREs'®. We iden-
tified 182,498 differentially accessible peaks between the broad scATAC
clusters (Wilcoxon false discovery rate (FDR) < 0.1, log, (fold change
(FC)) = 0.5; Extended Data Fig. 2c). These cluster-specific peaks were
enriched for lineage-determining TF motifs, suchas RUNX and ETS fac-
torsin T lymphocytes*?*, SPI (PU.1) factors in myeloid lineage cells®,
TP63 in keratinocytes® and MITF in melanocytes” (Fig. 1g).

All scRNA and scATAC clusters were composed of cells spanning
the majority of patient donors (Extended Data Fig. 1d,e). However,
certain cell types were more abundant in particular sample groups:
samples from patients with alopecia areata had increased T lympho-
cytes and depletion of follicular keratinocytes (Fig. 1h,iand Extended
Data Fig. 2d,e). These observations align with alopecia areata patho-
physiology, which involves peribulbar hair follicle T cell infiltration
and disruption of normal hair follicle cycling.

HRGs use distinct enhancer modules to tune gene expression
We bioinformatically integrated our scATAC and scRNA datasets using
canonical correlation analysis®’ and observed high correspondence
between cell types (Extended Data Fig. 3d,e). We used these integrated
datasets to identify CREs with accessibility correlated to local gene
expression (‘peak-to-gene links’)'®". To detect peak-to-gene linkages
relevant for both broad cell type identity and regulation of more
similar cell subtypes, we performed integration and peak-to-gene
linkage identification on both the full scalp dataset and each of the
subclustered datasets (Methods and Fig. 2a,b). In total, we identified
146,088 peak-to-gene links (Extended Data Fig. 5a,b). Only 66,702 links
were detected using the full dataset (Extended Data Fig. 5a), but link-
ages from any source were more likely to be evolutionarily conserved
than unlinked peaks (Extended Data Fig. 5c) and were more likely
to be corroborated by enhancer-gene pair predictions in a large
activity-by-contact (ABC) model dataset than distance-matched,
permuted linkages (Extended Data Fig. 5d)***'. Most peaks (491,106,
83.3%) were not linked to any gene, consistent with the expected small
effect size of most CREs*’. CREs were linked to the nearest gene in only
47% of cases, a proportion supported by experimental estimates of
enhancer-gene linkages (Extended Data Fig. 5e)*.

Consistent with previous studies, we identified a subset of genes
associated with especially large numbers of linked CREs***, We iden-
tified 1,739 such HRGs by ranking genes according to the number of
linked peaks and retaining those that exceeded the inflection point at
20 peak-to-gene linkages (Fig. 2c). These genesinclude TFs driving cell
identity (RUNX1, TWIST2 and MITF) and those with cell-type-specific
functions (COL1A1, KRT14 and ICOS). Scalp HRGs were enriched for
previously identified ‘superenhancer’-associated genes (Fig. 2d)*>*°,
and overlapped significantly with previously described domains of
regulatory chromatin-associated genes in mouse skin (odds ratio
(OR) = 6.18, one-sided Fisher’s exact test P= 6.27 x 10™°)**. To explore
the regulatory heterogeneity of HRGs, we clustered k-nearest neigh-
bor pseudobulked samples by the accessibility of linked CREs, using
k-means clustering to identify co-occurring regulatory modules
(Fig. 2e). HRGs from each cluster were enriched for cell-type-specific
Gene Ontology (GO) terms, including ‘adaptive immune response’
(myeloid), ‘melanocyte differentiation’ (melanocytes) and ‘hair follicle
development’ (follicular keratinocytes) (Fig. 2e).

Whereas many HRGs were expressed in one or a few closely
related cell types, several HRGs such as RUNX3 were expressed in
multipledistinct cell types (Fig. 2b). To explore the regulatory hetero-
geneity of individual HRGs we clustered k-nearest neighbor pseudob-
ulks using the accessibility of peaks linked to a single HRG (Methods).
For many HRGs we observed multiple ‘modules’ of coaccessible
CREs in distinct cell types (Fig. 2f-i). Some modules were shared by
multiple cell types while others were highly cell type specific. Inter-
estingly, the aggregate accessibility observed across linked peaks
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Fig. 1| Multiomic single-cell atlas of primary human scalp. a, Samples and
profiling methods used in this study. b, Schematic representation of cellular
diversity within human scalp. ¢,d, UMAP representation of all scRNA-seq (c)
and scATAC-seq (d) cells passing quality control, colored by annotated clusters.
Broad cell types are labeled on UMAP and higher-resolution labels are shown
ine,f.e, scRNA gene expression for selected marker genes for each scRNA-seq
cluster. Color indicates relative expression across all clusters and dot size

indicates the percentage of cells in that cluster expressing the gene. f, scATAC
gene activity scores for the markers shown in e. g, Hypergeometric enrichment of
TF motifs in marker peaks for each scATAC-seq cluster. h, Fraction of each sample
comprising each scRNA-seq cluster. Samples from control punch biopsies are
showninshades of green, control surgical tissue in shades of blue and patients
withalopeciaareatain red. Total proportions for each sample are shown in the
rightmost column. i, Same as h but for scATAC-seq clusters.

was correlated with expression of the linked gene (Extended Data
Fig. 5f). These findings support an additive, modular model of
enhancer activity—a model substantiated by genetic perturbation
studies of individual enhancers for alpha-globin® and Myc*®, stud-
ies of enhancers involved in limb development® and genomic-scale
measures of enhancer activity***.,

Gene-regulatory diversity of scalp keratinocytes

Whereas the transcriptional heterogeneity of interfollicular'*'” and
follicular** keratinocytes is known, our peak-to-gene linkage analysis
enabled deeper interrogation of the gene-regulatory logic of these
populations (Fig. 3a,b and Extended Data Fig. 6a,b). To focus on the
gene-regulatory mechanisms delineating keratinocyte subsets, we

12,17
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used peak-to-gene linkages specific to keratinocytes (28,991 links) for
subsequent analyses. K-means clustering of linkages revealed extensive
gene-regulatory diversity within keratinocyte subtypes, with clusters of
coaccessible peaks enriched for distinct TF motifs (Extended Data Fig.
6c,d). Toidentify TFs with aregulatory role in specifying keratinocyte
subsets, we first identified motifs with variable accessibility between
keratinocyte populations (Extended DataFig. 6e, y axis); to differentiate
between TFs with similar motifs, we correlated TF expression with motif
activity across cell types (Extended Data Fig. 6e, x axis). This approach
identified TFs with known roles in skin (TP63, FOSL1 and KLF4)**+*
and hair differentiation (SOX9, LHX2 and HOXC13)*****’. Some TFs were
activein multiplerelated cell types, such as TP63 inbasal keratinocyte
clustersand SOX9infollicular keratinocyte clusters, while others were
more cell type specific, like LHX2 in the inferior segment of the hair
follicleand RUNX3 in sebaceous gland cells (Fig. 3c).

Gene targets of TFs driving keratinocyte differentiation
Interfollicular keratinocytes undergo continuous replacement by coor-
dinated differentiation and outward migration of basal keratinocytes
tospinous, granular and, finally, cornified keratinocytes. To identify TF
drivers of this differentiationinahumanin vivo context we constructed
asemisupervised pseudotemporal trajectory between basal keratino-
cytes and differentiated spinous keratinocytes (Fig. 3d). Visualization
ofthe most variable 10% of peaks along this trajectory revealed a con-
tinuous, gradual opening and closing of accessible chromatin (Fig. 3e).
The most variable10% of genes included known transcriptional changes
duringkeratinocyte differentiation, with early trajectory cells express-
ing basal keratins (KRT15, KRTS and KRT14) and hemidesmosome
components (/TGA6, ITGBI and COL17AI) and later cells expressing
suprabasal keratins (KRT1 and KRT10) (Fig. 3e)***°. Genomic tracks
of ITGBI, active in basal keratinocytes, and KRTI0, active in spinous
layer keratinocytes, demonstrate coordinated changes in linked
enhanceraccessibility and target gene expressionacross differentiation
(Fig. 3f,g). By correlation of TF motif activity with expression using
cellsalong the differentiation trajectory we identified TFs with known,
sequential rolesininterfollicular keratinocyte differentiation, such as
TP63 followed by KLF3/4, RORA and then CEBPA/D (Fig. 3h)*°,

We next sought to identify potential regulatory gene targets of
TFs driving keratinocyte cell identity. For TFs identified as potential
differentiation drivers (Fig.3h and Extended DataFig. 6e) we correlated
TF motifactivity with the integrated gene expression of all expressed
genes. Next, for each gene we selected all linked peaks containing the
TF motifand computed a‘linkage score’ aggregating peak-to-gene link-
age strength and the confidence of embedded motif matches. Using
thisapproach weidentify potential TF regulatory targets as genes with
expression correlated to global motif activity and a high TF linkage
score (Pearson correlation>0.25 and linkage score >80th percentile).
Weidentified 175 potential TP63 regulatory targets (Fig. 3i) and found
enrichment of genes that were downregulated (OR =1.95, one-sided
Fisher’s exact test P=0.0002), but not upregulated (OR = 0.71), in

keratinocytes with inactivating TP63 mutations®. These targets
included basal keratins (KRT5 and KRT14) and genesinvolved inanchor-
ing keratinocytes to the basement membrane (LAMC2, ITGA6 and
COL17A1), consistent with the known role of TP63 in regulation of
adhesion®”. FOSL1, active in the intermediate stages of differentiation,
was linked to targets enriched for cadherin binding functionality, a
regulatory signal in early keratinocyte differentiation (Fig. 3j)*. For
KLF4,aTFinvolvedinterminal differentiation, targets included regula-
tors of keratinocyte differentiation (DMKN and KRTDAP) and structural
components of spinous and granular keratinocytes (KRTI,2 and IVL;
Fig. 3k). Predicted KLF4 targets were also enriched for genes down-
regulated (OR =1.87, one-sided Fisher’s exact test P=4.9 x107) but not
upregulated (OR = 0.95) inkeratinocytes following KLF4 knockdown®*.
Wealsoidentified gene targets of TFsinvolvedinfollicular keratinocyte
function, identifying those associated with WNT-protein binding
for LHX2, a TF expressed in inferior segment follicular keratinocytes
(Extended DataFig. 6f-h).

