
ARTICLES
https://doi.org/10.1038/s41588-022-01088-x

1Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. 2Program in Biophysics, Stanford University, Stanford, CA, USA. 
3Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA. 4Division of Gastroenterology and Hepatology, Department of 
Medicine, Stanford University, Stanford, CA, USA. 5Department of Pathology, Stanford University, Stanford, CA, USA. 6Department of Computer Science, 
Stanford University, Stanford, CA, USA. 7Stanford Cancer Institute, Stanford University School of Medicine, Stanford,  CA, USA. 8Department of Applied 
Physics, Stanford University, Stanford, CA, USA. 9Chan Zuckerberg Biohub, San Francisco, CA, USA. 10These authors contributed equally: Winston R. Becker,  
Stephanie A. Nevins. ᅒe-mail: mpsnyder@stanford.edu; wjg@stanford.edu

The identification of genes and pathways that drive formation 
of invasive cancers has been the central focus of a number of 
large-scale genomics efforts1–3. These efforts have cataloged 

the diversity and commonality of many genetic and transcrip-
tional changes that accompany malignancy in diverse cancer types. 
However, most studies have focused on bulk profiling of advanced 
stage tumors and have largely ignored premalignant lesions. As a 
result, a detailed understanding of the progression of phenotypic 
changes that occur during the transition from normal to precan-
cerous to cancerous state, as well as the molecular drivers of this 
transformation, remain underexplored.

CRC is an ideal system to study the continuum of phenotypic 
states along malignant transformation as it follows a stereotyped 
progression from normal to atypical to carcinoma that includes the 
formation of precancerous polyps4,5, which can subsequently give 
rise to CRCs. A number of the changes associated with these transi-
tions are nearly universal to all CRC malignancies, as typified by 
the adenoma-to-carcinoma sequence6–8. For example, an estimated 
80–90% of colorectal tumors are initiated by loss of APC9, resulting 
in β-catenin stabilization and increased WNT signaling10 leading 
to intestinal hyperplasia11. Subsequent mutations in other cancer 
driver genes such as KRAS, TP53 and SMAD4 result in the transfor-
mation to carcinoma.

Because APC mutations are almost universally the initiating 
event for polyps and CRCs, patients with familial adenomatous pol-
yposis (FAP), who have germline mutations in APC, are a suitable 

population in which to study the natural progression of polyposis. 
These patients typically develop hundreds of polyps by early adult-
hood12,13, and therefore an individual patient can provide numerous 
polyps of varied molecular ages and stages of progression, all arising 
in the same germline background.

To chart the regulatory and transcriptomic changes that occur 
on the phenotypic continuum from healthy colon to invasive car-
cinoma, as part of the Human Tumor Atlas Network14, we profiled 
single-nuclei transcriptomes (single-nucleus RNA sequencing 
(RNA-seq) (snRNA-seq)) and epigenomes (single-cell assay for 
transposase-accessible chromatin using sequencing (ATAC-seq) 
(scATAC-seq)) of healthy colon, polyps and CRCs. Many polyps 
were obtained from patients with FAP who underwent surgical col-
ectomies, allowing both analysis of polyps with diverse sizes and 
locations of origin, and collection of neighboring unaffected colon 
tissue. From these single-cell datasets, we first catalog immune, 
stromal and epithelial cell types. We find large shifts in fibroblast 
subpopulations that occur along the transition from normal colon 
to CRC. We identify a subpopulation of exhausted T cells pres-
ent only in CRC tissue. We observe a much larger fraction of cells 
exhibiting a stem-like state (both transcriptionally and epigeneti-
cally) within polyps and CRCs. We find that polyps populate an epi-
genetic and transcriptional continuum from normal colon to CRC 
characterized by sequential opening and closing of chromatin and 
upregulation and downregulation of genes associated with the can-
cer state. We identify regulatory elements and transcription factors 
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(TFs) associated with different stages of transformation from nor-
mal colon to carcinoma, including early increases in accessibility of 
regions containing TCF and LEF motifs and loss of accessibility in 
regions containing KLF motifs. In the final stage of this pathway,  

malignant transformation, we observe increased accessibility in 
regions containing HNF4A motifs. Finally, we show that acces-
sibility changes in polyps are strongly anti-correlated with DNA 
methylation changes in sporadic CRC, and identify a subset of these 
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Fig. 1 | Single-cell atlas of expression and chromatin accessibility in CRC development. a, Summary of the samples in this study. The bar chart shows 
the number of normal/unaffected colon tissues (gray), adenomas (purple) and CRCs (red) assayed for each patient. Locations of samples assayed from a 
single patient are indicated on the colon on the upper right. These data include deep profiling of four patients with FAP from whom we assayed 8–11 polyps, 
0–1 carcinomas and 4–5 matched normal (unaffected) tissues. From non-FAP donors, we collected data on normal colon (9 samples from 2 donors), polyps 
(1 sample from 1 donor) and CRC tissues (4 samples from 4 patients). b,c, UMAP representations of all snRNA-seq (b) and scATAC-seq (c) cells colored 
by whether the cells were isolated from normal/unaffected colon tissues, adenomas or CRCs. d,g, UMAP representations and annotations of immune (d) 
and stromal (g) cells. e,h, Fraction of each immune (e) and stromal (h) cell type isolated from normal (green), unaffected (blue), polyp (purple) and CRC 
(red) samples. The color gradations within each color represent the contributions of each single sample (for example, each shade of red is a single CRC). 
f, CODEX images of eight polyps and two CRCs where cells are labeled with dark blue, CD3 is labeled in green and PD1 is labeled in light blue. All samples 
tested are shown in f. CODEX imaging of individual specimens was not reproduced. Representative sections of images of the entire specimen are shown in 
the figure. DC, dendritic cell; Fib., fibroblast; GC, germinal center; ILC, innate lymphoid cell; Myofib., myofibroblast/smooth muscle; NK, natural killer.
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regions that change their accessibility state early in the malignant 
continuum, suggesting potential strategies for detection of prema-
lignant polyps.

Results
Mapping molecular changes across malignant transformation. 
We generated single-cell data for 81 samples collected from eight 
FAP and seven non-FAP donors (Fig. 1a and Supplementary Tables 
1 and 2). For each tissue, we performed matched scATAC-seq and 
snRNA-seq (10x Genomics). We obtained high-quality single-cell 
chromatin accessibility profiles for 447,829 cells from 80 samples, 
with a mean transcription start site (TSS) enrichment of ~8 for 
most samples (Extended Data Fig. 1a). After removing low-quality 
snRNA-seq cells and samples, we obtained single-cell transcrip-
tomes for 201,884 cells from 70 samples (Extended Data Fig. 1b). 
Whenever there was sufficient tissue, we generated microscopic 
pathology data (Extended Data Fig. 2a and Supplementary Table 2) 
and found the majority of polyps were tubular adenomas, the most 
common polyp type identified in colonoscopies.

When all snRNA-seq cells (Fig. 1b) and scATAC-seq cells 
(Fig. 1c) are projected into low-dimensional subspaces, stromal 
and immune cells generally cluster by cell type whereas epithelial 
cells largely separate into distinct clusters comprising cells derived 
from polyps, unaffected tissues or CRCs. As a result, we annotated 
immune and stromal cells by subclustering cells from all samples, 
and analyzed epithelial cells separately.

T cells and myeloid cells are enriched in polyps and CRC. The 
immune compartment comprised B cells, T cells, monocytes, 
macrophages, dendritic cells and mast cells (Fig. 1d). We exam-
ined expression of known marker genes (Extended Data Fig. 1c) 
to annotate snRNA-seq data, and examined chromatin activity 
scores—a measure of accessibility within and around a given gene 
body—associated with marker genes to annotate the scATAC cells 
(Extended Data Fig. 1d). We identified a cluster of exhausted T cells 
in the scATAC data that exhibited high gene scores of T cell exhaus-
tion marker genes and accessibility at exhausted T cell motifs, and 
was labeled as exhausted T cells by a published dataset (Extended 
Data Fig. 3a–g and Methods)15.

The cell types identified were present in nearly all samples, 
although some cell types were enriched or depleted in specific 
disease states (Fig. 1e and Extended Data Figs. 2b,c, 3h and 4). 
Significant differences in cell-type abundance were identified with 
both Wilcoxon testing and a generalized linear model-based method 
called Milo16, which produced consistent results. For example, regu-
latory T cells (Tregs) were enriched in polyps relative to unaffected 
tissue, while naive B, memory B and germinal center cells were 
enriched in unaffected tissues relative to polyps (Extended Data  
Fig. 4a,b). Enrichment of myeloid cells and specific types of T cells 
and depletion of B cells was recently reported in a group of 22 mis-
match repair-proficient and 13 mismatch repair-deficient CRCs17, 
and we observe similar shifts in the tumor immune composition in 
precancerous polyps.

The enrichment of (1) Tregs in both polyps and CRC and (2) 
exhausted T cells in CRC suggests mechanisms of immune evasion 
in the precancerous and cancerous states18. T cell exhaustion, which 
occurs in response to chronic antigen stimulation and is charac-
terized by reduced cytokine production and increased expression 
of inhibitory receptors, is thought to be a primary mechanism of 
immune evasion by cancers19,20. To further support the observation 
of T cell exhaustion only occurring in CRC, we performed CODEX 
imaging of CD3 and PD1 and found low or undetectable PD1 
expression in eight polyps but found PD1 expression in both CRC 
samples tested (Fig. 1f).