Selective preservation of HFSCs in alopecia areata

Alopecia areataresults in disruption of hair follicle cycling by autore-
active cytotoxic T lymphocytes, but we did not observe a clear phe-
notypic distinction between T lymphocytes originating from areata
versus control samples (Supplementary Note). However, we found that
selected follicular keratinocyte populations appeared to be depleted
in areata samples (Extended Data Fig. 7a). Using Milo* we confirmed
that, compared with control samples, areata samples had fewer cells
corresponding to the inferior segment of the hair follicle (Fig. 4a,b).
Further subclustering of these cells revealed six populations of folli-
cular keratinocytes in the bulbar and suprabulbar regions of the hair
follicle (Fig. 4c,d and Extended Data Fig. 7b,d). We annotated these
as quiescent hair follicle stem cells (HFSCs: KRT1S5, CD200, LHX2 and
NFATCI1)****"8, two populations of sheath cells (Sheath_1/2: SOX9, KRTS
and KRT75)*, matrix cells (Matrix: LEF1, KRT81 and HOXC13)***° and
hair germ cells (HG: CD34, LGRS, CDH3 and WNT3)°". Using Milo, we
found that areatasamples demonstrated preservation of HFSCs but a
depletion of sheath populations (FDR < 0.1; Fig. 4€), consistent with the
known nonscarring, relapsing-remitting nature of alopecia areata and
supporting the theory that sheath cells in the hair bulb are especially
affected by the disrupted immune environment®*°*3,

WNT pathway dynamics in hair keratinocyte differentiation

The WNT signaling pathway plays an essential role in hair follicle devel-
opment, cycling and regeneration after wounding®**¢*-*5, However,
most studies of WNT pathway activity in hair follicle cycling used
invitro or mouse in vivo systems. To explore WNT signaling dynamics
in human hair follicles we constructed a semisupervised pseudotem-
poral trajectory from quiescent HFSCs to matrix cells (Fig. 4f). We
correlated TF motif activity with expression along this trajectory to
identify putative drivers of differentiation (Extended Data Fig. 7e).
Consistent with mouse studies, NFATC1 was active in quiescent HFSCs,

Fig. 2| Gene-regulatory dynamics and modularity in human scalp. a, Peak-to-
gene linkages were identified on the integrated scATAC and scRNA full datasets,
and on the five major cell type subclustered datasets. Linkages identified in each
dataset are merged to form the full set of peak-to-gene linkages. b, Genomic
tracks for chromatin accessibility around the RUNX3locus. Right: integrated
RUNX3 expression levels are shown in the violin plot for each cell type. Loops
shown below the top panel indicate peak-to-gene linkages identified on the full
dataset. Bottom: genomic tracks for accessibility around RUNX3 for subclustered
keratinocytes. Loops shown below these tracks indicate peak-to-gene linkages
identified on the subclustered dataset. Gray vertical bars spanning both panels
highlight selected peaks linked to RUNX3 expression that were identified
insubclustered keratinocytes but not using the full integrated dataset. c,

Genes ranked by the number of peak-to-gene links identified for each gene:
1,739 HRGs had >20 peak-to-gene linkages. d, Hypergeometric enrichment of

superenhancer-linked genes in human scalp HRGs for multiple cell and tissue
types. Red dots represent enrichment of hair follicle superenhancer-linked
genes. e, Heatmap showing chromatin accessibility (left) and gene expression
(right) for 146,088 peak-to-gene linkages, which were clustered using k-means
clustering (k = 25). Sample top HRGs for selected clusters are shown to the
right of the gene expression heatmap. Right: GO term enrichments for the top
200 genes ranked by number of peak-to-gene linkages for selected k-means
clusters. f, Heatmap showing chromatin accessibility at RUNX3-linked peaks for
246 pseudobulked scATAC-seq samples. Cell type labels are shown in the bar
above the heatmap, and RUNX3 expression levels for each pseudobulk below.
Right: scatter plot showing the relationship between linked peak accessibility
and resulting gene expression for each of the pseudobulked samples shown in
the heatmap on the left. Red line indicates line of best fit. g, Same as in fbut for
RUNX1.h,Same asinfbut for HLA-DRBI.i,Same as in fbut for AQP3.
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the WNT-regulating TFs TCF3 and TCF4 became active inintermediate
sheath cellsand LEF1activity surged in matrix cells®” "', GO term analysis
on the most variably expressed genes across this trajectory revealed
enrichment of WNT signaling pathway genes (Extended Data Fig. 7f). To

visualize WNT signaling dynamics during HFSC differentiation we plot-
ted the expression of WNT signaling factors and receptors across pseu-
dotime (Fig. 4g). HFSCs robustly expressed WNT receptors FZDI and
7, but also soluble WNT inhibitors (DKK3, SFRPI) and the soluble FZD
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¢, Subclustered hair follicle keratinocytes from the inferior segment of the hair

-1 )15

Row z-score

follicle. d, Selected marker gene expression and TF motif activity deviation
z-scores for subclustered inferior segment hair follicle keratinocytes. e, Same as
inb, except for subclustered cycling hair follicle keratinocytes. Hair sheath cells
are differentially depleted relative to HFSCs. f, Differentiation trajectory from
HFSCs to matrix cells. g, Heatmap of variable expression of members of the WNT
signaling pathway during hair follicle cycling.

receptor FRZB, suggesting that these cells may be primed to respond
to paracrine WNT signaling but maintain quiescence by blocking these
signals. As differentiation progresses, expression of WNT pathway
inhibitory signals decreases and expression of beta-catenin (CTNNBI)
and WNT-regulating TFs (TCF3 and TCF4) increases. Consistent with
studies in mice, dividing matrix cells in the hair bulb express activat-
ing WNT effectors (WNT3, WNT5A and WNT10A/B) and the TF LEF1
(Fig. 4d,g and Extended Data Fig. 7e)*"%

Identification of critical cell types for skin and hair traits

Many skin and hair diseases are highly polygenic, and most associated
variants reside in noncoding genomic regions®”>”>, To identify cell
types involved in the pathoetiology of skin and hair disease we used
cell-type-specific open-chromatin regions to perform linkage disequi-
librium score regression (LDSC) using GWAS for 13 traits spanning skin
and hair disease, autoimmune disease and several nonskin phenotypes
(Fig. 5a and Extended Data Fig. 8a,b)’*”. We observed enrichment of
AGA according to SNP heritability across fibroblast open-chromatin
regions, with the strongest enrichment in DP peaks—the component
of the hair follicle reported to have the highest androgen receptor
activity’®””. We also found modest but significant enrichment of AGA
GWAS signal in several follicular keratinocyte clusters. Autoimmune
skindiseases, including psoriasis and eczema, had significant enrich-
mentinT lymphocyte open-chromatin regions while tanning and hair
pigment color were most enriched in melanocyte open-chromatin
regions. Traits not related to scalp, such as schizophrenia and body
mass index, did not demonstrate any cell-type-specific enrichment

(Fig. 5a). Additional LDSC analyses are discussed in Supplementary
Note and Extended Data Fig. 8c—f.

Because LDSC requires full GWAS summary statistics, which
were unavailable for several traits including alopecia areata, we also
examined enrichment of fine-mapped SNPs in cell-type-specific
open-chromatin regions” *°. Fine-mapped SNPs for skin, hair and
autoimmune disorders were more likely to overlap scalp CREs than
those for neurodegenerative and psychiatric disorders, and this gap
widened with increasing fine-mapping posterior probability (Fig. 5b
and Extended Data Fig. 8f). We observed cell-type-specific enrichment
of fine-mapped SNPS for several diseases (Fig. 5c). Alopecia areata
SNPs were most enriched in CD4 T cell (OR =3.91, one-sided Fisher’s
exact test adjusted P=0.00018) and T regulatory cell (T.,; OR =4.16,
one-sided Fisher’s exact test adjusted P=0.0012) open-chromatin
regions, but were also enriched in several myeloid lineage clusters (for
example, M2.macs_2: OR = 3.25, one-sided Fisher’s exact test adjusted
P=0.00027). Interestingly, although body height-associated SNPs
were broadly enriched in fibroblast clusters there was little enrich-
ment in the DP cluster, while AGA SNPs were most strongly enriched
inDP open-chromatinregions (OR = 5.72, one-sided Fisher’s exact test
adjusted P=4.3 x107**; Fig. 5¢).

Linking fine-mapped SNPs to potential target genes

After nominating disease-relevant cell typesinthe scalp, we sought to
identify specific genes associated with fine-mapped SNPs. For agiven
phenotype we aggregated the posterior probability of fine-mapped
SNPs overlapping linked peaks for each gene then plotted the
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Fig. 5| Identification of cell types and genes associated with hair, skin and

autoimmune diseases. a, LDSC identifies enrichment of GWAS SNPs for various

skin- and nonskin-related conditions in peak regions specific to subclustered

cell types inhuman scalp. FDR-corrected P values from LDSC enrichment tests

are overlaid on the heatmap (*FDR < 0.05, **FDR < 0.005, ***FDR < 0.0005). b,

Fraction of fine-mapped (FM) SNPs overlapping scalp open-chromatin regions

binned by increasing fine-mapping posterior probability. Each dot represents

one trait and boxplot color indicates the group of traits being plotted; the

number of traits per group is shown in c. Boxplots represent the median, 25th and
75th percentiles of the data and whiskers represent the highest and lowest values
within 1.5 times the interquartile range of the boxplot. ¢, One-sided Fisher’s exact

test enrichment for fine-mapped, trait-related SNPs in peak regions specific

to subclustered cell types in human scalp. Dot color indicates FDR-corrected
-log,, P value and dot size indicates enrichment OR. Traits are grouped asinb.
d, The top genes linked to peaks containing fine-mapped SNPs for eczema. The
heatmap shows relative gene expression for each high-resolution scRNA cluster.
The number of linked fine-mapped SNPs per gene is indicated in the red bar plot
to the right, and the sum of fine-mapped posterior probability for linked SNPs
isindicated in the blue bar plot. The gray bar plot shows the total number of
identified peak-to-gene linkages for that gene. Gene names colored red indicate
fine-mapped SNP-to-gene linkages supported by GTEx expression quantitative
traitloci. e, Same asind but for AGA.
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expression of linked genes across high-resolution scRNA clusters to
identify cell-type-specific expression of genes linked to fine-mapped
SNPs (fmGWAS-linked genes). Weidentified 137 eczema fmGWAS-linked
genes, the majority of which were expressed in T cell or keratinocyte
clusters (Fig.5d). These genes included modulators ofimmune signal-
ing (TNF, CTLA4 and FASLG) and previously nominated GWAS gene tar-
gets (IL6R, PUS10 and IL2RA)*%'. We identified 130 AGA fmGWAS-linked
genes, most of which were expressed in keratinocyte or fibroblast clus-
ters (Fig. 5e). These genes were enriched for TFs (OR = 3.18, one-sided
Fisher’s exact test P=4.1x107), including TWIST2, RUNX3 and SOX11,
and were also enriched for members of the WNT signaling pathway
(WNT3,WNTI10A, FZD1 and FZD10; Extended Data Fig. 9a). We identified
only 31 alopeciaareatafmGWAS-linked genes, but these included exam-
plesinvolvedinT cell functions such as/L21,/COS and IRF4 (Extended
DataFig. 9b). /L21 had multiple linked SNPs, is known to support the
persistence of cytotoxic CD8 T cells in chronic viral infections®*>** and
hasbeenimplicatedin the etiology of several autoimmune diseases®*.
We also identified 158 hair color f mGWAS-linked genes, principally
expressed inkeratinocyte subpopulations and melanocytes (Extended
DataFig. 9c¢).