Within the stromal compartment, we identified glial cells, adi-
pose cells and multiple types of endothelial cells and fibroblasts 

(Fig. 1g). Fibroblast subtypes include crypt fibroblasts (WNT2B or 
RSPO3 high), villus fibroblasts (WNT5B high) and myofibroblasts 
(ACTA2 and TAGLN high) (Extended Data Figs. 1f,g and 5a)21,22. 
Consistent with previous results, we observe high expression of 
BMP signaling genes in villus fibroblasts (Extended Data Fig. 5a). 
In agreement with recent reports that crypt fibroblasts secrete 
semaphorins to support epithelial growth, we observe one fibro-
blast cluster with high expression of semaphorins (Extended Data  
Fig. 5a)23. This cluster of fibroblasts exhibited the highest expression 
of RSPO3, a factor that supports the intestinal stem cell niche24. We 
also observe a cluster of cancer-associated fibroblasts (CAFs) con-
sisting almost exclusively of cells from CRCs, and a scATAC cluster 
of fibroblasts enriched for cells from polyps and CRCs with acces-
sibility around some of the same genes as CAFs, which we term 
pre-cancer-associated fibroblasts (preCAFs) (Fig. 1h and Extended 
Data Figs. 2d,e and 4). These observations suggest that phenotypi-
cally distinct fibroblasts exist in polyps and tumors, and thus may 
play a role in tumorigenesis in precancerous lesions.

We next integrated our scATAC-seq and snRNA-seq datasets to 
enable analyses of regulatory elements and TFs potentially driving 
gene expression. We aligned the datasets with canonical correlation 
analysis (CCA) and assigned RNA-seq profiles to each scATAC-seq 
cell (integrated expression)25. We then labeled scATAC cells with 
the nearest snRNA-seq cells, which closely agreed with manual 
immune (Extended Data Fig. 1i) and stromal (Extended Data  
Fig. 5b) annotations. Finally, we identified peaks highly correlated 
to gene expression of proximal genes in our datasets, which resulted 
in 52,443 stromal peak-to-gene links (Extended Data Fig. 5c,d).

scATAC reveals preCAF population. CAFs promote cancer devel-
opment and progression through diverse mechanisms including 
matrix remodeling, signaling interactions with cancer cells and 
perturbation of immune surveillance26–28. We observe a CAF clus-
ter with high expression of known CAF marker genes FAP and 
TWIST1 (Extended Data Fig. 5a)29,30. Among the most significant 
snRNA-seq markers for CAFs were FAP, VCAN and COL1A2, 
which are involved in extracellular matrix remodeling and upregu-
lated in multiple cancers30–32 (Fig. 2a). Specific expression of these 
genes by CAFs suggests fibroblasts participate in unique extracel-
lular matrix remodeling in cancerous tissues that does not occur in 
normal colon or precancerous polyps.

While CAFs are known to promote CRC progression, we next 
explored the role of fibroblasts in precancerous lesions. Because 
the preCAF cluster was enriched for cells from polyps, we exam-
ined accessibility around marker genes for CAFs and found many 
of these genes more accessible in preCAFs than other fibroblast 
subtypes. For example, CAFs secrete WNT2 to promote cell pro-
liferation and angiogenesis in CRC33,34. CAFs and preCAFs exhibit 
the greatest accessibility at the WNT2 TSS (Fig. 2b), suggesting 
that chromatin changes promote expression of WNT2 in CAFs and 
preCAFs. We also observed that preCAFs demonstrated higher 
integrated expression of multiple CAF marker genes than other 
fibroblast subtypes (Extended Data Fig. 5e). We computed global 
CAF accessibility scores for all fibroblast subtypes (Methods) and 
found that preCAFs had the highest median CAF scores other 
than CAFs (Extended Data Fig. 5f). Further, accessibility in CAFs 
was most correlated with preCAFs; however, the correlation with  
one crypt fibroblast subtype was only slightly lower (Extended Data 
Fig. 5g). Together, this highlights the similarities between CAFs and 
preCAFs and suggests that preCAFs may perform similar functions 
to CAFs.

RUNX1 is associated with widespread accessibility in CAFs. We 
found that CAF marker peaks were enriched for JUN/FOS and 
CEBP motifs and preCAF marker peaks were enriched for JUN/
FOS and FOX motifs (Fig. 2c,d and Methods). To nominate TFs 
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driving changes in chromatin accessibility in different stromal cell 
types, we identified TFs with the highest correlation between their 
gene expression and the chromatin accessibility activity level of 
its DNA motif (Fig. 2e, x axis). Amongst the most correlated TFs 
were RUNX1, RUNX2 and CEBPB. We next plotted the expres-
sion and motif activities of these TFs on the Uniform Manifold 
Approximation and Projection (UMAP) representation of the stromal  

cells and in violin plots grouped by each cell type (Fig. 2f), and 
noted that chromatin activity levels for RUNX1 and RUNX2, which 
have similar motifs, are highest in CAFs and preCAFs. However, 
RUNX1 is primarily expressed in CAFs and preCAFs, while RUNX2 
has much lower expression in CAFs, suggesting that RUNX1 is a 
stronger driver of accessibility at RUNX motifs than is RUNX2  
in CAFs.
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Fig. 2 | Epigenetic regulators of preCAFs and CAFs. a, Dot plot representation of significant (MAST test) marker genes for CAFs. b, Genomic tracks for 
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chromVAR deviation z-score, depicting TF motif activity, against correlation of chromVAR deviation and corresponding TF expression. TFs with maximum 
differences in chromVAR deviation z-score in the top quartile of all TFs and a correlation of greater than 0.5 are indicated in red. f, RNA expression (top) 
and chromVAR deviation z-scores (bottom) for selected TFs. The RNA expression plotted is the expression in the nearest RNA cell following integration 
of the snRNA-seq and scATAC-seq data. Corresponding violin plots and boxplots quantifying integrated gene expression and chromVar deviation z-scores 
for cells in each cell type are shown at the right. Boxplots represent the median, 25th percentile and 75th percentile of the data, and whiskers represent 
the highest and lowest values within 1.5 times the interquartile range of the boxplot. Cell types with significantly higher (Wilcoxon test, FDR!≤!0.01 and 
log2FC!≥!1) integrated RNA expression when compared with all other cell types are indicated with an asterisk. Assoc., associated; C. Fib, crypt fibroblast; 
Endo., endothelial; Norm., normalized.
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Consistent with the expression of these genes, we observed  
the greatest accessibility around the RUNX1 TSS in CAFs and  
preCAFs (Fig. 2b). When comparing gene scores for each stromal 
cell type with all other stromal cells, preCAFs had significantly 
higher RUNX1 gene scores (log2 fold-change (log2FC) > 1 and false 
discovery rate (FDR) < 0.01), and no other cell types met this signif-
icance threshold. When identifying accessibility closest to RUNX1, 

we found five significant marker peaks for preCAFs and four for 
CAFs (Fig. 2b).

Polyps are enriched for stem-like epithelial cells. We examined 
the epithelial cells that initially clustered by unaffected, polyp or 
CRC disease state (Fig. 1b,c and Extended Data Fig. 6e). To analyze 
these data, we first constructed RNA-seq and ATAC-seq references 
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composed of normal epithelial colon cells collected from patients 
without FAP (Fig. 3a). We annotated cell types in this normal tis-
sue using gene expression and gene activity scores of known marker 
genes (Extended Data Fig. 6a,b). A stem cell population with high 
expression and accessibility of LGR5, SMOC2, RGMB, PTPRO, 
EPHB2 and LRIG1 was evident (Extended Data Fig. 6b), as were 
goblet cells (MUC2 high) and BEST4+ enterocytes (BEST4 high). 
Following manual annotation, the snRNA-seq and scATAC-seq 
datasets were aligned with CCA25,35, and the scATAC cells were 

labeled based on the nearest snRNA-seq cells, which agreed with the 
manual annotations for 65% of cells, with mislabeled cells typically 
being labeled as the nearest cell type in the differentiation trajectory 
(Extended Data Fig. 6c,d).

We then projected the remaining cells into this normal subspace25, 
and found that epithelial cells from polyps and CRCs tend to project 
closer to stem cells and other immature cells along the normal differ-
entiation trajectory, whereas cells from unaffected tissues projected 
relatively evenly throughout the epithelial compartment (Fig. 3b).  
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We classified all epithelial cells based on the nearest normal cells 
in the projection and found that cells originating from polyps and 
CRC samples are enriched for stem-like epithelial cells and depleted 
for mature enterocytes, suggesting that epithelial cells increasingly 
demonstrate a stem-like phenotype during the transformation 
from normal to polyp (Fig. 3b–d and Extended Data Fig. 4a,b).  
We speculate that the populations of stem-like cells in the polyps 
and CRCs likely represent the ‘cancer’ stem cells in these tissues. 
Expression of previously described intestinal stem cell and colon 
cancer stem cell marker genes in these stem-like populations is dis-
cussed in detail in a Supplementary Note and Extended Data Fig. 7a.

To quantify the degree of stemness in individual cells within sam-
ples, we assigned scores quantifying stemness for each snRNA-seq 
and scATAC-seq cell and ordered samples by the distribution of 
stem scores within each sample (Methods and Fig. 3e). As expected, 
unaffected samples have generally lower stem scores. A number of 
polyps clustered near the unaffected tissues, suggesting that they 
are relatively benign. However, cells from most polyps and CRCs 
typically had higher stem scores, with some demonstrating a larger 
spread of stemness and others with much tighter distributions of 
stem scores, indicating that some polyps may be more heteroge-
neous. Similar results were observed when ordering samples based 
on the nearest normal cell type in the projection into the normal 
colon subspace (Methods and Extended Data Fig. 7h).

Stem-like cells form a potential malignancy continuum. We next 
compared the gene expression and chromatin accessibility of polyp 

and CRC stem-like cells with normal stem cells to identify the 
aberrant gene expression and regulatory programs in precancerous 
and cancerous lesions. After computing differential peaks between 
stem-like cells from each sample and cells from the nearest normal 
cell type, we computed the principal components of the log2FC for 
these peaks, then ordered samples by their position along a spline 
fit in this space (Fig. 4a), where position in ordering can be inter-
preted as position in a continuum from normal tissue to cancer. 
We generated a similar RNA trajectory using differential genes 
rather than differential peaks (Methods). The ordering of samples 
along the continua defined from the snRNA-seq and scATAC-seq 
datasets exhibited strong agreement (Extended Data Fig. 6j). This 
analysis suggests that differences in gene expression and chro-
matin accessibility between stem cells and these stem-like polyp 
cells follow a stereotyped progression from early to late polyp to  
invasive CRC.

To determine if this continuum is specific to the stem-like cells, 
which would be consistent with these cells being the only malig-
nant cells in the samples, or if other epithelial cells also exhibit a 
continuum, which would be consistent with other cell types within 
the polyp being derived from cancer stem-like cells rather than nor-
mal cells, we performed the same analysis with TA2 cells (Extended 
Data Fig. 6f). We found that TA2 cells exhibit a similar continuum, 
suggesting that they continue to be derived from stem-like cells. 
When we perform a control analysis with plasma cells, which are 
not derived from cancer cells, we do not observe a similar contin-
uum (Extended Data Fig. 6f). Comparison of the continuum with 
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microscopic pathology and genomic alterations (Fig. 4b) is dis-
cussed in the Supplementary Information.

After computing the trajectory, we repeated the differential 
analysis using all unaffected samples rather than normal samples 
to increase the total number of patients and cells in the back-
ground group. We observe that the absolute number of significantly  

differential peaks and genes gradually increased along the malig-
nancy continuum—with adenocarcinoma samples exhibiting the 
largest number of differential peaks and genes (Fig. 4c,d).

Gene expression changes along the malignant continuum. We 
examined gene expression changes along this malignancy continuum 
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by selecting genes differentially expressed in at least two samples 
then clustering these genes into ten k-means clusters (Fig. 4e).  
These clusters correspond to groups of genes that become differen-
tially expressed at distinct stages of malignant transformation. For 
example, clusters 1–4 comprise genes upregulated in stem-like cells 
in early-stage polyps when compared with unaffected stem cells. 
Members of cluster 4 include OLFM4, a marker of intestinal stem 
cells36, indicating that OLMF4 expression increases in stem-like cells 
from polyps as they approach malignancy. Cluster 4 also includes 
GPX2, a glutathione peroxidase known to be upregulated in CRC 
that functions to relieve oxidative stress by reducing hydrogen per-
oxide, facilitating both tumorigenesis and metastasis37 (Fig. 4h). The 
upregulation is not donor dependent, and we observe the same trend 
across all donors in our study (Extended Data Fig. 6g). We observed 
translation Gene Ontology terms enriched in cluster 4 and splic-
ing and RNA-processing Gene Ontology terms enriched in cluster 
2 (Extended Data Fig. 6k). Clusters of genes that gradually reduce 
expression along the transition from normal colon to cancer (clus-
ters 6–9) and genes specific to malignant transformation are dis-
cussed in a Supplementary Note and Extended Data Fig. 8a.

Polyps demonstrate increased activity of TCF and LEF. To identify 
groups of polyps associated with invasive transformation, we clus-
tered the 36,374 peaks significantly differential compared with the 
nearest unaffected cell type in at least two samples into ten k-means 
clusters (Fig. 4f), revealing five clusters that become more accessible 
and five clusters that become less accessible at different stages of the 
transition to cancer. To identify TFs driving chromatin accessibility 
changes in the transition from normal colon to CRC, we computed 
hypergeometric enrichment of motifs in each cluster of peaks from 
Fig. 4f (Fig. 4g) and ensured the stability of these results (Extended 
Data Fig. 7b–g).

TCF and LEF family motifs were enriched in all clusters that 
became more accessible across the malignancy continuum (clusters 
1–5), consistent with the fact that loss of APC leads to β-catenin 
accumulation in the nucleus, which interacts with TCF and LEF 
TFs to drive WNT signaling38–40. This regulatory transformation is 
gradual across the malignant continuum—new peaks containing 
TCF and LEF motifs continue to open at all stages of colon cancer 
development, as does overall accessibility aggregated across TCF 
and LEF motifs, suggesting that WNT signaling gradually increases 
throughout this transformation, over and above what is observed in 
normal stem cell populations.

Cluster 3 peaks, which became more accessible in later-stage pol-
yps and CRC, also exhibited enrichments of ASCL2 motifs (Fig. 4g). 
ASCL2 is a master regulator of intestinal stem cell fate, and induced 
deletion of ASCL2 leads to loss of LGR5+ intestinal stem cells in 
mice41. Consistent with a linkage between a more stem-like state in 
polyp epithelium and more advanced malignant continuum scores, 
ASCL2 expression gradually increases as polyps approach malig-
nant transformation (Fig. 4h), again indicative of a ‘super stem’-like 
phenotype, wherein master regulators of stem state are even more 
active than they are in normal stem cells.

Motifs lost along the malignancy continuum include HOX fam-
ily motifs, KLF motifs and GATA motifs (Fig. 4g), and specific KLF 
TFs along the malignancy continuum are discussed in detail in a 
Supplementary Note and Extended Data Fig. 8d,e. Clusters 4 and 
5 exhibit large accessibility increases only in CRC samples, and the 
greatest enrichment for HNF4A motifs (Fig. 4g). This observation 
suggests differential usage of HNF4A in polyps, where it decreases 
to drive WNT signaling, versus in CRC, where it is upregulated to 
drive cancer-specific accessibility differences (Supplementary Note 
and Extended Data Fig. 8b,c).

Remodeling of cellular composition along malignant contin-
uum. We calculated the fractional contributions of each cell type to 

each sample as a function of position in the malignancy continuum, 
and found some cell types were highly correlated with progression 
along the malignancy continuum. For example, the fraction of stem 
cells within a sample gradually increases throughout malignant 
transformation (Fig. 5a,i). Similarly, the number of mature entero-
cytes decreases as polyps transform to carcinomas (Fig. 5b,i). Milo 
analysis revealed that neighborhoods of stem-like cells tend to be 
significantly more abundant at the end of the malignancy contin-
uum (Extended Data Fig. 4b). In the secretory compartment, which 
primarily consists of immature and mature goblet cells, we observe 
a fractional increase in immature goblet cells in many polyps. In 
carcinomas we see a pervasive lack of differentiation into the secre-
tory lineage, effectively eliminating immature and mature goblet 
cells (Fig. 5c,d,i). This observation is consistent with previous work 
reporting a depletion of goblet cells in nonmucinous colon adeno-
carcinomas42. Previous work has also found that knockout of MUC2 
leads to the formation of more adenomas and carcinomas in mice43, 
suggesting that the loss of immature and mature goblet cells may 
even contribute to tumorigenesis.

Outside the epithelial compartment, we also observe changes in 
cellular composition across the transformation from unaffected to 
polyp to carcinoma. Within the stromal compartment, the fraction 
of preCAFs gradually increases, while CAFs only appear in CRCs 
(Fig. 5g,h). Within the immune compartment, Tregs are increased 
in the more malignant polyps and CRCs, while exhausted T cells 
only appear in CRCs (Fig. 5e,f and Extended Data Fig. 4b). Tregs are 
known to suppress the antitumor immune response and are typi-
cally present at high levels in the tumor microenvironment44. The 
gradual increase in Tregs may be a mechanism of immune evasion 
in precancerous polyps. We discuss possible cell–cell interactions 
between stromal and epithelial cells along the malignant continuum 
in a Supplementary Note and in Extended Data Fig. 8f,g.

Comparing CRC DNA methylation changes with continuum 
accessibility. Aberrant DNA methylation is a primary mechanism 
of tumorigenesis in CRC45–47, but the timing and extent to which 
methylation changes drive changes in chromatin accessibility before 
and during malignant transformation is not known. We identified 
differentially methylated probes between normal and CRC samples 
(Extended Data Fig. 9d) in The Cancer Genome Atlas (TCGA) 
DNA methylation data (Illumina 450K array)48. For the ~89,000 
chromatin accessibility peaks from epithelial cells that overlap at 
least one 450K array probe, we determined how many overlapped 
at least one hypermethylated site, at least one hypomethylated site 
or no differentially methylated sites. We then divided the peaks into 
groups based on whether they were members of significantly upreg-
ulated or significantly downregulated clusters identified in Fig. 4h.

For peaks overlapping hypomethylated probes, approximately 
one-third (534) belonged to clusters that became significantly more 
accessible along the continuum, while <0.5% (5) became signifi-
cantly less accessible (Fig. 6a). We saw similar correspondence for 
peaks overlapping hypermethylated probes, with approximately 
one-quarter (754) becoming less accessible, and <0.5% (9) becom-
ing more accessible. Therefore, hypermethylation and hypometh-
ylation in CRC nearly perfectly predict that accessibility at that site 
will either decrease or increase (respectively), or remain unchanged. 
In peaks not meeting the significance threshold, we still observe less 
aggregate accessibility within peaks overlapping hypermethylated 
probes and more accessibility when they overlap hypomethylated 
probes (Fig. 6b). However, we also observe that 79.4% (2,096) of sig-
nificantly more accessible and 76.3% (2,440) of less accessible peaks 
overlap nondifferential probes, implying that a majority of chroma-
tin accessibility changes are likely not driven by methylation.

We next plotted the number of differential peaks overlapping 
hypermethylated and hypomethylated probes across the malig-
nancy continuum (Fig. 6c), and found that changes in chromatin 
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accessibility that occur in regions that are ultimately differentially 
methylated in CRC accumulate along the transition from normal 
to cancer, with the greatest number observed in late-stage polyps 
and CRC.