Nominating functional SNPs for skin and hair phenotypes
After nominating cell types and gene targets associated with skin and
hair disease, we sought yet-higher-resolution information by identify-
ing SNPs that might directly alter TF binding and enhancer function. To
prioritize functional SNP candidates we implemented agapped k-mer
support vector machine (gkm-SVM) learning framework to score the
allelic effect of a SNP on cell-type-specific chromatin accessibility,
a proxy for differential TF binding (Methods and Fig. 6a)* "%, These
models demonstrated accurate and stable performance on held-out
datainatenfold cross-validation scheme (Extended Data Fig. 10a-d).
We used GkmExplain to predict the per-base impact of variantsin a
target sequence by providing models with sequences containing both
the reference and alternative allele for a candidate SNP*’. To create
aset of prioritized SNPs for AGA, eczema and hair color we selected
SNPs that (1) had fine-mapping posterior probability >0.01, (2) over-
lapped scalp CREs and (3) were predicted to disrupt chromatin acces-
sibility in our model. Prioritized SNPs for eczema were enriched in
keratinocyte and T cell clusters relative to random trait CRE-resident
fine-mapped SNPs, while prioritized SNPs for hair color were enriched
more specifically in follicular keratinocytes and melanocytes
(Fig. 6b and Extended Data Fig.10e). We did not observe cluster-specific
enrichment of AGA-prioritized SNPs, perhaps due to the specificity of
this trait for DP cells and the lack of a DP-specific model given the rarity
of these cellsin our dataset (Methods and Extended Data Fig.10f). We
filtered prioritized SNPs to include only those linked to a target gene
using our peak-to-gene linkage analysis, increasing the interpretability
of potential causative variants. Using these criteriawe identified 47,19
and 19 prioritized SNPs for AGA, eczema and hair color, respectively
(Supplementary Table 12 and Extended Data Fig. 10g-j).

One high-effect eczema SNP is rs2058622, which resides in an
IL18RIintron (Fig. 6¢). This candidate SNP overlapped a CRE preferen-
tially accessibleinthe CD4 helper T cell cluster and, although this CRE
waswithinan/LI8RIintron, this peak was linked to /L ISRAPexpression.
Our CD4 T cell model suggested that the alternative allele of this SNP
increases cell-type-specific chromatin accessibility at this peak, possi-
bly by creating a RUNX motif (Fig. 6d). Interestingly, T-bet (encoded by
TBX21), whichalso containsacentral ‘GTG’ inits binding motif, hasbeen
shown to bind to this SNP region in a genotype-specific manner, sug-
gesting multiple candidates for transfactors with differential binding
to the major and minor allele of this regulatory element®’. Furthermore,
this SNP had been identified as asignificant eQTL for /LISRAP expres-
sion in blood, with the G allele increasing expression (P=4.8 x 107,
normalized effect size 0.28). While this locus is one of those most
strongly associated with eczema®®, itis aregion with substantial LD and

multiple potential gene targets, making identification of causal SNPs
for this locus challenging and highlighting the utility of our multitiered
approach (Fig. 6e).ILIS8RAPencodes an accessory protein required for
potentiation of IL-18 signaling” and IL-18 overexpressioninmouse skin
induces a phenotype similar to eczema®, suggesting a mechanistic
pathway for this causal variant.

One high-effect AGA SNP is rs72966077, located immediately
downstream of the WNTI10A gene body (Fig. 6f). This SNP has
also been implicated in acne vulgaris, another hair follicle- and
androgen-associated disease”. The overlapping CRE is accessible
in multiple keratinocyte clusters, although WNTI0A expression was
highest in basal keratinocytes and infundibular follicular keratino-
cytes. Our model demonstrates that the alternative allele of this SNP
disrupts an ERG family TF motif (Fig. 6g). ERG2 is expressed in infun-
dibular, isthmus and inferior segment hair follicle keratinocytes, and
these cell populations also have higher ERG2 motif activity than other
keratinocyte populations (Fig. 6h). Patients with WNT10A mutations
exhibit multiple skin appendage-related phenotypes, including hair
thinning that resembles AGA*. Furthermore, depletion of ERG2 (also
known as Krox20)-positive follicular keratinocytes in mice resulted
in arrest of hair growth”. These converging evidences highlight the
importance of the WNT signaling pathway in the pathobiology of AGA
and show that, while the strongest AGA GWAS signal enrichment is in
DP cells, there may also be keratinocyte-intrinsic genetic factors that
contribute to this complex trait.

Discussion

We generated epigenomic and transcriptomic atlases of human scalp,
acomplextissue harboring dynamic and precisely regulated hair folli-
cles. Weidentified principles of variable gene expression across diverse
celltypes, defined gene-regulatory networks across keratinocyte sub-
populations and prioritized cell types, genes and causal variantsimpli-
cated in the pathobiology of skin and hair phenotypes.

The aggregate accessibility of linked enhancer modules predicts
HRG expression (Fig. 2f-i), supporting an additive model of enhancer
activity wherein expressionis proportional to theintegrated effect of
multiple, generally interchangeable, CREs. We posit that thisregulatory
strategy makes expression of core function genes resistant to pertur-
bationbutalso allows for tunable expression across cellular contexts.
Thus, a mutation disrupting one of relatively few CREs controlling
expression may have a greater biologicalimpact thandisruption of an
HRG CRE (Fig. 5d,e and Extended Data Fig. 9b,c). This mode of enhancer
activity is consistent witharecent study of enhancer-promoterinter-
actions showing that variability in intrinsic enhancer activity is low
compared withintrinsic promoter activity, and that enhancer elements
are generally functionally interchangeable*.

To identify TF regulatory targets we combined the correlation
between TF activity and target gene expression, with a linkage score
accounting for linked CREs containing TF binding motifs. Typically,
highlinkage scores were associated with positive correlation between
TF activity and target gene expression (Fig. 3i,k and Extended Data
Fig. 6f,g) but, for some TFs such as FOSL1 and POU2F3 (Fig. 3j and
Extended Data Fig. 6h), several gene targets had high linkage scores
but negative correlation to TF motif activity. This may imply a
gene-silencingrole for these TFs for selected targets. Indeed, selective
transcriptional repression has been described for both FOSL1 (ref. 96)
and POU2F3 (refs. 97,98). Several genes also had high linkage scores but
little correlation to TF activity (Fig. 3i-k and Extended Data Fig. 6f-h).
This may be due to biologically relevant TF binding despite lower global
TF activity, or CRE accessibility may be driven by a different TF with
co-occurring binding motifs. Emerging single-cell methodologies,
such as single-cell CUT&Tag’’ or NEAT-seq'’°, may help differentiate
between these possibilities.

Our analyses using LDSC and fine-mapped SNP enrichment in
CREs revealed driver cell types for hair and skin diseases. While we
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resolution keratinocyte subclustering, showing expression of WNTI0A, EGR2 and
EGR2 ChromVAR motif activity.
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see enrichment of GWAS signals for AGA in some follicular keratino-
cyte subpopulations, the most significant enrichment was in DP CREs
(Fig.5). Thisis consistent with functional studies showing that DP cells
have robust AR expression’ and exhibit distinct expression profiles
when isolated from both balding and nonbalding individuals'"'°%,
Interestingly, autoimmune diseases such as eczema and psoriasis,
with clear keratinocyte phenotypes clinically and histopathologi-
cally, showed little GWAS signal enrichment in keratinocytes relative
to T lymphocytes, suggesting that the genetic susceptibility to these
diseases is primarily immunological and due less to genetic variation
intrinsic to keratinocytes.

Finally we used machine learning models of chromatin accessi-
bility to nominate functional SNPs for hair and skin diseases, tracing
the regulatory effect of single-base changes to disruption of target
gene expression in the relevant cell type. However, we were unable to
identify a potential causal SNP for many GWAS loci, perhaps because
the affected CREs are observed only in the disease state or because the
relevant cell type was not recovered. Some traits may be theresult ofa
developmental process, with relevant regulatory regions dormantin
adult tissues. While these analyses provide a valuable framework for
linking genetic variation to disease phenotypes, individual SNP-to-gene
linkages will require experimental validation in appropriate cellu-
lar contexts to be claimed as bona fide regulatory interactions. We
anticipate that future studies will be able to fill these gaps as the costs
of single-cell sequencing decrease, experimentally tractable model
systems improve and models of gene regulation are refined.
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Methods

Sample acquisition and patient consent

Primary humanscalp samples were obtained either in the form of 4 mm
punch biopsies or from excess discarded scalp tissue from patients
undergoing dermatological surgeries (surgical ‘dogears’). Samples
were collected from either Stanford University or Santa Clara Valley
Medical Center with Stanford University Institutional Review Board
approval, and all patients provided written informed consent. Follow-
ing collection, samples were stored in 1x PBS at 4 °C until dissociation
and downstream processing. Samples were stored no longer than5 h
before dissociation. A4 mm punch was performed on surgical dogear
samples before proceeding with sample dissociation.