Among regions that overlap hypermethylated probes in CRC 
that become less accessible in polyps are several previously reported 
cancer-specific hypermethylated loci49. For example, the promoter 
region and multiple distal regulatory elements near the ITGA4 
gene are accessible in normal colon, unaffected FAP colon and very 
early-stage polyps, but become closed early in the progression to 
CRC and remain closed even in low-grade polyps (Fig. 6d). The 
gene with the most nearby differential peaks overlapping hyper-
methylated probes in our dataset was NR5A2. Multiple peaks near 
this gene become less accessible along the malignancy continuum 
(Fig. 6d) and expression of NR5A2 also gradually decreases along 
the malignancy continuum (Extended Data Fig. 6h). NR5A2 is a 
nuclear receptor that has been linked to a wide range of functions 
including inflammation and cell proliferation50. The hypermethyl-
ation, decrease in accessibility, and decrease in gene expression of 
NR5A2 suggests that the pro-inflammatory state that may be trig-
gered by the loss of NR5A2 might have a role in tumorigenesis.

Hypermethylated DNA regions in CRC have also been incorpo-
rated into CRC screening tests, including hypermethylation of the 
promoter regions of BMP3 and NDRG4 (ref. 51). We observe mul-
tiple distal elements around BMP3 that become inaccessible in the 
middle of the malignancy continuum (Extended Data Fig. 9a). We 
observe many regions with a similar behavior: sharp increases or 
decreases in accessibility at a specific point along the malignancy 
continuum. We speculate that testing for accessibility, or methyla-
tion, at these loci may enable staging of polyps along the malignancy 
continuum. This approach also identifies methylation markers/loci 
(for example, GRASP, CIDEB) specific for malignant transforma-
tion in CRC (Extended Data Fig. 9b,c), and differential genes whose 
promoters overlap CRC methylation changes (Extended Data  
Fig. 9e).

Discussion
Strategies to identify individuals in a premalignant stage, where 
interventions might be highly efficacious, promise tractable means 
to prevent cancer deaths. However, most previous work profiling 
genetic, epigenetic and transcriptomic changes that occur in malig-
nancy has focused on advanced tumors rather than premalignant 
lesions. Our single-cell atlas of colon cancer tumorigenesis fills 
this gap by identifying key changes in chromatin accessibility, gene 
expression and tissue composition that occur along this transfor-
mation, and provides a wealth of potential targets for prevention, 
diagnosis and treatment of malignancy.

Analysis of both the composition and cell state of precancer-
ous epithelial cells revealed that an increasing fraction of epithe-
lial cells occupy a stem-like state as polyps approach malignancy, 
but these cells also exhibit underlying dysfunctional epigenetic and 
gene expression programs distinct from normal stem cells. We also 
identify compositional and cell state changes of noncancerous cells, 
including fibroblasts and immune cells, which may influence the 
tumor microenvironment to drive cancer progression. Within the 
fibroblast compartment, we identified a population of fibroblasts 
enriched in polyps and adenocarcinoma samples that shared many 
features with CAFs. We discuss the possibility that preCAFs may 
be on the path of becoming CAFs in a Supplementary Note and in 
Extended Data Fig. 10.

Gene expression changes along the malignancy continuum 
implicate mechanisms of cancer initiation and nominate diagnos-
tic and therapeutic targets. We find that expression of GPX2, which 
encodes a glutathione peroxidase, is gradually upregulated across 
the transformation from normal tissue to malignancy. Even in pre-
malignant tissues, GPX2 is upregulated, suggesting that its role in 

reducing the oxidative environment may be needed for progression 
along this continuum. As a result, we speculate that expression of 
GPX2 could serve as a marker for the degree of polyp malignancy, 
and that inhibitors of GPX enzymes—such as tiopronin52—may be 
relevant treatment strategies for CRC or premalignant lesions.

We identified several TFs associated with chromatin accessibil-
ity changes as polyps transition to malignancy. In stem-like cells 
obtained from polyps, we observe that many TCF and LEF motifs 
inaccessible in normal intestinal stem cells become accessible, sug-
gesting that WNT signaling increases along the malignant con-
tinuum over and above that of normal stem cells. The final step 
in cancer formation is malignant transformation, and we identify 
diverse changes in chromatin accessibility, gene expression and 
tissue composition associated with this transformation (Figs. 4 
and 5 and Extended Data Figs. 4, 6 and 8). Our data indicate that 
HNF4A may be a key regulator of malignant transformation—as 
both the expression of this gene becomes upregulated and chroma-
tin regions containing HNF4A motifs become accessible only after 
the transformation to CRC. In normal colon, HNF4A motifs are 
more accessible in mature enterocytes than stem cells, but HNF4A 
is upregulated in CRC stem cells and drives chromatin accessibility 
changes not observed in normal stem cells.

Previous work identified epigenetic factors associated with 
CRCs, and DNA methylation state markers are at the core of widely 
adopted screening tests for CRC51. While it is unknown when in 
tumorigenesis these methylation state changes occur, our dataset 
revealed that these regions become inaccessible in the middle of 
the continuum. Because we observe that hypermethylated regions 
are strongly decreased in their accessibility and hypomethylated 
regions are strongly enriched for increased accessibility, our data-
set can be used to stratify differentially methylated regions expected 
to be present early in the malignant continuum, those expected to 
be present later in the continuum and those expected to be present 
only in CRC, opening the possibility for a stage-specific molecular 
screening.

Currently, clinical guidelines for the timing and frequency of 
follow-up endoscopic screening after polypectomy depend on the 
size and degree of dysplasia of the polyps removed53. We found 
variability in the degree of transformation in polyps with the same 
dysplasia classification. This work presents a strategy to order pre-
malignant polyps by their degree of malignancy, which we speculate 
may be useful for staging polyps and assessing clinical risk. Perhaps 
the most straightforward approach to this type of staging is to use 
the fraction of Tregs or stem-like cells (through immunohistochem-
ical labeling of cell-type-specific markers such as LGR5) as a proxy 
for position along the malignancy continuum (Fig. 4 and Extended 
Data Figs. 6 and 8). However, determining if these molecular fea-
tures correlate with patient outcomes will require substantial future 
clinical investigation.

This work demonstrates that adenomatous polyps traverse a 
strikingly consistent epigenetic and transcriptional trajectory as 
they progress to CRC. These results lead us to question if a similar 
relatively uniform molecular phenotypic trajectory is common to 
other premalignant lesions that precede other cancers, or if other 
pre-cancers might traverse multiple diverse paths on the way to 
malignant transformation. Further, we might also ask if CRCs con-
tinue to follow a consistent pathway to metastasis or if multiple 
distinct pathways are taken once malignant transformation occurs. 
We anticipate that similar single-cell integrative methods can be 
deployed to answer these questions.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
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Methods
Experimental methods. Description of FAP donors. We collected samples from the 
following groups of patients: FAP (eight patients), routine colonoscopy screening 
(one patient), sporadic CRC (four patients) and healthy controls (two patients). 
!is study was approved by the Stanford Institutional Review Board and informed 
consent was obtained from all patients. All patients with FAP had clinical FAP. 
FAP tissue was collected at the time of partial or full colectomies for four patients 
and during screening colonoscopies for four patients. From non-FAP patients, 
one sporadic polyp was obtained during a standard colonoscopy as part of routine 
screening, four sporadic CRCs were obtained from the Stanford Tissue Bank and 
nine normal tissue samples were collected from brain-dead organ donors under 
consent.

Patient-matched normal colon mucosa, polyps and adenocarcinomas were 
flash frozen in liquid nitrogen at time of collection and stored at −80 °C. One polyp 
(A002-C-202) and one adenocarcinoma (A001-C-007) were embedded in optimal 
cutting temperature compound before storage at −80 °C. Polyps were scored by a 
board-certified pathologist for presence of dysplasia, including low or high grade 
with corresponding percentages. A small number of polyps (seven polyps) were 
exhausted for molecular assays so pathology reads were not obtained. The isolation 
of nuclei was accomplished using the OmniATAC protocol54 or the S2 Singulator 
(four samples) and is described further in the Supplementary methods.

Following nuclei dissociation, scATAC-seq targeting 9,000 cells per sample was 
performed using Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit 
v.1.1 (10x Genomics, 1000175) and snRNA-seq targeting 9,000 cells per sample 
was performed using Chromium Next GEM Single Cell 3′ Reagent Kits v.3.1 
(10x Genomics, 1000121). Samples were sequenced on a NovaSeq 6000 Illumina 
sequencer (Supplementary methods).

Analytical methods. scATAC-seq: running Cell Ranger. Initial processing 
of scATAC-seq data was performed using the Cell Ranger ATAC Pipeline 
(https://support.10xgenomics.com/single-cell-atac/so%ware/pipelines/latest/
what-is-cell-ranger-atac, v.1.2.0) by #rst running cellranger-atac mkfastq to 
demultiplex the bcl #les and then running cellranger-atac count to generate 
scATAC fragments #les. !ese fragments #les were loaded into R (v.3.6.1) using 
the createArrowFiles function in ArchR (v.0.9.5)55. Quality control metrics were 
computed for each cell, and cells with TSS enrichments less than 4 were #ltered out 
for all samples. Cells were also #ltered based on the number of unique fragments 
sequenced using a cuto" de#ned for each sample. As the sequencing depth 
sometimes di"ered between samples, it was necessary to assign this fragment cuto" 
as a sample-speci#c parameter. !e sample-speci#c cuto"s ranged from 1,500 to 
10,000, with the most common cuto" being 3,000 fragments per cell.

scATAC-seq: doublet removal and initial clustering. After generating arrow files 
for each sample, an ArchR project containing all samples was created. Doublets 
were simulated using the ArchR function addDoubletScores with k = 10. Cells 
with the highest probability of being doublets were removed using the ArchR 
function filterDoublets with a filterRatio of 1.2. Following initial doublet removal, 
sample-wise quality control statistics including TSS enrichment and fragments 
per cell were recomputed (Extended Data Fig. 1a). As part of construction of the 
arrow files, a tile matrix consisting of reads in 500-bp tiles was constructed. This 
tile matrix was used as input to compute an iterative latent semantic indexing 
(LSI) dimensionality reduction using the addIterativeLSI function in ArchR with 
a total of 2 iterations, a clustering resolution of 0.2 following the first iteration, 
25,000 variable features, 30 dimensions and sampling 50,000 cells. Following 
dimensionality reduction, initial clustering was performed using ArchR’s 
addClusters, which is a wrapper for Seurat’s FindClusters function35, using a 
resolution of 1.7 and sampling 50,000 cells for clustering (remaining cells were then 
grouped into clusters based on the nearest cells included in the clustering). We 
next ran addUMAP on the IterativeLSI dimensionality reduction with 30 nearest 
neighbors and a minimum distance of 50.

ArchR computes gene activity scores for each gene, which are a function of the 
accessibility within and around a given gene body and can be used as a proxy for 
gene expression. After initial dimensionality reduction and clustering of all cells 
in our dataset, we examined gene activity scores of known marker genes for cell 
types expected to be present in epithelial, stromal or immune cells and divided cells 
from our dataset into three groups (immune, stromal or epithelial) for downstream 
analysis.

scATAC-seq: analysis of immune compartment. After subsetting the dataset to 
include only immune cells, we repeated dimensionality reduction and clustering. 
The iterative LSI dimensionality reduction was computed using addIterativeLSI 
with 2 iterations, 25,000 variable features, sampleCellsPre set to NULL, dimensions 
1–30 and a clustering resolution of 0.2 for the initial iteration. Clusters were then 
determined with addClusters in ArchR using the Seurat method, a resolution of 1.7 
and nOutlier set to 50. The UMAP dimensionality reduction was then computed 
using addUMAP with 30 nearest neighbors, a minimum distance of 0.5 and the 
cosine metric. We next examined gene activity scores of known marker genes and 
identified three small clusters with gene activity scores for marker genes that were 
not consistent with these clusters consisting of a single high-quality immune cell 

subtype. As a result, these clusters were thought to be likely doublets, and were 
removed before additional analysis. We note this approach to removing likely 
doublet clusters is commonly employed for single-cell datasets and a similar 
approach has recently been applied to remove doublets in a large snRNA-seq 
dataset on colon cells22. This is further discussed in the Supplementary methods 
section ‘Removal of possible doublet clusters’. Following this additional doublet 
removal step, the dimensionality reduction and clustering steps were repeated 
using identical parameters.

Multiple approaches were taken to annotate the scATAC data. First, gene 
activity scores of known marker genes for different immune populations expected 
to be present in the scATAC data were examined for the different scATAC clusters. 
Marker genes included PAX5, MS4A1, CD19, IGLL5 and VPREB3 for B cells; 
TPSAB1, HDC, CTSG, CMA1, KRT1, IL1RAPL1 and GATA2 for mast cells; KLRF1, 
SH2D1B and SH2D1B for natural killer cells; SSR4, IGLL5, IGLL1 and AMPD1 for 
plasma cells; CD14 for monocytes; CD3D, CD3E, CD3G, CD8A, CD8B, TBX21, 
IL7R, CD4, CD2, BATF, TNFRSF4, FOXP3, CTLA4 and LAIR2 for T cells and T cell 
subtypes; and FOLR2, FABP3 and PLA2G2D for macrophages. This approach led 
to unambiguous identification of most clusters in our dataset. While annotating 
the clusters, some clusters were labeled with the same annotation if they consisted 
of cells of the same subtype. We next integrated our scATAC data with multiple 
snRNA-seq datasets using ArchR’s addGeneIntegrationMatrix function, and then 
labeled scATAC cells based on the nearest snRNA-seq cells. This included large, 
high-quality single-cell RNA-seq (scRNA-seq) data from cells isolated from normal 
colon and patients with ulcerative colitis22. This dataset contains slightly different 
populations of cells (for example, no exhausted T cells) so was insufficient to be 
used for annotation of our data in isolation. However, we observed good overall 
agreement between the marker gene-based annotations of our scATAC data 
and the annotations obtained when labeling our scATAC cells with the nearest 
scRNA-seq cell in the Smillie et al. dataset (Extended Data Fig. 1h)22. We also 
integrated our data with the labeled snRNA-seq data produced in this study, which 
also produced good agreement with our initial manual labeling (Extended Data 
Fig. 1i). Ultimately, our final annotations are the result of both initial annotation 
with known marker genes and refinement and validation of our clusters by 
integrating our scATAC data with multiple scRNA-seq datasets and labeling our 
scATAC cells with the nearest scRNA cells from these datasets.

scATAC-seq: evidence of T cell exhaustion. We aimed to determine if T cell 
exhaustion could be detected in early stages of the transition to carcinoma or 
only later after malignant transformation. We subclustered the T cells in our 
dataset, projected these cells into a UMAP and colored the cells by disease state 
of the tissue of origin or their cell-type annotations (Supplementary methods 
and Extended Data Fig. 3a,b). We supported the presence of exhausted T cells 
in four different ways. First, we examined gene activity scores for exhausted 
T cell markers including BATF, CTLA4, PDCD1 and TOX, and found that they 
were high in one cluster (Extended Data Fig. 3c). Second, we used a previously 
published snRNA-seq dataset that contained exhausted T cells from basal cell 
carcinoma15 to identify exhausted T cells within the subclustering of T cells by 
aligning the datasets with CCA and labeling our cells by the closest RNA-seq 
profiles as described above15 (Extended Data Fig. 3e). Third, we identified 
exhausted T cell-specific regulation by identifying differentially accessible peaks 
(Wilcoxon test) relative to CD8+ T cells (Extended Data Fig. 3f). Similar to CD8+ 
T cells, exhausted T cells exhibit a high level of accessibility around the CD8 locus, 
suggesting that they are likely CD8+ (Extended Data Fig. 3g). Peaks more accessible 
in exhausted T cells were enriched for NR4A, RUNX, CEFB, JUN, FOS and BATF 
family motifs, many of which are known drivers of T cell exhaustion56. Fourth, 
we computed chromVAR deviations, which also show that BATF and NR4A2 
motifs tend to be more accessible in exhausted T cells (Extended Data Fig. 3d). 
Together, these four lines of evidence identified the same population of exhausted 
T cells, which are observed in CRC samples only, demonstrating that this specific 
immunological dysfunction seems to be unique to invasive cancer samples.

scATAC-seq: construction of normal epithelial reference and projection into normal 
reference. To generate a normal epithelial reference, epithelial cells (as defined 
by gene activity scores of known epithelial marker genes) from nine samples 
taken from two genetically normal donors were selected. Next, we followed a 
dimensionality reduction and clustering protocol similar to what is described above 
for the immune and stromal cell types. An iterative LSI dimensionality reduction 
was performed with addIterativeLSI with 4 iterations; 15,000 variable features; and 
clustering resolutions of 0.1, 0.1 and 0.2 following the first three iterations. Clusters 
were then defined with a resolution of 2 and a likely doublet cluster was removed, 
defined based on no clear accessibility around marker genes and the cluster 
consisting of cells from only a subset of the samples. The dimensionality reduction 
was then repeated with the above parameters. To simplify the clustering, we ran 
harmony batch correction (v.1.0)57 on the IterativeLSI dimensionality reduction 
and clustered the cells with a resolution of 2.5. This did not substantially change 
the structure of the data, but facilitated cell-type annotation. We note that cluster 
annotations would be similar without this step and we show all annotations on the 
UMAP generated from the IterativeLSI dimensionality reduction. Clusters were 
annotated based on gene activity scores at known marker genes. Marker genes 
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include DCLK1, HTR3C, HTR3E and B4GALNT4 for tuft cells; KLK1, ITLN1, 
WFDC2 and CLCA1 for immature goblet cells; MUC2, TFF1, FCGBP and TBX10 
for goblet cells; CA1 for immature enterocytes, RAB6B for enterocytes; CRYBA2 
and SCGN for enteroendocrine cells; BEST4, CA7, OTOP2 and OTOP3 for BEST4+ 
enterocytes; and SMOC2, RGMB, LGR5 and ASCL2 for stem cells. These marker 
genes are supported by the literature and many have been previously shown to be 
specific markers for these cell types in scRNA-seq data22. ChromVar deviations for 
the normal epithelial reference were computed in ArchR as described above.