Single-cell dissociation and fluorescent activated cell sorting
Scalp punch biopsies were rinsed withice-cold 1x PBS and then lightly
diced into 1-2-mm pieces with a sterile razor blade. Diced samples
were then dissociated using the Miltenyi Biotec Human Whole Skin
Dissociation Kit (catalog no. 130-101-540) according to the manu-
facturer’s directions. Briefly, samples were incubated in 0.5 ml of
dissociation solution containing the indicated volumes of enzymes
P, Aand D for 3 h at 37 °C. Following incubation, 0.5 ml of ice-cold
RPMI1640 with10% FBS was added to each sample and samples were
then mechanically dissociated using the gentleMACs dissociator
with the ‘h_skin_01’ program. Following dissociation, samples were
briefly centrifuged and then filtered through a 70 pm cell strainer. The
dissociation tube was washed with additional ice-cold medium and
samples were then centrifuged for 10 min at 300gin a swinging-bucket
centrifuge. After aspiration of supernatant, samples were either resus-
pended in 0.1 ml of BamBanker freezing medium (Wako Chemicals,
catalog no. 302-14681) and cryopreserved at —80 °C or subjected
immediately to staining for fluorescent activated cell sorting (FACS).
We did not observe any systematic clustering differences between
samples that had been sorted immediately after dissociation and
those that had been cryopreserved, even without Harmony or other
batch correction methods (Extended Data Fig. 1d-g and Comparison
of fresh versus cryopreserved samples in Supplementary Methods).
Cryopreserved samples included C_SD4, C_SD5, C_SD6, C_SD7, AA7
and AA8. All remaining samples were sorted immediately after dis-
sociation without cryopreservation.

Cells were stained with anti-CD90 PE Cy7 (BD Pharmingen, no.
561558) for 30 min at 4 °C in FACS staining buffer (PBS with 0.5%
bovine serum albumin) then washed with FACS buffer. Live cells were
distinguished using the LIVE/DEAD Fixable Aqua Dead Cell Stain Kit
(ThermoFisher, catalog no. L34957) according to the manufacturer’s
directions. For cryopreserved samples, cells were thawed at 37 °C for
3 min, resuspended in RPMI +10% FBS and washed with FACS buffer
before staining. Aqua-negative live cells were sorted as fibroblast
(CD90%) and nonfibroblast (CD90) populations. Sorted cells were
counted and the CD90" population reduced by half before recombina-
tion with the CD90™ population for further processing by scATAC-seq
and/or scRNA-seq.

scRNA library generation, sequencing and alignment

Following sorting, cell suspensions were centrifuged at 300gfor 5 min
at 4 °C and resuspended in 1x PBS with 0.5% bovine serum albumin.
Samples were counted using a hemocytometer, and the required
volume of cells was aliquoted for generation of scRNA-seq libraries.
scRNA-seqlibraries were prepared using the 10X Genomics Chromium
Next GEM Single Cell 3’ RNA v.3.1 protocol, targeting 8,000 cells per
sample. Completed libraries were sequenced on an lllumina Next-
Seq 550 platformwith 28/8/0/91base-pair cycles. Raw sequencing data
were converted to fastq format using the command ‘cellranger mkfastq’
(10X Genomics, v.3.1.0). Resulting fastq files were then aligned to the
hg38 reference genome (cellranger-GRCh38-3.0.0) and quantified
using the command ‘cellranger count’.

scATAC library generation, sequencing and alignment

Afterthe required number of sorted cells were aliquoted for generation
of scRNA-seq libraries, the remaining sample volume was used for gen-
eration of scATAC-seq libraries. The remaining cell volume was used to
prepare nucleiaccording to the 10X ATAC nucleiisolation protocol for
‘low cellinput nucleiisolation’ (CGO00169, Rev B). scATAC-seq libraries
were prepared using the 10X Genomics Chromium Next GEM Single
Cell ATAC v.1.1protocol, targeting 6,000 cells per sample. Completed
libraries were sequenced on an Illumina NextSeq 550 platform with
33/8/16/33 base-pair cycles. Raw sequencing data were converted to
fastqformatusing the command ‘cellranger-atac mkfastq’ (10X Genom-
ics, v.1.2.0). Resulting fastq files were aligned to the hg38 reference
genome (cellranger-atac-GRCh38-1.2.0) and quantified using the com-
mand ‘cellranger-atac count’.

scRNA-seq quality control, dimensionality reduction and
clustering

Unless otherwise indicated, all subsequent analyses were performed
using R v.4.0.2. Following alignment and quantification, scRNA-seq
count matrices were further processed using the Seurat R package
(v.4.0.4)”. Initial quality control was performed on each sample inde-
pendently. First, cells were removed if they had fewer than 200 genes
expressed, fewer than1,000 unique sequenced reads (unique molecu-
lar identifiers) or greater than 20% of counts corresponding to mito-
chondrial genes. Doublets were identified and removed using the
‘DoubletFinder’ R package (v.2.0.3)'*. Because we observed evidence of
ambient RNA contaminationin several samples, we used the ‘DecontX’
method in the ‘celda’ R package (v.1.6.1) to estimate and remove con-
taminating ambient RNA from each cell'®. After carrying out each of
these quality-control steps, samples were merged into a single Seu-
rat object for clustering. Decontaminated count data were scaled to
10,000 and then log, normalized.

We adapted aniterative latent semantic indexing (LSI) approach to
dimensionality reduction and clustering”. First we removed mitochon-
drialgenes, sexchromosome genes and genes associated with cell cycle
(Seurat’s ‘cc.genes’) to minimize sample batch effectsin variable feature
selection. Next we identified the top 4,000 variable genes across all
cells and calculated term frequency-inverse document frequency
(TF-IDF) for these variable genes. We performed singular value decom-
position (SVD) onthe TF-IDF matrix and used the first 25 dimensions as
inputinto Seurat’s sharing-nearest-neighbor clustering with aninitial
resolution of 0.2. Counts from single cells in each of these resulting
clusters were summed, transformed with the logCPM transformation
‘edgeR::cpm(mat, log=TRUE, prior.count=3)’ and then used to identify
the top 4,000 variable genes for the next round of LSI. TF-IDF trans-
formation followed by SVD was again performed using the new set of
4,000 variable genes, and clustering was repeated with an increased
resolution of 0.4. The previously described variable gene selection,
TF-IDF transformation and SVD were performed once more and clus-
tering was repeated with afinal resolution of 0.8. The 25 LSI dimensions
from the final round were used to generate two-dimensional repre-
sentations using the uniform manifold approximation and projec-
tion (UMAP) implementation from the Seurat and ‘uwot’ R packages
(v.1.0.10; n.neighbors=50, min.dist=0.5, metric=cosine).

Thisinitial clustering procedure identified 29 clusters. After iden-
tification of marker genes for each cluster using Seurat’s ‘FindAlIMark-
ers’function and inspection of sample representation of each cluster,
we identified a small number of clusters that appeared to be doublet
clusters (clusters 18, 26, 28 and 29). Each of these clusters was com-
posedentirely, or nearly entirely, of asingle sample, did not have unique
marker genes when compared with other clusters or expressed biologi-
callyincompatible combinations of marker genes. We removed all cells
belonging to these clusters and repeated the previously described
iterative LSI clustering procedure on the remaining cells, this time
using clustering resolutions of 0.1, 0.3 and 0.6 for the three rounds.
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Weregenerated UMAP with the same parameters used previously; this
finalfiltered and clustered dataset contained 21 clusters. Visualization
of gene expression on UMAP representations was smoothed using the
MAGIC diffusion algorithm'®. To minimize the risk of ‘oversmoothing’
expression patterns, the application of MAGIC was restricted to data
visualization'®.

SCATAC-seq quality control, dimensionality reduction and
clustering

Following alignment, ATAC-seq fragment data were further processed
using the ‘ArchR’ R package (v.1.0.1)'®. For each cell we computed the
number of unique sequenced fragments and transcription start site
(TSS) enrichment, which serves as a signal-to-noise metric for ATAC-seq
data'. We plotted all barcoded droplets on a scatter plot using these
two metrics and observed that, while some samples had a clear sepa-
rationbetween true cells (high TSS and number of unique fragments)
others had a more continuous distribution between true cells and
droplets containing contamination-free DNA (lower number of unique
fragments and lower TSS enrichment). To label droplets as probable
true cells we used an expectation maximization-based approach. For
each sample we used the ‘mclust’ R package (v.5.4.7) to fit up to four
two-dimensional gaussians to log,, nFragments (number of ATAC-seq
fragments) by TSS enrichment joint distribution (‘Mclust(df, G=2:4,
modelNames=VVV’). Cells classified as originating from the Gaussian
with the greatest mean TSS enrichment were labeled as true cells while
the remaining droplets were filtered from the project. Cellswith a TSS
of below five or nFragments below 1,000 were all filtered from the
project, regardless of their expectation maximization classification
label. This approach was functionally similar to setting a hard filter
for TSS and nFragments for samples that had clearly defined true cell
populations, but enabled exclusion of more contaminating droplets
for samples that had a less clearly defined population of true cells
(Extended DataFig. 1a).

Following initial quality control, doublets were identified and
filtered using the ArchR ‘addDoubletScores’ and ‘filterDoublets’ func-
tions, with a filter ratio of 1. We then used ArchR’s implementation
of iterative LSl dimensionality reduction using the ‘addlIterativeLSI’
function with 50,000 variable features and 25 dimensions. We identi-
fied clusters using the ArchR function ‘addClusters’ with a resolution
of 0.6 and then generated a two-dimensional representation of the
datausing the ‘addUMAP’ ArchR function, with nNeighbors=50, minD-
ist=0.4 and metric=cosine. Thisinitial clustering procedure identified
22 clusters. We identified marker genes for each cluster using the ‘get-
MarkerFeatures’ function with the accessibility around each gene (the
‘Gene Activity Score’) as a proxy for gene expression'®. We identified a
small number of poor-quality clusters (clusters 7,13,15and 18). These
clusters were composed entirely, or nearly entirely, from asingle sam-
ple, did not have unique marker genes, had systematically lower TSS
enrichment or were enriched for high doubletscores. Cells belonging
to these clusters were removed from the project, and dimensionality
reduction and clustering was repeated on the filtered project using
50,000 variable features and 50 dimensions for ‘addIterativeLSI’,and
then aresolution of 0.7 for ‘addClusters’. We regenerated the UMAP
using nNeighbors=60, minDist=0.6 and metric=cosine. This final fil-
tered and clustered dataset contained 22 clusters. Visualization of
gene activity scores on UMAP was similarly smoothed using the MAGIC
algorithm'®. Smoothed datawere used only for visualization purposes.

Subclustering of major cell types

To improve identification of rare cell types we subclustered several
major cell groups from the full scRNA- and scATAC-seq datasets. For
scRNA-seqdata, cluster labels were assigned based on known cell type
markers (Fig.1le,‘'NamedClust’). Cluster labels for scATAC-seq data were
assigned in a similar manner, using gene activity scores as a proxy for
gene expression (Fig. 1f,‘NamedClust’). For example, basal keratinocyte

clusters exhibited high gene activity and expression of the basal keratin
KRTI15 (ref.107), hair follicle keratinocyte clusters exhibited high gene
activity and expression of the TF SOX9 (ref. 108), T lymphocyte clusters
exhibited high gene activity and expression of the cell surface marker
CD3D and fibroblast clusters exhibited high gene activity and expres-
sionof the cell surface marker THYI (ref.109). We observed arelatively
large scRNA-seq cluster expressing high levels of mast cell markers,
includingbeta tryptases (TPSB1/2) and HPGD"° "2, but did not observe
acorresponding scATAC-seq cluster, perhaps due to the tendency for
granulocyte chromatin to spontaneously decondense during nuclear
isolation"*, After labeling clusters in each modality we subclustered
major cell types in each dataset (keratinocytes, fibroblasts, endothe-
lial cells, T lymphocytes and myeloid lineage cells; Extended Data
Fig. 3a-c). See Supplementary Methods for clustering details and
information about peak calling across subclustered datasets.

Integration of scRNA- and scATAC-seq datasets

Starting with the full dataset, we matched each scATAC-seq cell with
its closest corresponding scRNA-seq cell using apreviously described
multimodal dataset integration technique based on canonical cor-
relation analysis. Specifically we used the ArchR function ‘addGe-
nelntegrationMatrix’, which employs Seurat’s ‘FindTransferAnchors’
function to integrate datasets'®*. We then used nGenes=3,000 for
integration of the full dataset. We computed the Jaccard index between
scRNA- and scATAC-seq cluster labels of integrated metacells and
observed high correspondence (Extended Data Fig. 3e). Furthermore
weidentified the same major cell typesin each dataset, with the excep-
tion of mast cells, which were observed only in the scRNA-seq dataset
(Fig. 1c,d). We repeated this integration procedure for each of the
previously described subclustered datasets (keratinocytes, fibro-
blasts, endothelial cells, T lymphocytes and myeloid lineage cells) using
nGenes=2,000. For each subclustered dataset we similarly observed
high correspondence between scRNA-and scATAC-seq-derived cluster
labels (Extended Data Fig. 3d).

Linkage of gene-regulatory elements to gene expression using
integrated datasets

CREs were linked to their potential gene targets (‘peak-to-gene links’)
using a correlation-based approach'™. This procedure involves
the creation of up to 500 partially overlapping pseudobulks of
100 k-nearest-neighborsintegrated single cells (‘low-overlapping cell
aggregates’). The peak counts of each pseudobulk are summed, as are
the gene expression counts of the correspondingintegrated scRNA-seq
transcript profiles. Candidate peak-gene pairs are then identified by
first associating peaks within a genomic distance of 250 kb to the TSS
of each gene and then computing the Pearson correlation coefficient
of log,-normalized accessibility and gene expression counts. This
procedure was carried out using the ‘addPeak2GenelLinks’ functionin
ArchR*, High-confidence peak-to-gene links were obtained by retaining
those with a Pearson correlation coefficient of >0.5.

Because this correlation procedure is dependent on dimension-
ality reduction of the particular dataset used, and because dimen-
sionality reduction in turn is dependent on variable gene selection
across the full dataset, we found that using the entire scalp dataset
for this analysis robustly identified peak-to-gene links correspond-
ing to regulatory interactions defining major cell types (for exam-
ple, keratinocytes versus T cells), but was less efficient at recovering
regulatory interactions between more closely related cell subtypes (for
example, specific hair follicle keratinocyte subsets; Fig. 2b). Toincrease
our sensitivity in detection of peak-to-gene linkages distinguishing
more fine-grained cell subtypes, we repeated the previously described
peak-to-gene linking procedure on each subclustered major cell type
using only the subset of peaks relevant to a specific subclustered data-
setasdescribed above. To create a consensus peak-to-gene link set we
combined all identified peak-to-gene links from the full dataset and
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eachsubclustered dataset, sorted peak-to-gene links by their Pearson
correlation coefficients and removed duplicate peak-to-gene links,
resulting in a consensus peak-to-gene link set of 146,088.

Validation of inferred peak-to-gene linkages using
conservation and ABC model predictions

Following identification of peak-to-gene linkages on the full scalp
dataset and on each of the subclustered datasets (keratinocytes, fibro-
blasts, endothelial, T lymphocytes and myeloid), peak-to-gene links
were validated using two strategies. First we used the ‘gscores’ function
fromthe ‘GenomicScores’ R package (v.2.2.0) to compute mean phast-
Cons 100-way vertebrate evolutionary conservation scores for peaks
linked in the full dataset and in each of the subclustered datasets, as
well as for peaks that were not linked in any analysis. For each group of
peak-to-genelinkages (that s, the full dataset linkages and each of the
subclustered datasets) we used a Wilcoxon rank-sum test to compare
linked and unlinked peaks (Extended Data Fig. 5¢).

Second, we compared our peak-to-gene linkages with predicted
enhancer-gene interactions from a recently published ABC dataset
generated from131 humantissues and cell types*. We downloaded the
full dataset of all 131 tissues (https://www.engreitzlab.org/resources/)
and celltypes and converted enhancer coordinates fromhgl9 to hg38
using the ‘liftover’ function fromthe ‘rtracklayer’R package (v.1.50.0).
For validation of our peak-to-gene link inferences we required both
that the linked peak had to overlap an enhancer region in the ABC
model dataset and that the corresponding linked gene had to match.
We used all possible peak-to-gene linkages (that is, all peak-gene pairs
separated by <250 kb) as background to test for enrichment of ABC
model-predicted enhancer-gene links in our inferred peak-to-gene
links (Extended Data Fig. 5d, top bar). To account for the skewed
length distribution for inferred peak-to-gene links compared with
all possible peak-to-gene links, we also compared the enrichment of
ABC model-predicted enhancer-gene links in inferred peak-to-gene
links with a distance-matched background set of peak-to-gene links
(Extended Data Fig. 5d, second bar). To do this we first computed
the distance between gene promoter and linked peak for all inferred
peak-to-gene links. We divided these distances into 20 contigu-
ous equal-sized bins and assigned background peak-to-gene links
to each of these. We sampled 146,088 peaks from the background
peak-to-gene link set while matching the distance distribution of the
inferred peak-to-gene links, and then calculated the number of back-
ground peak-to-gene links that overlapped ABC enhancer-gene pair
predictions. Werepeated this sampling procedure 100 times and used
the mean number of overlapping background peak-to-gene links to
calculate the enrichment of ABC enhancer-gene pair predictions in
our inferred peak-to-gene linkages using a hypergeometric enrich-
ment test. We calculated the enrichment of ABC model-predicted
enhancer-gene pairs in inferred peak-to-gene linkages for linkages
identified on the full, nonsubclustered dataset (‘full scalp’), and for each
ofthe subclustered datasets (Extended Data Fig. 5d, bottom six bars).

Identification and analysis of HRGs

Following creation of our consensus peak-to-gene link set we ranked
all expressed genes by their number of peak-to-gene links, finding
that a subset of genes had notably more peak-to-gene linkages than
others. We set a cutoff near the inflection point (‘elbow’) of 20 linked
peaks per gene to identify a subset of HRGs, 1,739 genes (Fig. 2c).
We compared these HRGs with a dataset of previously identified
superenhancer-associated genes from a variety of tissues and cell
lines®. We also compared these HRGs with the human homologs of
previously identified mouse hair follicle-associated superenhancer
genes’®. We calculated the enrichment of superenhancer-associated
genes fromvarious tissuesinour set of 1,739 scalp HRGs using a hyper-
geometric enrichment test (Fig. 2d). We additionally compared HRGs
with previously identified domains of regulatory chromatin-associated

genes following conversion of mouse genes to their human orthologs®.
We calculated the significance of this overlap using aone-sided Fisher’s
exacttext.InFig.2e welist two of the top HRGs for each k-means cluster
to the right of the peak-to-gene heatmap. We performed GO enrich-
mentanalyses onthe top 200 genes ranked by number of peak-to-gene
linkages for each of the k-means clusters using the topGO (v.2.42.0)
R package®. For this and all subsequent GO term enrichment analyses
we use the topGO ‘weight01’ method for calculation of enrichment
Pvalues. Because P values calculated using this method are condi-
tioned on neighboring terms in the GO topology, term tests are not
independent and multiple testing theory does not directly apply. As
the authors of the package suggest, we therefore do not apply further
multiple hypothesis testing correction. See section 6.2 of the topGO
manual for further details: http://www.bioconductor.org/packages/
release/bioc/vignettes/topGO/inst/doc/topGO.pdf.

Analysis of modular enhancer usage in HRGs

To visualize the heterogeneity of enhancer usage between cell types
expressing the same gene, we generated 246 pseudobulks of k-nearest
neighbor cells with k =250. To plot peak using pseudobulk heatmaps
we normalized pseudobulk accessibility by summing the peak counts
for each pseudobulk, depth normalization- and log,-transformed
counts data and then quantile normalization using the ‘normalize.
quantiles’ function fromthe ‘preprocessCore’R package (v.1.52.0). For
eachindividual HRG we then calculated the z-score for the normalized
accessibility of each linked peak across all pseudobulk samples. Peaks
were ordered using hierarchical clustering, with euclidean distance as
the dissimilarity measure and complete linkage as the agglomeration
method. For scatter plots comparing pseudobulk-linked peak acces-
sibility with linked gene expression we calculated the mean normalized
integrated gene expression for each pseudobulk sample and applied
log, transformation. To calculate total linked chromatin accessibility
we summed the depth-normalized counts of linked peaks for a given
geneand thenapplied log, transformation. Pseudobulklabels inboth
heatmaps and scatter plots were determined by selection of the most
frequent cluster label from the 250 cells comprising each pseudobulk.

ChromVAR motif analysis

We used chromVAR (v.1.12.0) to measure enrichment of TF motifs in
accessible chromatin across single cells'”. Specifically, we first used
the ArchR function ‘addMotifAnnotations’ to identify all cisbp motif
matchesinthe peak set, used ‘addBgdPeaks’ toidentify a set of genomic
copy-and accessibility-matched background peaks and then used the
‘addDeviationsMatrix’ function to calculate motif deviation z-scores
for each cisbp motif.