After generation of a normal epithelial reference, we next aimed to project 
diseased cells into this subspace, as has previously been done for placing 
diseased cells isolated from mixed-phenotype acute leukemia samples into the 
hematopoietic hierarchy25. To accomplish this, we started with the tile matrix 
for epithelial cells from a given sample. We then selected the features from this 
tile matrix that were used in the final LSI iteration for the normal epithelial cells. 
We computed the inverse document frequency using the number of rows and 
columns from the initial LSI computation and performed the same singular value 
decomposition (SVD) transformation as was done in the final LSI iteration. After 
projecting each cell into this IterativeLSI subspace, we identified the 25 nearest 
neighbor cells with get.knnx in R. Cell-type annotations were then assigned 
for each cell based on the most common cell-type annotation of the 25 nearest 
neighbors. Please see the Supplementary methods for details on definition of the 
peak set and determination of differential peaks.

scATAC-seq: definition of malignancy continuum. To compute the malignancy 
continuum, we computed differential peaks between stem cells from all polyp, 
unaffected and CRC samples (71 samples) in our dataset and normal stem cells 
(nine samples). Unaffected samples from the same region of the colon in the same 
patient were merged to ensure that there was a sufficient number of stem cells to 
compute differentials, which left 68 total unaffected, polyp and CRC samples. After 
computing differentials individually for each sample, we selected the set of peaks 
that was significantly differential in at least two samples (Wilcoxon FDR ≤ 0.05 and 
|log2FC | ≥ 1.5 in ≥2 samples). We then constructed the matrix of log2FC values 
for this set of significant peaks in all samples. The principal components of these 
differentials were computed with prcomp in R and a spline was fit to the first two 
principal components. For each sample, we then identified the nearest point on 
the spine (minimum Euclidean distance), and the samples were ordered based 
on the position of the nearest point on the spline fit. We only included scATAC 
samples with at least 250 stem cells in the malignancy continuum, as we have 
higher confidence in the differentials computed with a larger number of cells. The 
threshold of 250 stem cells excluded seven samples, leaving a total of 61 samples in 
the continuum.

scATAC-seq: identification of differential peaks and enriched motifs along the 
malignancy continuum. To identify differential peaks along the malignancy 
continuum, unaffected samples were used as a background because we observed 
relatively small differences between unaffected and normal tissues, and because 
including more samples allowed us to better match potentially biasing features 
such as read depth and TSS enrichment when computing differentials. A few 
unaffected samples were found to have dysplasia on microscopic pathology and as 
a result were not included in the background when computing these differentials. 
We first identified differential peaks between stem-like cells in each polyp and 
CRC sample and stem cells from all unaffected tissues. Peaks that were significantly 
differential in at least two samples (Wilcoxon FDR ≤ 0.05 and |log2FC | ≥ 1.5 in ≥2 
samples) were clustered into ten groups with k-means clustering using the kmeans 
function in R with iter.max set to 500. Following clustering of the differential 
peaks into ten groups, hypergeometric enrichment of clustered TF motifs58 (which 
were downloaded from https://jeffgranja.s3.amazonaws.com/ArchR/Annotations/
Vierstra-Human-Motifs.rds) within those ten groups was calculated using the 
ArchR function peakAnnoEnrichment. We note that this same analysis was done 
using normal stem cells as the background for differential testing and produced 
very similar results (Extended Data Fig. 4b,c).

snRNA-seq: initial processing. Initial processing of snRNA-seq data was 
done with the Cell Ranger Pipeline (https://support.10xgenomics.com/
single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger, v.3.1.0) 
by first running cellranger mkfastq to demultiplex the bcl files and then running 
cellranger count. Since nuclear RNA was sequenced, data were aligned to a 
pre-messenger-RNA reference.

snRNA-seq: doublet removal and initial clustering. After running Cell Ranger, 
the filtered_feature_bc_matrix produced by Cell Ranger was read into R with 
the Seurat (v.3.1.1)35 function Read10X. The data were filtered to remove cells 
with fewer than 400 unique genes per cell or greater than 4,000 genes per cell. 
DoubletFinder (v.2.0.3)59 was run for each sample using principal components 
1–20. nExp was set to 0.08 × nCells2/10,000, pN to 0.25 and pK to 0.09. Cells 
classified as doublets were then removed before additional analysis.

After running DoubletFinder, the remaining cells from all samples were 
merged into a single Seurat object and cells with greater than 10,000 counts per 
cell or greater than 5% mitochondrial RNA were removed. The data were then 

processed with Seurat’s standard pipeline. First, NormalizeData was run using the 
method LogNormalize and scale.factor of 10,000. Variable features were identified 
with Seurat’s findVariableFeatures using the vst method and 20,000 features. 
ScaleData was then run on all genes and principal components were computed 
with RunPCA. The cells were then clustered using Seurat’s FindNeighbors with 
dimensions 1–20 and FindClusters with a resolution of 1.0. Expression of marker 
genes in the resulting clusters was then used to label clusters as epithelial, stromal 
or immune for downstream analysis. Dimensionality reduction, clustering 
and annotation of immune and stromal compartments is discussed in the 
Supplementary methods.

snRNA-seq: construction of normal epithelial reference and projection into normal 
reference. To analyze the epithelial compartment, we first constructed a normal 
epithelial reference using epithelial cells from normal colon taken from genetically 
normal donors. One normal sample was excluded from the construction of the 
reference to serve as a test set to project into the normal subspace. We started 
with data normalized with Seurat’s normalizeData function. Next, the iterative LSI 
dimensionality reduction was computed using four total iterations, following a 
procedure outlined previously25,60. For each iteration, the mitochondrial, ribosomal 
and HLA genes were filtered out and, from the remaining genes, the top 1,600 most 
variable genes were identified. We then computed the term frequency–inverse 
document frequency (TF-IDF) transformation on these genes and performed 
SVD on the transformed matrix, and provided dimensions 1–8 of this reduction 
as input to Seurat’s shared nearest neighbor clustering with resolution of 0.1. We 
summed the individual clusters single cells, computed the log(counts per million) 
transformation with ‘edgeR::cpm(mat,log = TRUE,prior.count = 3)’ and then found 
the top 1,600 variable genes across the clusters. A TF-IDF transformation was 
then computed on these variable genes and an SVD was then performed on the 
transformed matrix. Dimensions 1–8 were retained and clusters were identified 
using the Seurat functions findNeighbors and findClusters, but with an increased 
resolution of 0.2. This process was repeated a total of four times with a resolution 
of 0.4 after the third iteration. After the final dimensionality reduction, we found 
that the fifth LSI component was highly correlated with the sample of origin (by 
biserial correlation), so removed that dimension and used dimensions 1–4 and 
6–8 for additional downstream analysis. Using the iterative LSI approach with only 
eight dimensions allowed us to denoise the data and limit batch effect, which was 
useful for the projections.

This final LSI dimensionality reduction was provided as input to compute a 
UMAP representation of the data and the cells were clustered using a resolution 
of 1.0. The resulting clusters were then annotated based on expression of known 
marker genes. The projection of cells into the LSI subspace defined for normal 
colon epithelial cells was done following the procedure described previously25. 
Briefly, when computing the TF-IDF transformation on normal colon epithelial 
cells, we stored the colSums, rowSums and SVD. To project cells from additional 
samples into this subspace, we first zero out rows based on the initial TF-IDF 
rowSums. We next calculated the term frequency by dividing by the column 
sums and computed the inverse document frequency from the previous TF-IDF 
transformation. These were then used to compute the new TF-IDF. The resulting 
TF-IDF matrix was projected into the previously defined SVD. Cells were classified 
by identifying their 25 nearest neighbors in the LSI subspace using get.knnx in R 
and then classifying the cell as the most common annotation for those 25 nearest 
neighbors.

snRNA-seq: definition of malignancy continuum and determination of differential 
genes along continuum. Similar to scATAC, differential genes were computed 
between stem cells from each sample and stem cells from normal colon. To 
compute differential genes for the snRNA-seq dataset, the Seurat function 
FindMarkers was used with ident.1 set as the sample of interest, ident.2 set as the 
background_sample, min.pct = 0, logfc.threshold = 0, min.cells.feature = 0, max.
cells.per.ident = 300 and Model-based Analysis of Single-cell Transcriptomics 
(MAST) used as the differential test61. We merged unaffected samples from the 
same region to provide more cells for computing differentially expressed genes.

For computing the snRNA-seq malignancy continuum, an analogous process 
to the one used for ATAC was carried out with the following minor differences: (1) 
differential genes rather than differential peaks were used, (2) significance cutoffs 
for including a gene were MAST Padj ≤ 0.05 and |log2FC | ≥ 0.5 in ≥2 samples and 
(3) we required there to be at least 100 snRNA-seq cells in a group to compute 
differentials. Following determination of the RNA malignancy continuum, we 
computed differential genes between each polyp and CRC sample (32 of 49 samples 
with at least 100 cells) against all unaffected samples as was done for scATAC and 
plotted the set of differential genes with MAST Padj ≤ 0.05 and |log2FC | ≥ 0.75 in ≥2 
samples in the heatmap in Fig. 4.

Analysis of DNA methylation data. Analysis of TCGA 450K methylation 
data was done with TCGABioloinks (v.2.12.6)62. Data for normal colon and 
colorectal adenocarcinoma were downloaded using the function GDCquery with 
project = c(‘TCGA-COAD’), data.category = ‘DNA Methylation’, legacy = FALSE, 
platform = c(‘Illumina Human Methylation 450’) and sample.type = c(‘Primary 
solid Tumor’,’Solid Tissue Normal’). Differentially methylated probes between 
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normal and colorectal adenocarcinoma samples were computed using 
TCGAanalyze_DMR with a P value cutoff of 10−5 and a mean difference in β value 
cutoff of 0.25 to determine significance. Overlaps between DNA methylation 
probes and our peak set were identified with the GenomicRanges function 
FindOverlaps in R.

Supplementary methods. Please see the Supplementary methods for additional 
methodologic details, including details on CODEX multiplex imaging.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited in the Gene Expression Omnibus (GEO) 
with the accession code GSE201349. Original data generated in this study are also 
available on the Human Tumor Atlas Network (HTAN) Data Portal (unaffected 
FAP tissues, polyps and CRCs; https://data.humantumoratlas.org/ under the HTAN 
Stanford Atlas) and the HuBMAP data portal (normal colon tissues; https://portal.
hubmapconsortium.org/ under the Stanford TMC). Unique IDs for accessing the 
HTAN datasets are listed in Supplementary Table 3 and unique IDs for accessing 
the HuBMAP datasets are listed in Supplementary Tables 4 and 5. Receptor ligand 
pairs from the Fantom5 database were downloaded from https://fantom.gsc.
riken.jp/5/suppl/Ramilowski_et_al_2015/ (ref. 63). Clustered TF motifs can be 
downloaded from https://www.vierstra.org/resources/motif_clustering#downloads 
(ref. 58). Seurat objects for previously published single-cell colon data were 
downloaded from https://github.com/cssmillie/ulcerative_colitis (ref. 22). Counts 
matrices and T cell annotations for cells from BCC are available on GEO with 
accession number GSE123813 (ref. 15). TCGA DNA methylation data can be 
downloaded from the GDC data portal (https://portal.gdc.cancer.gov/)48.

Code availability
Scripts for processing the single-cell data, generating the malignancy continuum 
and analyzing the WGS data are available on GitHub (https://github.com/
winstonbecker/scCRC_continuum).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Quality control and annotation of single-cell datasets. (a) Violin plots of TSS-enrichments for all scATAC cells from each sample. 
Samples are labeled by patient (for example A001, A002, etc), source (C!=!Colectomy, E!=!Colonoscopy, A!=!Autopsy, T!=!Tissue Bank), dissociation 
(D!=!dounce, S2!=!S2 singulator). Replicates performed on additional sections of the same polyp are indicated with a R. (b) Violin plots of the percent 
of RNA that is mitochondrial RNA per sample and the number of UMIs sequenced for cells from each sample. Samples are labeled the same as in S1A, 
except all tissues were dounced so the dissociation method is not included. Boxplots represent the median, 25th percentile, and 75th percentile of the data 
and whiskers represent the highest and lowest values within 1.5 times the interquartile range of the boxplot in A and B. (c) UMAP projection of scATAC 
immune cells colored by gene activity scores reflecting accessibility within and around immune marker genes. (d) UMAP projection of snRNA-seq immune 
cells colored by expression of immune marker genes in each cell. (e) UMAP projection of snRNA-seq immune cells colored by automated labeling of 
snRNA-seq immune cells with SingleR. (f) UMAP projection of scATAC stromal cells colored by gene activity scores of stromal marker genes. (g) UMAP 
projection of snRNA-seq stromal cells colored by expression of marker genes. (H, I) UMAP projection of scATAC immune cells where cells are labeled by 
the nearest snRNA-seq cell from (h) Smillie et al or (i) this study after integrating the respective datasets with CCA. (j) UMAP projections of four scATAC 
samples with nuclei isolated with both douncing and the S2 Singulator, colored by disease state (top) and dissociation method (bottom). (k) Fraction of 
epithelial cells of each cell type for the 4 samples where nuclei were isolated with douncing and the S2 singulator. (l) Differential peaks between scATAC 
stem cells isolated from two sections of the same polyp that were processed with either the S2 singulator or douncing. (m) UMAP representation of 
stromal cells following Harmony batch correction on LSI dimensions. (n) Violin plots of gene module scores for interferon gamma gene sets for immune 
cells from different disease states. (o) Violin plot of gene module scores for an interferon gamma gene set for different immune cell types.

NATURE GENETICS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ARTICLESNATURE GENETICS

Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cellular composition of samples in this study. (a) Metadata collected for different samples in this study. (b, c) Stacked bar plot 
representation of the fraction of all immune cells in each sample composed of each cell type for the scATAC (B) and snRNA-seq (c) datasets. Each column 
represents a single sample, with each color representing a different cell type present in the sample. (d, e) Stacked bar plot representation of the fraction of 
all stromal cells in each sample composed of each cell type for the scATAC (d) and snRNA-seq (e) datasets. Each column represents a single sample, with 
each color representing a different cell type present in the sample.
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Extended Data Fig. 3 | T-cell annotation and donor contributions to clusters of cells. (a, b) UMAP projection of all T-cells identified in the scATAC 
data. Points on the UMAP represent single-cells and are colored by tissue of origin (c) and cell type annotations (d). (c) UMAP projection of scATAC 
T-cells with cells colored by gene activity scores depicting chromatin accessibility surrounding BATF, CTLA4, PDCD1, and TOX. (d) ChromVAR deviation 
z-scores depicting TF motif activity of BATF and NR4A2 plotted on scATAC T-cell UMAP. (e) UMAP projection of scATAC T-cells colored by labeling of 
scATAC-seq T-cells with nearest snRNA-seq T-cells in BCC after integrating the datasets with CCA. (F) MA plot showing differential peaks (Wilcoxon 
test) between exhausted T-cells and CD8!+!T-cells. Motifs with hypergeometric enrichment in peaks more accessible in exhausted T-cells are listed in the 
plot. (g) Genomic tracks depicting accessibility around CD8 locus in T-cell subtypes. Genes on the + strand are indicated in red and genes on the - strand 
are indicated in blue. (h) Stacked bar graph representation of the fraction of each cell type derived from each patient in the study. Cells from each patient 
have a different color and different shades of the same color represent individual samples from a given patient. (i) UAMP representation of all scATAC 
cells colored by patient of origin.

NATURE GENETICS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ARTICLES NATURE GENETICS

Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Differential cell type abundance. (a) Boxplots depicting the fraction of cells in a given compartment (immune, stromal, or 
epithelial) that are composed of a given cell type. Each box represents data for a single disease state (N: Normal, U: Unaffected, P: Polyp, A: CRC) in this 
study. Wilcoxon p-values are listed above the plot and were corrected with Bonferroni correction for multiple hypothesis testing within each cell type. 
Wilcoxon comparisons were made to normal colon for stromal and epithelial cell types and unaffected FAP colon for immune cell types. The boxplots 
and statistics are derived from 8 normal samples, 18 unaffected samples, 48 polyp samples, and 6 CRC samples in the epithelial compartment, 8 normal 
samples, 18 unaffected samples, 47 polyp samples, and 6 CRC samples in the immune compartment, and 8 normal samples, 16 unaffected samples, 46 
polyp samples, and 6 CRC samples in the stromal compartment. Boxplots represent the median, 25th percentile, and 75th percentile of the data, whiskers 
represent the highest and lowest values within 1.5 times the interquartile range of the boxplot, and all points are plotted. (b) Milo analysis of differential 
abundance changes between polyp and unaffected samples. The left plots show comparisons of polyp and unaffected samples, which were selected since 
they have the greatest number of samples. Neighborhoods that are significantly differentially abundant in polyps are colored in red and neighborhoods 
that are differentially abundant in unaffected samples are colored in blue. The plots on the right show comparisons along the malignancy continuum, with 
neighborhoods that are significantly differentially abundant early in the continuum shown in blue and neighborhoods that are significantly differentially 
abundant late in the continuum shown in red. All comparisons in A and B use the scATAC data, as we had a greater number of scATAC cells.
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Extended Data Fig. 5 | Cell type specific expression and RNA-ATAC integration of stromal cells. (a) Dotplot representation of RNA expression of 
myofibroblast, stem maintenance, SEMA, CCL, BMP, and CAF genes by cells in different fibroblast subtypes. (b) Labeling of scATAC cells by aligning 
scATAC and snRNA-seq data with CCA and labeling scATAC cells based on nearest snRNA-seq cells. (c) Peak-to-gene linkages between scATAC and 
snRNA-seq stromal cells (correlation≥0.45). Rows in the left heatmap represent peaks and are colored by accessibility while rows in the right heatmap 
represent genes and are colored by expression. (d) Hypergeometric enrichment of motifs in clusters of peaks from S5C. (E) Integrated gene expression 
of CAF marker genes for different stromal cell types. (f) CAF scores for different stromal cell types depicted as violin plots with overlying boxplots. CAF 
scores are a measure of global accessibility at CAF marker peaks, and were defined by first identifying CAF marker peaks relative to all other cell types 
and then computing the number of Tn5 insertions in those marker peaks for each stromal cell and normalizing by the number of fragments in each cell. (g) 
Pearson correlation between accessibility at all peaks between CAFs and all other stromal cell types. (h) Violin plots showing the distribution of RUNX1 
scATAC gene scores for cells of each stromal cell type. Boxplots in (e), (f), and (h) represent the median, 25th percentile, and 75th percentile of the data, 
and whiskers represent the highest and lowest values within 1.5 times the interquartile range of the boxplot.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Characterization of normal colon epithelium and identification of changes along the malignancy continuum. (a) Upper 8 panels: 
UMAP projection of normal colon epithelial cells colored by scATAC gene activity scores of the epithelial marker genes RETNLB (immature goblet), MUC2 
(goblet), FEV (enteroendocrine), RAB6B (enterocyte), SOX9 (stem), BEST4 (Best4+ enterocyte), LGR5 (stem), and ASCL2 (stem). Lower 4 panels: UMAP 
projection of normal colon epithelial cells colored by expression of marker genes EPCAM (general epithelial), SMOC2 (stem), BEST4, and MUC2. (b) 
Violin and boxplot representation of gene expression of stem marker genes by epithelial cell type. Asterisks indicate that gene expression is significantly 
upregulated when compared to all other cell types. Boxplots represent the median, 25th percentile, and 75th percentile of the data and whiskers represent 
the highest and lowest values within 1.5 times the interquartile range of the boxplots. (c) Labeling of scATAC-seq epithelial cells by nearest snRNA-seq 
cells following integration of the datasets with CCA. (d) Confusion matrix comparing annotation of scATAC cells using marker genes and labeling of 
scATAC cells with the nearest snRNA-seq cell following integration of scATAC and snRNA-seq datasets. (e) UMAP representation of snRNA-seq epithelial 
cells colored by disease state. (f) Results of computing the continuum on plasma cells and TA2 cells using the same method performed for stem cells. 
(g) Log2FC in expression of ASCL2, HNF4A, and GPX2 in stem-like cells from each sample relative to stem-like cells in unaffected samples plotted against 
the malignancy continuum defined in 4D. Samples are colored based on the patient the sample was collected from. (H) Log2FC in expression of NR3C2, 
NORAD, SLC4A4, LRIG3, NR5A2, and RPL13 as a function of malignancy continuum. Samples are colored based on if they are derived from polyps or CRCs. 
(i) Relationship between the malignancy continuum and percent of sample with any degree of dysplasia as determined by microscopic pathology. Samples 
are colored based on gross classification as a polyp (purple) or unaffected (green) tissue. Note that some samples classified as unaffected had dysplasia 
while some samples classified as polyps did not have dysplasia. (i) Relationship between the malignancy continuums defined from the scATAC and 
snRNA-seq datasets. Samples are colored based on gross classification as unaffected, polyp, or CRC. (k) Enrichment of gene ontology terms in clusters of 
differential RNA genes in Fig. 4.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Motif enrichment in differential peaks with different numbers of k-means clusters. (a) Expression of intestinal stem cell and colon 
cancer stem cell marker genes in stem cells, TA2 cells, TA1 cells, and Enterocytes by sample. Samples are ordered by the malignancy continuum defined in 
Fig. 4. (B, c) Heatmaps of all peaks that were significantly differentially accessible (Wilcoxon test, padj≤0.05 & |log2FC!|!≥1.5) in ≥2 samples. Samples are 
ordered along the x-axis by the malignancy continuum defined in Fig. 4. Peaks are k-means clustered into 5 (b) or 15 (c) clusters. (d, e) Hypergeometric 
enrichment of TF motifs in k-means clusters of peaks defined in B (d) and C (e). (f) Heatmap of all peaks that were significantly differentially accessible 
in ≥2 samples between stem cells from a given sample and normal colon stem cells. Samples are ordered along the x-axis by the malignancy continuum 
defined in Fig. 4. Peaks are k-means clustered into 10 groups. (g) Hypergeometric enrichment of TF motifs in k-means clusters of peaks defined in F. (h) 
Heatmap representation of cell types in each epithelial sample as determined by the nearest normal cell after projecting the cells into the normal LSI 
subspace.
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Extended Data Fig. 8 | Epigenetic and transcriptomic changes along the malignancy continuum. (A) Dot plot representation of genes differentially 
expressed in CRC relative to polyps. (b) UMAP projection of normal colon epithelial cells colored by motif activity of HNF4A. (c) Dot plot representation 
of HNF4A expression in different normal colon epithelial subtypes. (d) Log2FC in expression of KLF TFs relative to unaffected colon as a function of position 
along the malignancy continuum. Samples are colored based on if they are from polyps (purple) or CRC (red). (e) Dotplot representation of the expression 
of KLF TFs in normal colon epithelial cells. (f) Log2FC in expression of SDC1, SDC4, and RPSA along the malignancy continuum. Samples are colored based 
on if they are from polyps (purple) or CRC (red). (g) Dotplot representation of the expression of selected ligands by different stromal cell types.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Accessibility changes in regions hypermethylated in CRC. (a–c) Accessibility tracks around BMP3 (a), GRASP (b), and CIDEB (c), 
which are hypermethylated in CRC. (d) Adjusted p-value and mean difference in β-value cutoffs used to determine differentially methylated probes. P 
values were determined using the two-sided Wilcoxon test and were adjusted with the Benjamini-Hochberg method for multiple hypothesis testing. (e) 
Genes that were significantly differential along the malignancy continuum that also have differentially methylated probes within 500!bp of their TSS in 
TCGA 450!K methylation data. Genes are grouped into a heatmap of those with hypermethylated probes in their promoters and a heatmap of those with 
hypomethylated probes in their promoters.
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Extended Data Fig. 10 | Trajectory analysis of preCAFs and CAFs. (a) Changes in most variable peaks, TF motif activity scores, and gene expression along 
the trajectory from villus fibroblasts to preCAFs to CAFs. (b) Changes in most variable peaks, TF motif activity scores, and gene expression along a control 
trajectory from CAFs to villus fibroblasts to preCAFs.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Code for generating fragments files for scATAC and counts matricies for single cell RNA was obtained from 10x genomics 
(go.10xgenomics.com/scATAC/cell-ranger-ATAC and https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/
what-is-cell-ranger). 