Trajectory analysis for interfollicular and hair follicle
keratinocytes

For analysis of epigenetic and gene-regulatory dynamics over the
course of differentiation of interfollicular keratinocytes we used the
R package ‘slingshot’ (v.1.8.0)"%. To apply slingshot to our integrated
SCATAC-seq data for interfollicular keratinocytes we used the ArchR
function ‘addSlingShotTrajectories’ with‘embedding=UMAP’, restrict-
ingavailable clusters tointerfollicular keratinocyte clusters (Basal.Kc_1,
Spinous.Kc_1and Spinous.Kc_2) and designating the basal keratinocyte
cluster as the origin of differentiation. To identify TF regulator candi-
dates for this differentiation trajectory we used two complementary
approaches. First, using all keratinocyte clusters, we calculated the
correlation between a given TF’s chromVAR motif deviation z-scores
andthatsame TF’sintegrated gene expressionacross low-overlapping
cellaggregates. Correlating these measures can help distinguish which
specific TF in a larger TF family is responsible for the motif activity
observedinagivencelltype. These TF correlations were plotted against
the maximum differencein chromVAR motif z-scores between clusters,
highlighting TFs exhibiting more dynamic regulatory activity across
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celltypes (Extended Data Fig. 6e). Toidentify TFs more specific to the
interfollicular keratinocyte differentiation trajectory, we selected
integrated gene expression values and chromVAR deviation scores
along the previously determined slingshot differentiation trajectory
using the ArchR function ‘getTrajectory’ with groupEvery=1.5. We then
correlated these trajectories using the ArchR function ‘correlateTra-
jectories’ with default parameters.

For analysis of the differentiation trajectory of the inferior seg-
ment of the hair follicle we further subclustered these cells as described
above. We used the keratinocyte scATAC-seq clusters Inf.Segment_1,
Inf.Segment_2 and Matrix and scRNA-seq cluster Inf.Segment. For the
subclustered scRNA-seq datasets we used 1,500 variable genes, 20 SVD
dimensions and aclustering resolution of 0.2 in the first round, followed
by a clustering resolution of 0.4 in the final round. To generate UMAPs
for the subclustered scRNA-seq dataset we used n.Neighbors=20, min.
Dist=0.1and metric=cosine. For scATAC-seq subclustering we again used
ArchR’s implementation of iterative LSI dimensionality reduction. We
used 25,000 variable features, 30 dimensions and 0.4 resolution for
clustering. To generate UMAPs for the subclustered scATAC-seq data we
used n.Neighbors=20, min.Dist=0.1 and metric cosine. We reintegrated
these subclustered datasets and reidentified peak-to-gene linkages as
described above. This hair follicle inferior segment subclustering was used
only for analysis of hair follicle differentiation trajectory (Fig. 4), and the
peak-to-gene links identified on this dataset were not used for any other
analyses. Identification of TF regulators for the hair follicle differentiation
trajectory was performed using slingshot as described above, providing
the HFSC, Migratory, Shaft 1, Shaft_2and Matrix clusters as beinginvolved
inthetrajectory and designating the HFSC cluster as the origin.

Identification of potential regulatory target genes of TF
regulators

To identify potential gene targets of a TF we calculated the Pearson
correlation coefficient between the candidate TF regulator’s chrom-
VAR motifactivity and the integrated gene expression of all expressed
genes. Next we calculated alinkage score for each gene and TF pair. This
score is calculated by identification of all peak-to-gene links for that
gene for which the linked peak contains an instance of the candidate
TF motif, and then summing the product of the squared peak-to-gene
linkage correlation with the the motif score:

n
LSy = > R2MS;
k=1

wherelS, isthelinkage score of gene g, nis the number of linked peaks
for gene g, R is the peak-to-gene Pearson correlation coefficient for
peak k and MS, is the motif score for the motif occurring in peak k.
The linkage score is thus higher for genes that have multiple linked
peaks containing the TF motif, have more strongly correlated linked
peaks containing the TF motif and/or have linked peaks that contain
highly confident instances of the motif. See Supplementary Methods
for additional details.

Differential cell type abundance testing using Milo

We used the ‘miloR’ R package (v.1.1.0) to perform k-nearest neighbor
graph-based differential cell type abundance testing between alopecia
areata and unaffected control samples (C_PB and C_SD)*. Although
miloR was originally designed to be applied to scRNA-seq data, the
algorithm depends only on having a cell-cell similarity structure to
the dataset and thus can be similarly applied to scATAC-seq data. We
applied miloRto ourintegrated scATAC-seq databy creating a‘Single-
CellExperiment’ R object from the counts matrix of our keratinocyte
ArchR project, and then used ArchR LSI dimensionality reduction
as the reduced.dim input for miloR in the ‘buildGraph’ function. For
comparison of differential abundance across all keratinocytes we
used only samples that had atleast 50 cellsinthe subclustered dataset,

k=30 forthe ‘buildGraph’ function and prop=0.1for the ‘makeNhoods’
function. For comparison of differential abundance across only the
lower, cycling portion of hair follicle keratinocytes (Fig. 4e) we used
only samples that had at least ten cells in the subclustered dataset,
k=30 for the ‘buildGraph’ function and prop=0.3 for the ‘makeNhoods’
function. We plotted differentially abundant cell neighborhoods with
SpatialFDR = <0.1using the ‘plotNhoodGraphDA'’ function.

LDSC using scATAC-seq data

We used LDSC (v.1.0.1) to estimate the heritability of multiple skin,
hair and other traits in each high-resolution clustered cell type in our
dataset”. Cluster-specific peak regions were used as input functional
categories for LDSC. To obtain these cluster-specific peaks we first
removed clusters with fewer than 40 cells in total, because these clus-
tersgenerally had too few cells for identification of sufficient numbers
of confident cell-type-specific peaks. For the remaining clusters we
identified which peaks from the union peak set were originally identi-
fiedinagiven cluster by overlapping the union peak set withthe MACS2
peak calls from that specific cluster. For each cluster we then retained
only peaks that had been identified in no more than 25% of all clus-
ters (nine out of a possible 36 clusters). This strategy enabled us to
bothfilter out common ‘housekeeping peaks’thatareaccessibleinthe
majority of cell types while retaining peaks that are unique to, at most,
a few clusters. Formatted summary statistics for partitioning can be
downloaded from https://console.cloud.google.com/storage/browser/
broad-alkesgroup-public-requester-pays/sumstats_formatted. We fol-
lowed the recommended guidelines for cell-type-specific partitioned
heritability analysis using the 1000 G EUR phase 3 population reference
and the hg38 baseline model (v.2.2). We used the ‘Idsc.py’ script to
calculate partitioned heritability for each trait in cluster-specific peak
sets. We used Benjamini-Hochberg FDR correction to adjust heritability
enrichment P values. See Supplementary Methods for additional details.

Analysis of  MGWAS variants
We obtained fine-mapped SNPs from multiple sources. First we down-
loaded a compendium of fine-mapped SNPs for 94 UK Biobank traits
(www.finucanelab.org/data) and used the male pattern balding (‘Bald-
ing Type4’),body massindex and systolic blood pressure (‘SBP’) traits
for downstreamanalyses’’. Second, we downloaded precomputed PICS
fine-mapped SNPs for a variety of traits in the GWAS catalog (https://
pics2.ucsf.edu/Downloads/PICS2-GWAScat-2021-06-11.txt.gz) "%,
Details of trait definitions are available from either the UK Biobank
(https://www.ukbiobank.ac.uk/) or the GWAS catalog (https:/www.
ebi.ac.uk/gwas/). We calculated enrichment of fine-mapped SNPs with
afine-mapping posterior probability of >0.01fromselected traitsin the
previously described cluster-specific peak sets, using one-sided Fish-
er’s exact test with a background SNP set containing all fine-mapped
SNPs (also with afine-mapping posterior probability of >0.01) across all
traits. Enrichment P values were adjusted using Benjamini-Hochberg
FDR correction. See Supplementary Methods for additional details.
Inregard to identification of genes associated with fine-mapped
SNPs for selected traits, we identified those with a fine-mapping pos-
terior probability of 20.01 and that overlapped a scATAC-seq peak
region. Next, for each gene weidentified all fine-mapped SNPs that fell
within a peak linked to the expression of that gene then summed the
fine-mapping posterior probability for these linked SNPs. Genes linked
toapeak containing a fine-mapped SNP with a high posterior probabil-
ity, or those linked to multiple linked peaks containing fine-mapped
SNPs with appreciable fine-mapping posterior probability, were
assumed more likely to represent genes whose expression is associ-
ated with the trait of interest. We plotted row-scaled gene expression
for the top 80 genes (by total associated fine-mapping probability) in
each of our high-resolution scRNA-seq clustersinaheatmap then plot-
ted the number of linked peaks and cumulative fine-mapping posterior
probability to the right of each gene.
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gkm-SVM machine learning classifier training and testing

We adapted a previously published strategy for trained gkm-SVM mod-
els using scATAC-seq data®. See Supplementary Methods for details
on model training, testing and SNP prioritization.

Statistics and reproducibility

Thesstatistical methods and tests used in various analyses are listed in their
respective figure legends or section of Methods. No statistical method was
usedto predetermine samplesize. Theauthors werenotblinded to patient
diagnosis during sample collection or analysis. All datasets generated
that did not fail experimentally (for example, overloaded sample) were
includedinthestudy. Data (inthe form of individual cells) were excluded
from downstream analyses if they did not pass technical quality control
thresholdsin theinitial data-processing stage, as described in Methods.

Ethics statement

Allresearch described complies with the ethical guidelines for human
subjects research under the approved Institutional Review Board pro-
tocol at Stanford University (no. 40524) for the collection and use of
human tissue samples.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Sequencing data generated in this study have been deposited in the
Gene Expression Omnibus (GEO) with accession code GSE212450. The
full scalp dataset can be explored interactively at http://shiny.scscal-
pchromatin.su.domains/shiny_scalp/ (ref. 119). Reference genome
files for alignment of single-cell data can be downloaded from https://
support.10xgenomics.com/single-cell-gene-expression/software/
release-notes/build. Predicted superenhancer-associated genes from
86 human cell types and tissues were downloaded from Supplementary
Table 2 of https://doi.org/10.1016/j.cell.2013.09.053 (ref. 35). Predicted
superenhancer-associated genes from mouse hair follicle cell populations
were downloaded from Supplementary Table1of https://doi.org/10.1038/
naturel4289 (ref. 36). The ABC dataset generated from 131 human tis-
sues and cell types was downloaded from https://www.engreitzlab.org/
resources/ (ref. 31). Differentially expressed genes identified between
control human keratinocytes and keratinocytes containing a mutant,
binding-incompetent form of TP63 were obtained from Supplemen-
tary Table1d of https://doi.org/10.1016/j.celrep.2018.11.039 (ref.51). The
countsmatrix fromshorthairpin RNA knockdown of KLF4 inhuman adult
keratinocytes is available on GEO with accession no. GSE111786 (ref. 54).
Formatted summary statistics for partitioning heritability using LDSC
can be downloaded from https://console.cloud.google.com/storage/
browser/broad-alkesgroup-public-requester-pays/sumstats_formatted.
Fine-mapped SNPsfor 94 UK Biobank traits can be downloaded from www.
finucanelab.org/data(ref.79). Precomputed PICS fine-mapped SNPsfor a
variety of traits fromthe GWAS catalogare available at https://pics2.ucsf.
edu/Downloads/ (refs. 78,80). Source data are provided with this paper.