Data analysis cellranger-atac-1.2.0 – alignment of ATAC data and generation of fragments files 
cellranger-3.1.0 – alignment of RNA data and generation of counts matrices 
macs2 2.1.1.20160309 – Software for peak calling 
R version 3.6.1 – R environment for all custom code except running singleR. 
R version 4.0.2 – R environment for running singleR. 
ArchR - 0.9.5 - Software for analysis of scATAC-seq data. 
Seurat_3.1.1 – Software for analysis of scRNA-seq data. 
DoubletFinder_2.0.3 – Software for doublet removal for scRNA-seq 
BSgenome.Hsapiens.UCSC.hg38_1.4.1 – Package containing genomic DNA sequences 
TCGAbiolinks_2.12.6 – Software for analysis of DNA methylation data. 
limma_3.40.6 – Software used for GO enrichments 
Rcpp_1.0.4.6 – Software for C++ in R 
SingleR_1.4.1 – Software for automated cell annotation 
edgeR_3.26.8 – Used for analysis of single-cell data. 
harmony_1.0 – Software used for batch correction. 
Mutect2 (GATK v4) – Used for analysis of whole genome data. 
Custom code for generating the malignancy continuum is available on GitHub (https://github.com/winstonbecker/scCRC_continuum). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Sequencing data has  been deposited in the Gene Expression Omnibus (GEO) with the accession code GSE201349. Original data generated in this study are also 
available on the Human Tumor Atlas Network (HTAN) Data Portal (unaffected FAP tissues, polyps, and CRCs; https://data.humantumoratlas.org/ under the HTAN 
Stanford Atlas) and the HuBMAP data portal (normal colon tissues; https://portal.hubmapconsortium.org/ under the Stanford TMC). Unique IDs for accessing the 
HTAN datasets are listed in Supplementary Table 3 and unique IDs for accessing the HuBMAP datasets are listed in Supplementary Tables 4 and 5. Receptor ligand 
pains from the Fantom5 database were downloaded from https://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/. Clustered TF motifs can be downloaded 
from https://www.vierstra.org/resources/motif_clustering#downloads. Seurat objects for previously published single-cell colon data were downloaded from 
https://github.com/cssmillie/ulcerative_colitis. Counts matrices and T-cell annotations for cells from BCC are available on GEO with accession number 
GSE12381315. TCGA DNA methylation data can be downloaded from the GDC data portal (https://portal.gdc.cancer.gov/). 

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was set based on the availability of polyps collected. We aimed to maximize the number of polyps assayed, as we were primarily 
interested in identifying features of the precancerous state. A smaller number of normal tissues and CRCs were collected to facilitate analysis 
of the polyps and to help define the precancerous continuum. The sample size in this study was sufficient to define a continuum from normal 
to cancer and to identify significant changes in composition between disease states. 

Data exclusions All datasets generated that did not fail experimentally (e.g. overloaded sample) were included in the study.

Replication Replicate single cell ATAC datasets were generated for 4 samples and produced highly concordant results. Replicates for additional single-cell 
experiments were not performed as technical replicates are less informative than additional samples with different disease states. Further, 
using multimodal data (scATAC and snRNA) allows us to highlight results that are concordant between the two methods. Selected findings 
(e.g. PD1 expression) were also validated with orthogonal assays. 

Randomization There was no randomization into experimental groups as experiments on all samples in this study were performed the same way. 

Blinding No blinding was performed in this study that focused on deep characterization of polyps, CRCs, and normal tissues at a single point in time. No 
differential clinical intervention was performed or was being compared in this study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Antibodies
Antibodies used CD3-BX015 (UCHT1)—Cy5-RX015; Supplier: Akoya Biosciences, Clone: UCHT1;  Catalog number: 4350008  

PD-1/CD279-BX014 (EH12.2H7)—Atto 550-RX014; Supplier: Akoya Biosciences, Clone: EH12.2H7; Catalog number: 4250010

Validation The CD3 and PD-1 antibodies were pre-validated and conjugated by Akoya Biosciences, which were purchased for running the CODEX 
experiments.

Human research participants
Policy information about studies involving human research participants

Population characteristics Patients in this study include patients with FAP seen at Stanford healthcare, 1 patient without FAP undergoing routine 
screening colonoscopy at Stanford healthcare, patients with CRC with samples deposited in the Stanford Tumor bank, and 
patients without FAP or colon cancer at WUSTL. Ages of patients included ranged from 20–78. The study included 9 male and 
6 female patients.  6 patients were White, 5 were Hispanic/Latino, 1 White/Asian, 1 Black, and 1 Other. Please see the 
supplemental table for additional information.

Recruitment For the FAP patients, given that this is a relatively rare condition, no criteria other than FAP were required for recruitment. 
Eligible patients undergoing colonoscopy, pouchoscopy, or colectomy were identified in the Stanford Cancer Genetics clinic, 
the Stanford Gastroenterology and Hepatology service, or the Stanford Adult and Pediatric Surgery service. Eligible patients 
were notified of their eligibility to participate in research. Over the phone, the description, risks, benefits, and alternatives of 
participating in the research study were described and a copy of the full consent form was sent to them via email. On they 
day of the procedure, they met with a clinical research coordinator to answer questions and sign the consent. This 
recruitment strategy only includes patient's seen at Stanford healthcare, which is one potential source of selection bias. For 
polyps from non-FAP patients, they were obtained from patients undergoing screening colonoscopy at Stanford with no 
attempt to exclude donors on the basis of age, gender, or sex. Healthy controls were recruited at WUSTL, and no attempt 
was made to exclude healthy donors on the basis of age, gender, or sex. A subset of CRC samples were obtianed from the 
Stanford tumor bank, again with no attempt to exclude  patients on the basis of age, gender, or sex. 

Ethics oversight The study was approved by the Stanford IRB and informed consent was obtained from all patients. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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