Code availability

Custom code for data processing, peak-to-gene analyses and GWAS
analyses is available on Github (https://github.com/GreenleafLab/
scScalpChromatin and https://doi.org/10.5281/zenod0.7915926). Our
analyses also make use of published software tools, with description
of their use and parameter settings available in Methods and in the
custom code above where applicable.
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Extended Data Fig. 1| Quality control of single cell RNA and ATAC datasets. the TSS enrichment (top) and number of unique fragments (bottom) for each of
(a) Scatter plots of the number of unique fragments by the transcription start the scATAC-seq samples. Box plot asin (B). (d) UMAP projection of full sScRNA-
site (TSS) enrichment for each of the scATAC-seq samples. Gray dots indicate seq dataset, colored by patient sample. (e) UMAP projection of full scATAC-seq
cells that did not pass quality control filters (Methods). Colorbar indicates the dataset, colored by patient sample. (f) Differential sSCATAC-seq peaks between
density of points. (b) Violin plots of the number of unique reads (UMIs, top) samples processed immediately after collection or after cryopreservation for
and the percent of reads from mitochondrial genes (bottom) for each of the each of the major cell groupings. Differential peaks (FDR < 0.1) are indicated
scRNA-seq samples. The inset box plot represent the median, 25th percentile by colored dots. (g) Differential sScRNA-seq genes between samples processed
and 75th percentile of the data, and whiskers represent the highest and lowest immediately after collection or after cryopreservation for each of the major cell
values within 1.5 times the interquartile range of the boxplot. (¢) Violin plots of groupings. Differential genes (FDR < 0.1) are indicated by colored dots.
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Extended Data Fig. 2| Annotation of single cell RNA and ATAC datasets.

(a) UMAP projections of full scRNA-seq dataset colored by relative expression
levels of representative cell compartment marker genes. (b) UMAP projections
of full scATAC-seq dataset colored by relative gene activity scores of the same
marker genes shownin (A). (¢) Marker peaks (Wilcoxon FDR < 0.1and Log2 fold
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change > 0.5) for each scATAC cluster. (d) The fraction of each scRNA-seq cluster
comprising each sample. The total proportions for each cluster are shown in

the rightmost column. (e) The fraction of each scATAC-seq cluster comprising
each sample. The total proportions for each cluster are shown in the rightmost
column.
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Extended Data Fig. 3 | See next page for caption.
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Extended DataFig. 3 | Sub-clustering of major cell groups and integration group. The color indicates the relative expression across all high-resolution

of scRNA and scATAC datasets. (a) UMAP representations of sub-clustered clusters and the size of the dot indicates the percentage of cells in that cluster
major cell groups using scATAC data. Cell compartments are labeled on the that express the gene. (d) Correspondence between scRNA and scATAC-seq
left, and cells are colored according to their high-resolution cluster labels. (b) cluster labels for high-resolution clusters in each of the sub-clustered datasets.
UMAP representations of sub-clustered major cell groups using scRNA data. Cell Heatmaps are colored according to the Jaccard index of cluster label overlap
compartments are labeled on the right, and cells are colored according to their between the scRNA and scATAC-seq datasets. (e) Correspondence between
high-resolution cluster labels. (c) scRNA gene expression for selected marker scRNA and scATAC-seq cluster labels in the full scalp dataset.

genes for each high-resolution scRNA-seq cluster from each sub-clustered cell
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Extended Data Fig. 4 | Clustering and CCA-based integration robustness to
subsampling. (A through C) Repeated dimensionality reduction and clustering
of the scRNA and scATAC-seq datasets with three samples (AA4, C_SD3, and
C_PB3) removed from the full dataset. (a) UMAP representations of the full
subsampled dataset and sub-clustered major cell groups using scRNA data.
Cell compartments are labeled on the left, and cells are colored according
to their high-resolution cluster labels as shown in the x-axis in (C). (b) UMAP
representations of the full dataset and sub-clustered major cell groups using
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scATAC data. Cell compartments are labeled on the left, and cells are colored
accordingto their high-resolution cluster labels as shown in the y-axis in (C).

(c) Correspondence between scRNA and scATAC-seq cluster labels for the low-
and high-resolution clusters in each of the subsampled datasets. (D through F)
Repeated dimensionality reduction and clustering of the scRNA and scATAC-seq
datasets with 25% of the cells randomly removed from the full dataset. (d) Same
asin(A), but for the cell-subsampled dataset. (e) Same as in (B), but for the cell-
subsampled dataset. (f) Same as in (C), but for the cell-subsampled dataset.
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Extended Data Fig. 5| Identification and characterization of peak-to-

gene linkages. (a) Upset plot indicating the number of peak-to-gene linkages
identified in the full dataset and in each of the sub-clustered datasets. (b)

The distribution of the number of linked peaks per gene (median=4). (c) The
PhastCons 100-way vertebrate conservation scores for peaks with alinked gene
ineach dataset compared to unlinked peaks. Two-sided Wilcoxon rank-sum test
comparing each dataset to unlinked peaks, p <2.2 x10-16. Boxplots represent
the median, 25th percentile and 75th percentile of the data, and whiskers
represent the highest and lowest values within 1.5 times the interquartile range
of the boxplot. (d) Bar plot showing the proportion of peak-to-gene linkages
where both peak and gene were validated by a multi-tissue dataset of activity-by-
contact (ABC) model enhancer-gene predictions. Categories compared included
the space of all possible peak-to-gene links, the mean of 100 permutations drawn
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fromall possible peak-to-gene links where for each permutation 146,088 peaks
were selected to match the anchor distance distribution of true peak-to-gene
links, and the set of true peak-to-gene links identified on each sub-clustered
dataset. One-sided Fisher’s exact test enrichment comparing each subgroup of
true peak-to-gene links to a distance-matched background set, p < 2.2 x10-16.
(e) Venn-diagram indicating the overlap of peak-to-gene linkages and peak-
to-nearest-gene associations. (f) Comparison of the linked peak score (sum of
accessibility at linked peaks) compared to the gene activity score for predicting
gene expression for the1739 HRGs. Plotted is the Pearson R2 from 246 pseudo-
bulked samples per gene. Boxplots represent the median, 25th percentile and
75th percentile of the data, and whiskers represent the highest and lowest values
within 1.5 times the interquartile range of the boxplot.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Marker genes and cell type-specific TF regulator
activity for sub-clustered interfollicular and hair-follicle associated
keratinocytes. (a) UMAP projections of sub-clustered keratinocyte scRNA-
seq dataset colored by expression levels of representative marker genes. (b)
UMAP projections of sub-clustered keratinocyte scATAC-seq dataset colored
by gene activity scores of the same marker genes shownin (A). (c) Heatmap
showing the chromatin accessibility (left) and gene expression (right) for
28,991 keratinocyte-specific peak-to-gene linkages. Peak-to-gene linkages were
clustered using k-means clustering (k = 12). Rows indicate peak accessibility and
gene expression on the left and right heatmaps respectively. Each columnis a
pseudo-bulk sample, with the colorbar on top of each heatmap indicating the
cluster identity of each pseudo-bulk sample. (d) Hypergeometric enrichment
p-values of TF motifs in peaks from each of the k-means clusters from (C). (e)

Plot of TF motif activity correlation to corresponding TF gene expression across
sub-clustered dataset against the maximum difference in chromVAR deviation
z-score between clusters. TF’s with a maximum chromVAR difference in the

top quartileand a pearson correlation greater than 0.5 are colored inred. (f)
Prioritization of gene targets for LHX2. The x-axis shows the Pearson correlation
between the TF motif activity and integrated gene expression for all expressed
genes across all keratinocytes. The y-axis shows the TF Linkage Score (for all
linked peaks, sum of motif score scaled by linkage correlation). Color of points
indicates the hypergeometric enrichment of the TF motifin all linked peaks for
eachgene. Top gene targets are indicated in the shaded area (motif correlation
to gene expression >0.25, linkage score >80th percentile). GO term enrichments
for the top gene targets are shown in the inset bar plot. (g) Same as in (F), but for
androgen receptor (AR). (h) Same asin (F), but for POU2F3.
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Extended Data Fig. 7 | Supplemental analyses of sub-clustered inferior
segment hair follicle keratinocytes. (a) UMAP projection of sub-clustered
keratinocytes showing cells originating from alopecia areata. Cells originating
from control samples are colored gray and sorted to the back of the plot.

(b) UMAP projection of sub-clustered scRNA inferior segment hair follicle
keratinocytes. (c) UMAP projection of sub-clustered scATAC inferior segment
hair follicle keratinocytes colored by matched nearest scRNA cluster. (d)

varabie HF Wageciory eems

Correspondence between scRNA and scATAC-seq cluster labels for integrated
inferior segment hair follicle keratinocytes. (e) Paired heatmaps of positive TF
regulators whose TF motif activity (left) and matched gene expression (right)
are positively correlated across the hair follicle keratinocyte differentiation
pseudotime trajectory. (f) GO term enrichments of the most variable 10% of
genes across the hair follicle keratinocyte differentiation pseudotime trajectory.
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Extended Data Fig. 8 | Supplemental analyses of GWAS signal enrichment
incell type-specific open chromatin regions and cell type-specific genes.
(a) Cluster-specificity of peaks used for LD score regression and for Fisher
enrichment tests in Fig. 5. More than 50% of peaks are specific to <1/8 of high-
resolution scATAC clusters, and 85% of peaks are specific to <1/4 of clusters. (b)
Distribution of the number of clusters in which each peak is accessible. Peaks
accessible in<1/4 of clusters (9 high-resolution clusters) were used for cluster-
specific enrichment analyses. (c) Cluster-specificity of marker genes used for LD
score regression and for Fisher enrichment tests in (E) and (G) respectively. (d)
Distribution of the number of clusters identified as expressing a given marker
gene. Marker genes expressed in <1/4 of clusters (10 high-resolution clusters)
were used for cluster-specific enrichment analyses. (e) LD score regression

identifies enrichment of GWAS SNPs for various skin and non-skin related
conditions in gene regions specific to sub-clustered cell types (from the sScRNA
dataset) in human scalp. FDR-corrected P-values from LDSC enrichment tests
are overlaid on the heatmap (*FDR < 0.05, **FDR < 0.005, ***FDR < 0.0005). (f)
Same as in (E), but using only open-chromatin regions (from the scATAC dataset)
thatareimplicated in peak-to-gene linkages (N = 98,188). (g) Fraction of fine-
mapped SNPs for selected traits overlapping scalp CREs binned by fine-mapping
posterior probability. (h) Fisher’s exact test enrichment of the nearest gene for
fine-mapped trait-related SNPs in cell type-specific genes for sub-clustered cell
types in human scalp. The FDR-corrected -logl0 p-value is indicated by the color
ofthe dots, and the dot size indicates the enrichment odds ratio.
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Extended Data Fig. 9 | Supplemental analyses of fmGWAS-linked genes. (a)
GO term enrichment for the top genes linked to fine-mapped SNPs by summed
fine-mapping posterior probability in associated peak-to-gene linkages. (b)

The top genes linked to peaks containing fine-mapped SNPs for alopecia areata.

The heatmap shows relative gene expression for each high-resolution scRNA
cluster. The number of linked fmSNPs per geneis indicated in the red bar plot

A S o
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to theright, and the total sum of fine-mapped posterior probability for linked
SNPsisindicated in the blue bar plot. The grey bar plot shows the total number
ofidentified peak-to-gene linkages for that gene in the entire scalp dataset. Gene
names colored red indicate fine-mapped SNP to gene linkages supported by

GTEx eQTLs. (c) Sameasin (B), but for hair color.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Assessment of gkmSVM model performance and
additional high-effect candidate fine-mapped SNPs. (a) The area under
thereceiver operator (AUROC), or (b) precision recall (AUPRC) curves for the
gkm-SVM machine learning classifiers for each of the cluster models. Each dot
indicates a cross-validation fold (n =10). Boxplots represent the median, 25th
percentile and 75th percentile of the data, and whiskers represent the highest
and lowest values within 1.5 times the interquartile range of the boxplot. (c) The
overlap of training data (peak sequences) between models. (d) The performance
of each cluster model on predicting test sequences from a non-target cluster. (e)
Enrichment of high-effect fine-mapped SNPs from eczema relative torandom
fine-mapped SNPs in cis-regulatory regions. (f) Same as in (e), but for AGA. (g)
Normalized chromatin accessibility landscape for cell type-specific pseudo bulk

tracks around the BNC2 locus. Integrated BNC2 expression levels are shown in
the violin plot for each cell type to the right. The position of ATAC-seq peaks, the
GWAS lead SNP, the fine-mapped SNP candidates in LD with the lead SNP, and
the candidate functional SNP are shown below the ATAC-seq tracks. Significant
peak-to-gene linkages are indicated by loops connecting the BNC2 promoter
toindicated peaks. (h) GkmExplainimportance scores for the 50 bp region
surrounding rs12350739, a hair color associated SNP that creates aJUN motifin
a CRE linked to BNC2 expression. (i) Same as in (G), but for the ALX4 locus. (j)
GkmExplainimportance scores for the 50 bp region surrounding rs10769041,
an AGA associated SNP that disrupts an ETS motifina CRE linked to ALX4
expression.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX 0O O OX O OOS

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Code for generating fragments files for scATAC and counts matricies for single cell RNA was obtained from 10x genomics
(go.10xgenomics.com/scATAC/cell-ranger-ATAC and https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/
what-is-cell-ranger)

Data analysis cellranger-atac-1.2.0 — alignment of ATAC data and generation of fragments files
cellranger-3.1.0 — alignment of RNA data and generation of counts matrices
macs2 2.1.1 — Software for peak calling
R version 4.0.2 — R environment for all custom code
ArchR - 1.0.1 - Software for analysis of scATAC-seq data
Seurat_4.0.4 — Software for analysis of scRNA-seq data
SAMtools mpileup v1.5 — Software for genotyping bulk ATAC data
VarScan mpileup2snp v2.4.3 — Software for genotyping bulk ATAC data
DoubletFinder_2.0.3 — Software for doublet removal for scRNA-seq
celda_1.6.1 — Software used for ambient RNA decontamination (DecontX)
BSgenome.Hsapiens.UCSC.hg38 1.4.3 — Package containing genomic DNA sequences
uwot_1.0.10 — Used for UMAP
harmony_1.0 — Software used for batch correction in subclustering analysis
GenomicScores_2.2.0 — Used for computing evolutionary conservation of open chromatin regions
topGO_2.42.0 — Software used for GO enrichments
preprocessCore_1.52.0 — Used for data normalization
chromVAR_1.12.0 — Used for measuring enrichment of transcription factor motifs in accessible chromatin
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slingshot_1.8.0 — Used for estimating differentiation trajectories

miloR_1.1.0 — Used for differential abundance testing of alopecia areata vs control keratinocyte populations

edgeR_3.32.1 — Used for analysis of single-cell data

DESeq2_1.30.1 — Used for differential analysis of downloaded KIf4 knockdown data and for comparison of fresh vs cryopreserved samples.
LDSR_1.0.1 — Software for estimation of GWAS signal enrichment in cell-type specific chromatin regions

LSGKM-SVR (https://github.com/kundajelab/Isgkm-svr) — Software for predicting effects of genetic variation on chromatin accessibility
fitdistrplus_1.1.6 — Used for estimating distribution parameters

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Sequencing data generated in this study has been deposited in the Gene Expression Omnibus (GEO) with the accession code GSE212450. The full scalp dataset can
be explored interactively at (http://shiny.scscalpchromatin.su.domains/shiny_scalp/) . Reference genome files for aligning single-cell data can be downloaded from
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build. Predicted super enhancer associated genes from 86 human cell types
and tissues were downloaded from table S2 from https://doi.org/10.1016/j.cell.2013.09.053. Predicted super enhancer associated genes from mouse hair follicle
cell populations were downloaded from table S1 from https://doi.org/10.1038/nature14289. The activity-by-contact (ABC) dataset generated from 131 human
tissues and cell types was downloaded from https://www.engreitzlab.org/resources/. Differentially expressed genes identified between control human
keratinocytes and keratinocytes containing a mutant, binding incompetent form of TP63 were obtained from Table S1D from https://doi.org/10.1016/
j.celrep.2018.11.039. The counts matrix from shRNA knockdown of KLF4 in human adult keratinocytes is available on GEO with the accession number GSE111786.
Formatted summary statistics for partitioning heritability using LD score regression can be downloaded from https://console.cloud.google.com/storage/browser/
broad-alkesgroup-public-requester-pays/sumstats_formatted. Fine-mapped SNPs for 94 UKBB traits can be downloaded from www.finucanelab.org/data. Pre-
computed PICS fine-mapped SNPs for a variety of traits from the GWAS catalog are available at https://pics2.ucsf.edu/Downloads/.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender No attempt was made to exclude donors on the basis of age, gender, or sex. Individual donors self-reported their sex and
consented to this information being shared. This information can be found at the GEO accession above. No sex- or gender-
based analyses were performed in this study.

Population characteristics Patients in this study were recruited from Stanford Healthcare and from Santa Clara Valley Medical Center. Ages of patients
ranged from 20—-80. The study included 5 males and 10 females. The study included 5 patients with active alopecia areata
and 10 healthy controls.

Recruitment For alopecia areata patients, no criteria other than active disease affecting >2% of the scalp and absence of current
treatment was required for recruitment. For healthy control patients donating scalp samples either in the form of discarded
surgical dogears or from healthy scalp punch biopsies, no criteria other than absence of hair disease (e.g. alopecia areata,
androgenetic alopecia) in the affected tissue was required. Patients with alopecia areata were recruited from dermatology
clinics at either Stanford University or Santa Clara Valley Medical Center. Patients donating healthy scalp samples were
recruited from dermatology clinics at Stanford University. No attempt was made to exclude donors on the basis of age,
gender, or sex. Patients undergoing dermatological surgeries typically had a non-melanoma skin cancer peripheral to the
tissue used in this study. These patients thus tended to be older than the alopecia areata patients or the other healthy
control patients. Patients volunteering to donate samples may also self-select for a number of reasons, such as personal
interest in research, comfort with medical procedures, or socioeconomic status. These potential biases apply to all groups
recruited in this study and are thus not expected to impact results.

Ethics oversight All research described complies with the ethical guidelines for human subjects research under the approved Institutional
Review Board (IRB) protocol at Stanford University (no. 40524) for the collection and use of human tissue samples.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was set based on the availability of patient donors during the recruitment period of the study. Sample size was sufficient to
identify the expected cell types present in the human scalp in both healthy patients and those with active alopecia areata.

Data exclusions  All datasets generated that did not fail experimentally (e.g. overloaded sample) were included in the study.

Replication Technical replicates for additional single-cell experiments were not performed as technical replicates are less informative than using
multimodal data (scATAC and scRNA) for each sample. Biological replicates were obtained in the form of multiple patient donors from each
disease state. Generation of single-cell data was performed only once for each patient sample. Selected findings (e.g. peak-to-gene linkages,
enrichment of GWAS signals in cell type specific chromatin) were validated using external, orthogonal datasets and analyses.

Randomization  There was no randomization into experimental groups. All samples were processed to generate single-cell datasets individually as they
became available.

>
Q
Q.
(e
M
1®)
o
=
o
S
_
(D
©
o
=
5
«
wm
[
=
3
Q
<

Blinding No blinding was performed in this study that focused on deep characterization alopecia areata and healthy control scalp tissue at a single
point in time. No differential clinical intervention was performed or was being compared in this study.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X Antibodies XI|[] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

XXNXXNX[]s
Ooood

Dual use research of concern

Antibodies

Antibodies used PE-Cy7 Mouse Anti-Human CD90; Supplier:BD Pharmingen; Clone: 5E10; Catalog number: 561558

Validation The CD90 antibody was pre-validated and conjugated by BD Pharmingen. It was purchased for FACS of dissociated scalp tissue.
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